用户名: 密码: 验证码:
中国麦红吸浆虫不同地理种群的遗传结构及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦红吸浆虫Sitodiplosis mosellana(Gehin)是小麦生产上的主要害虫,在我国北方麦区广泛分布。近些年来,受全球气候变化、耕作制度改变、小麦品种更换、人类活动及其他因素的影响,麦红吸浆虫的发生危害不断加重,发生范围不断扩大。这种情况的出现不仅给防治工作带来很大的难度,同时也给我们带来新的思考:麦红吸浆虫新发生区的虫源来自何处?老发生区的虫源为什么会消失?麦红吸浆虫不同地理种群的遗传多样性及遗传结构是否发生了改变?
     本研究采用微卫星与线粒体DNA(mtDNA)分子标记相结合的方法,对分布在我国的麦红吸浆虫16个不同地理种群的遗传多样性、遗传结构及种群间的遗传分化程度等进行了分析,并分析了与其相关的影响因素。本研究主要获得以下研究结果:
     1.对来自麦红吸浆虫唾腺的1217条EST序列进行了SSR查找、SSR引物设计和多态性引物筛选。结果共找到141个SSR位点,分布于106个unigenes中。在20对能够扩增出稳定目的条带的引物中,有9对表现出多态性。
     2.选用4个微卫星位点对麦红吸浆虫16个地理种群的遗传多样性和遗传结构进行分析。结果表明,在4个位点上,共检测到35个等位基因。各地理种群的平均等位基因数为5.75,平均观测杂合度为0.45,平均期望杂合度为0.72,平均等位基因丰富度为5.24,平均多态信息含量为0.59,平均Shannon信息指数为0.62。相关性分析结果表明,等位基因丰富度、期望杂合度和遗传多样性与海拔成负相关(r=-0.629,P <0.01;r=-0.601,P <0.05;r=-0.588,P <0.05),与经度成正相关(r=0.569, P <0.05;r=0.562,P <0.05;r=0.553,P <0.05)。
     3.对麦红吸浆虫不同地理种群的4个线粒体基因片段COX3、CytB、ND4和ND5进行PCR扩增并测序分析。结果表明,在16个地理种群中共检测出COX3基因单倍型27种,CytB基因单倍型30种,ND4基因单倍型42种,ND5基因单倍型26种。其中COX3和ND4基因具有较高的遗传变异度,平均核苷酸多样度分别为0.0056和0.0076,变异位点占序列长度的比例分别为4.87%和7.13%。
     4.基于微卫星的数据分析,麦红吸浆虫16个地理种群间的遗传相似系数在0.7150~0.9653之间,Nei’s遗传距离在0.0353~0.3355之间,遗传分化系数(FSTs)在0.082~0.132之间。以COX3基因序列数据求得的麦红吸浆虫种群间的遗传分化系数FSTs在0.002~0.883之间,CytB数据的FSTs在0.002~0.688之间,ND4数据的FSTs在0.003~0.552之间,ND5数据的FSTs在0.000~0.883之间。基于两种分子标记的分析表明,麦红吸浆虫大多数地理种群的遗传多样性较高,种群间存在不同程度的遗传分化,尤其是东部区域种群与西部区域种群间的遗传分化非常明显。
     5.基于微卫星数据的Nei遗传距离的NJ聚类分析、STRUCTURE遗传结构分析和线粒体DNA单倍型的NJ聚类分析及单倍型网络图的分析等,结果表明,麦红吸浆虫的16个地理种群可划分为2个类群。其中,第1类群在地理分布上主要为来自太行山脉以西的6个种群(HuaX、ZZ、LF、LT、WW和YC),第2类群在地理分布上主要为来自太行山脉以东的10个种群(LY、JN、FN、XS、XT、TJ、BJ、NY、HX和LC)。基于微卫星数据的AMOVA分析结果表明,大部分的遗传变异来自种群内,小部分的遗传变异来自类群内种群间和类群间;基于线粒体DNA的AMOVA分析结果表明,大部分的遗传变异来自类群间和种群内,小部分的遗传变异来自于类群内种群间。相关性分析结果表明,环境因子(地理因子和气候因子)对麦红吸浆虫不同地理种群的遗传多样性、种群间的遗传分化程度和遗传结构的形成等均具有一定的影响。Mantel检测结果表明,麦红吸浆虫各地理种群间的遗传距离与地理距离间存在显著的相关性。
     6.基于微卫星数据的瓶颈效应分析结果显示,我国的麦红吸浆虫种群在过去较近的历史时期内没有经历瓶颈效应。4个mtDNA的核酸错配分布分析及中性检验的结果表明,麦红吸浆虫群体的核酸错配分布为双峰模式,Tajima’s D和Fu’s Fs中性检验值总体上均不显著(P>0.05),表明麦红吸浆虫群体在过去较近的历史时期内没有经历种群扩张事件,群体大小保持相对稳定。
     本研究为了解我国北方麦区麦红吸浆虫的发生和扩散趋势提供了理论依据,为揭示其成灾规律、预测预报和开展有效的综合防治提供了重要的参考,同时也为进一步了解其对环境的适应性和进化机制提供帮助。
The wheat midge (or orange wheat blossom midge), Sitodiplosis mosellana (Gehin), is a major pestof wheat production, and occurs throughout the wheat-producing areas of north China. In recent years,the damage to wheat crops by this pest has increased significantly, and the scope of its occurrence hasbeen expanded by global climate change, farming systems change, replacement of wheat varieties,human activities and other factors. This phenomenon not only brings great difficulty to prevention andcontrol of this pest, but also brings us new thinking: Where the new insect source came from? Why didthis pest in the old region disappear? Whether the genetic diversity and genetic structure of this pestchanged or not?
     In this research, genetic diversity, population structure and genetic differentiation of16geographical populations of S. mosellana were analyzed using both microsatellite and mitochondrialDNA markers. The primary achievements of this dissertation are listed as follows:
     1.141SSRs, distributed in106unigenes, were found from a total of1217EST sequences from thesalivary glands of S. mosellana.26SSRs primers were designed and screened. Results showed that thestable target band could be amplified from20pairs of them, and9were detected polymorphisms.
     2. Four microsatellite loci were used for the analyses of genetic diversity and genetic structure in S.mosellana populations. A total of35alleles were detected. The average number of alleles per populationwas5.75. The average observed and expected heterozygosity were0.45and0.72, respectively. Themean allelic richness was5.24. The average polymorphism information content was0.59and theaverage shannon information index was0.62. Correlation analyses showed that allele richness, expectedheterozygosity and genetic diversity were negatively correlated with altitude (r=-0.629, P <0.01; r=-0.601, P <0.05; r=-0.588, P <0.05), and positively correlated with longitude (r=0.569, P <0.05; r=0.562, P <0.05; r=0.553, P <0.05).
     3. Four mitochondrial genes including COX3, CytB, ND4and ND5fragments were amplified fromdifferent geographic populations of S. mosellana, and analyzed with the nucleotide sequences. A total of27haplotypes were observed in COX3,30haplotypes in CytB,42haplotypes in ND4and26haplotypesin ND5, respectively. The results showed higher genetic diversity in COX3and ND4genes. The averagenucleotide diversity of them were0.0056and0.0076, respectively, and the proportion of variable siteswere4.87%and7.13%of the full sequence length, respectively.
     4. With microsatellite DNA markers, Nei's genetic identity between populations ranged from0.7150to0.9653, Nei's genetic distance ranged from0.0353to0.3355and the pairwise geneticdifferentiation (FSTs) ranged between0.082and0.132. The pairwise genetic differentiation (FSTs) inCOX3ranged between0.0024and0.8833, between0.002and0.688in Cytb, between0.003and0.552in ND4, and between0.000and0883in ND5. Based on the analyses of two molecular markers, thegenetic diversity among most populations was high. The genetic differentiation varied among differentpairwise populations, and this phenonmenon was especially obvious between these populations of theeastern region and that of the western region.
     5. Analyses based on two molecular markers showed that16geographical populations of S.mosellana could be divided into two groups. The analysis of molecular variance (AMOVA) based onmicrosatellite markers showed that most of the genetic variation was from individuals, only a small partfrom populations and groups. AMOVA analyses based on mtDNA markers indicated that most of thegenetic variation was from groups and individuals, and only a small part from populations. Thecorrelation analysis showed that environmental factors (geographic factors and climatic factors) hadgreat influence on the genetic diversity, genetic differentiation and genetic structure of differentgeographical populations of S. mosellana. Mantel test results showed there was a significant correlationbetween genetic distances and geographic distances among pairwise populations.
     6. Bottleneck analysis (microsatellite data) revealed no bottleneck in the recent past among S.mosellana populations. Mismatch distribution analysis (mtDNA) showed bimodel. Results of Tajima’sD and Fu’s Fs neutrality tests (not significant, P>0.05)(mtDNA) implied there might not be apopulation expansion in recent time, and S. mosellana populations was at demographic equilibrium.
     This study provides a theoretical basis for understanding the occurrence and diffusion trend of S.mosellana in northern China, the important references for revealing the disaster law, forecasting andeffectively comprehensive prevention and control of this pest, and helps to understand the adaptabilityto the environment and evolution mechanism of this pest.
引文
1.曹志英.影响小麦吸浆虫发生程度的气象条件分析.河北农业科学,2010,8:104-105.
    2.成卫宁,李修炼,李建军.夏季高温对翌年小麦吸浆虫发生的影响.西北农业学报,2002,4:13-15.
    3.成卫宁,王洪亮,李怡萍等.麦红吸浆虫滞育发生和解除过程中保护酶活力动态.应用生态学报,2008,18:1764-1768.
    4.陈巨莲,倪汉祥.小麦吸浆虫的研究进展.昆虫知识,1998,4:240-243.
    5.陈华爽.麦红吸浆虫成虫对黑光灯的趋性及幼虫不同地理种群耐寒性的研究.[硕士学位论文].武汉:华中农业大学,2011
    6.崔亮亮,刘勇,杨士玲等.山东省麦红吸浆虫发生动态及传播方式研究.粮食安全与植保科技创新,2009:247-250.
    7.丁红建,郭予元.小麦吸浆虫的研究动态.世界农业,1992,5:23-31.
    8.伏召辉,郑余良,张宝强等.小麦吸浆虫幼虫在麦穗上的危害特点及空间分布型研究.麦类作物学报,2011,1:181-185.
    9.付海滨,丛斌,禇栋.赤眼蜂SSR反应体系的建立.沈阳农业大学学报,2006,1:99-101.
    10.高军,王贺军,王朝华.河北省小麦吸浆虫随联合收割机跨区作业传播的调查分析.中国植保导刊,2009,10:5-8.
    11.郭培宗,寇振荣等.人为传播吸浆虫不容忽视.作物栽培,1992,7:88-89.
    12.郭长奎,于静,罗淑萍.新型分子标记TRAP应用研究进展.生命科学研究,2009,13(4):366-370.
    13.郝岗平,吴忠义,陈茂盛等.拟南芥CBF4基因位点的单核昔酸多态性(SNP)变化与抗旱表型的相应性.农业生物技术学报,2004,12:122-131.
    14.贺春贵,袁锋.中国西部麦红吸浆虫种群遗传结构的RAPD分析.昆虫分类学报,2001,2:124-130.
    15.贺春贵,袁锋,张雅林.中国麦红吸浆虫不同地理种群的遗传结构.昆虫学报,2003,6:783-787.
    16.贺虹.中国麦红吸浆虫地理种群遗传变异及基因流研究.[博士学位论文].杨凌:西北农林科技大学,2004
    17.霍春玲,蒿军.小麦吸浆虫发生危害的原因及防治方法.河北农业科技,1996,5:22.
    18.胡志昂,张亚平.中国动植物的遗传多样性.杭州:浙江科学技术出版社,1997
    19.胡木林,张克斌.麦红吸浆虫滞育习性研究.昆虫知识,1995,l:13-16.
    20.孔杰,王金乐,关梅.分子标记在鱼类中的应用研究进展.贵州农业科学,2012,6:158-161.
    21.刘玉娣,侯茂林.褐飞虱EST资源的微卫星信息分析.昆虫学报,2010,3:239-247.
    22.李英梅.陕西关中地区小麦吸浆虫发生动态及不同阶段保幼激素含量测定.[硕士学位论文].杨凌:西北农林科技大学,2006
    23.李修炼,吴兴元,成为宁.小麦吸浆虫捕食性天敌种类与捕食量初步研究.陕西农业科学,1997a,4:25-26.
    24.李修炼,吴兴元,成为宁.小麦吸浆虫寄生蜂混合种群发生于数量消长研究.西北农业学报,1997b,2:13-16.
    25.李修炼,吴兴元,成为宁.麦红吸浆虫种群变动与气象因素的关系.国外农学-麦类作物,1994,2:47-48.
    26.李素娟,刘爱芝,韩松等.不同小麦品种(系)对小麦吸浆虫田间抗性鉴定.植物保护,2001,3:19-20.
    27.刘家仁.我国小麦吸浆虫的地理分布.昆虫知识,1964,5:226-229.
    28.刘玉娣,侯茂林.褐飞虱EST资源的微卫星信息分析.昆虫学报,2010,3:239-247.
    29.林拷,李海鹏.DNA水平上检测正选择方法的研究进展.遗传,2009,9:896-902.
    30.卢龙斗.普通遗传学.科学出版社,2009.
    31.吕印谱,吕国强,李建任等.河南省小麦吸浆虫严重回升状况及其原因分析.中国植保导刊,2006,5:15-18.
    32.麦克尼利等著,李文军等译.保护世界的生物多样性.见(中国科学院生物多样性委员会编)生物多样性译丛-北京,中国科学技术出版社,1992,1-199.
    33.苗进,武予清,郁振兴等.麦红吸浆虫随气流远距离扩散的轨迹分析.昆虫学报,2011,4:432-436.
    34.庞寒,王宽明,杨晓芳等.2005年小麦吸浆虫大发生原因分析及防治对策.河南农业科学,2005,11:60-62.
    35.屈振刚,温树敏,赵玉新.河北省麦红吸浆虫为害逐年加重的原因及防治对策.河北农业科学,2006,10:102-104.
    36.钦俊德,王琛柱.论昆虫与植物的相互作用和进化的关系.昆虫学报,2001,3:360-365.
    37.单雪,王秀利,仇雪梅.分子标记及其在海洋动物遗传研究中的应用.生物技术通讯,2005,4:463-466.
    38.施立明,贾旭等.遗传多样性.见:陈灵芝(主编),中国的生物多样性,北京:科学出版社,1993,99-113.
    39.孙四台,倪汉祥,丁红建等.小麦对麦红吸浆虫生化抗性机制的研究.中国农业科学,1998,2:24-29.
    40.唐远菊,罗洪林,聂奎.曼氏血吸虫EST中的微卫星分析.中国预防兽医学报,2007,8:629-633.
    41.王春波.小麦吸浆虫的预报与防治.北京:农业出版社,1988:34-36.
    42.王永模,沈佐锐,高灵旺.微卫星标记及其在蚜虫种群生物学研究中的应用.昆虫学报,2007,6:621-627.
    43.王洪亮,忤均祥,成为宁等.用重复序列引物PCR分析不同滞育状态麦红吸浆虫DNA多态性.昆虫分类学报,2007,1:67-73.
    44.王宏立,张祖立,张伟,不同耕作方式对寒地旱作区土壤温度的影响.沈阳农业大学学报,2008-02,1:44-47.
    45.魏长安,徐梦萧,李霞.临汾市小麦吸浆虫严重回升原因分析及防治策略.山西农业大学学报(自然科学版),2007,4:414-415.
    46.武予清,蒋月丽,段云.小麦吸浆虫监测方法评价.河南农业科学,2008,8:98-100.
    47.武予清,刘顺通,段爱菊等.河南西部小麦红吸浆虫禾本科寄主植物的记述.植物保护,2010,5:138-140.
    48.武予清,苗进,段云等.麦红吸浆虫的研究与防治.北京:科学出版社,2011.
    49.仵均祥,李长青,李怡萍等.小麦吸浆虫滞育研究进展.昆虫知识,2004,6:499-503.
    50.仵均祥,袁锋,苏丽.麦红吸浆虫在小麦穗上的分布和危害特点.西北农业大学学报,2000,4:40-44.
    51.徐晋麟,徐蕊,陈淳.现代遗传学原理.北京:科学出版社,2005
    52.肖扬.几种新型分子标记技术在中国香菇种质资源遗传多样性研究中的应用.[博士学位论文].武汉:华中农业大学,2009
    53.袁峰.小麦吸浆虫成灾规律.北京:科学出版社,2004
    54.袁锋,花保祯,仵均祥等.小麦吸浆虫成灾规律与控制.北京:科学出版社,2003
    55.杨平澜.小麦吸浆虫研究与防治.昆虫学集刊,北京:科学出版社,1959:193-221.
    56.杨建国,谢爱婷,张书利等.小麦吸浆虫成灾原因分析与防治技术研究初报.中国农学通报,2005,10:311-312.
    57.赵菊香,李双鱼.小麦品种抗麦红吸浆虫特性的初步观察.陕西农业科学,1988,5:23-25.
    58.朱象三.西北小麦吸浆虫之发生与防治(简报).农业科学通讯,1954,3:124-126.
    59.祝传书,袁锋.河北南和县2001年麦红吸浆虫发生成灾.植物保护,2002,28,2:60-61.
    60.曾省.小麦吸浆虫.北京:农业出版社,1965
    61.曾省.小麦吸浆虫的生态地理、特性及其根治途径的讨论.中国农业科学,1962,3:10-15.
    62.张玉波.小麦吸浆虫综合防控措施.河南农业,2010,3:13.
    63.张琳琳,魏朝明,廉振民等.赤拟谷盗全基因组和EST中微卫星的丰度.昆虫知识,2008,1:38-42.
    64.张智,张云慧,程登发等.耕作方式对麦红吸浆虫种群动态的影响.昆虫学报,2012,5:612-617.
    65.周树堂,赵文新.河南省小麦吸浆虫发生分布概况.河南农业科学,1992,3:11-12.
    66.张克斌,许文贤,胡木林等.小麦吸浆虫在关中再度猖獗的特点、成因与对策.西北农业大学学报,1988,16:1-9.
    67. Abdel-Aal E.S., Hucl P., Sosulski F.W., et al., Screening spring wheat for midge resistance inrelation to ferulic acid content. Journal of Agric ultural and Food Chemistry,2001,8:3559-66.
    68. Bandelt H., Forster P., Rohl A., Median-joining networks for inferring intraspecific phylogenies.Molecular Biology and Evolution,1999,16:37-48.
    69. Barnes, H.F., Gall midges of economic importance: Gall midges of cereal crops. Vol. VII. Crosby,Lockwood and Son Ltd., London, U. K.1956:57-80.
    70. Basedow T., The effect of temperature and precipitation on diapause and phenology in the wheatblossom midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin)(Diptera:Ceeidomyiidae). Zoologische Jahrbucher Abteilung Systematik Okologie und Geographie der Tiere,1977,3:302-326.
    71. Bechenbach A.T. and Joy J.B., Evolution of the mitochondrial genomes of gall midges (Diptera:Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biology andEvolution,2009,1:278-287.
    72. Bentur J.S., Deepak K.S., Padmavathy, et al., Isolation and Characterization of Microsatellite Lociin the As ian Rice Gall Midge (Orseolia oryzae)(Diptera: Cecidomyiidae). International Journal ofMolecular Sciences,2011,1:755-772.
    73. Berzonsky W.A., Ding H., Haley S.D., et al., Breeding wheat for resistance to insects. PlantBreeding,2003,22:221-296.
    74. Blake N.K., Stougaard R.N.,Weaver D.K. et al., Identification of a quantitative trait locus forresistance to Sitodiplosis mosellana (Géhin), the orange wheat blossom midge, in spring wheat,Plant Breeding,2010,1:25-30.
    75. Birkett M.A., Bruce T.J., Martin J.L., et al., Responses of Female Orange Wheat Blossom Midge,Sitodiplosis mosellana, to Wheat Panicle Volatiles. Journal of Chemical Ecology,2004,7:1319-1328.
    76. Borkent A., A review of the wheat blossom midge, Sitodiplosis mosellana (Géhin)(Diptera:Cecidomyiidae) in Canada. Agriculture Canada, Research Branch,1989.
    77. Bouktila D., Mezghami M., Marrakchi M., et al., Genetic variation and relatedness in Tunisianwheat midges of the genus Mayetiola (Diptera: Cecidomyiidae), inferred from biological andmolecular data. Acta Entomologica Sinica,2006,5:822-828.
    78. Bruce T.J.A., Hooper A.M., Ireland L., et al., Development of a pheromone trap monitoring systemfor orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Management Science,2007,1:49-56.
    79. Chapuis M.P., Lecoq M., Michalakis Y., Loiseau A., Sword G.A., Piry S., Estoup A, Do outbreaksaffect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued bymicrosatellite null alleles. Molecular Ecology.2008,16:3640-3653.
    80. Chambers G.K., MacAvoy E.S., Microsatellites: consensus and controversy. ComparativeBiochemistry and Physiology B,2000,126:455-476.
    81. Crawford N.G., SMOGD: Software for the measurement of genetic diversity. Molecular EcologyResources,2010,10:556-557.
    82. Cornuet J.M. and Luikart G., Description and power analysis of two tests for detecting recentpopulation bottlenecks from allele frequency data. Genetics,1997,144:2001-2014.
    83. Daniéla Calado, Mario Antonio Navarro-Silva&Maria Anice Mureb Sallum, PCR-RAPD andPCR-RFLP polymorphisms detected in Anopheles cruzii (Diptera, Culic idae). Revista Bras ileira deEntomologia,2006,3:423-430.
    84. Dalmon A., Halkett F., Granier M. et al., Genetic structure of the invasive pest Bemisia tabaci:Evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity,2008,1:316-325.
    85. Dexter J.E., Preston K.R., Cooke L.A., et al., The influence of orange wheat blossom midge,Sitodiplosis mosellana (Géhin), damage on hard red spring wheat quality and the effectiveness ofinsecticide treatments. Canadian Journal of Plant Science,1987,67:697-712.
    86. Ding, H., Lamb R. J., and Ames N., Inducible production of phenolic acids in wheat and antibioticresistance to Sitodiplos is mosellana. Journal of Chemical Ecology,2000,26:969-985.
    87. Doane J.F., Olfert O., Seasonal development of wheat midge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Protection,2008,27:951-958.
    88. Elliott R.H., Olfert L.M.O., Calendar and degree-day requirements for emergence of adult wheatmidge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae) in Saskatchewan,Canada. CropProtection,2009,28:588-594.
    89. Elliott B., Olfert O., Hartley S., Management practices for wheat midge, Sitodiplosis mosellana(Géhin). Prairie Soils and Crops Journal,2011,4:8-13.
    90. Excoffier L., Lischer HE., Arlequin suite ver3.5: a new series of programs to perform populationgenetics analyses under Linux and Windows. Molecular Ecology Resources,2010,3:564-567.
    91. Falush D., Wirth T., Linz B., et al., Traces of human migrations in Helicobacter pylori populations.Science,2003,299:1582-1585.
    92. Falush D., Stephens M., Pritchard J K, Inference of population structure using multilocus genotypedata: dominant markers and null alleles.Molecular Ecology Notes,2007,7:574-578
    93. Finn D.S., Theobald D.M., Black IV W.C., Leroy Poff N., Spatial population genetic structure andlimited dispersal in a Rocky Mountain alpine stream insect. Molecular Ecology,2006,15:3553-3566.
    94. Fu Y.X., New statistical tests of neutrality for DNA samples from a population. Genetics,1996,143:557-577.
    95. Glaubitz, J.C. CONVERT: A user-friendly program to reformat diploid genotypic data forcommonly used population genetic software packages. Molecular Ecology Notes,2004,2:309-310。
    96. Gillespie J.H. and Turelli M., Genotype-environmentinteractions and the maintenance of polygenicvariation. Genetics,1989,121:129-138.
    97. Ganehiarachchi G.A.S.M. and Harris M.O., Oviposition behavior of orange wheat blossom midge onlow-vs. high-ranked grass seed heads. Entomologia Experimentalis et Applicata,2007,3:287-297.
    98. Gharalari A.H.; Fox S.L.; Smith M.A. H., et al., Ovipos ition deterrence in spring wheat, Triticumaestivum, against orange wheat blossom midge, Sitodiplosis mosellana: implications for inheritanceof deterrence. Entomologia Experimentalis et Applicata,2009,1:74-83.
    99. Goudet J., FSTAT, a program to estimate and test gene diversities and fixation indices (version
    2.9.3.2).2002, Available: http://www2.unil.ch/popgen/softwares/fstat.htm.
    100. Hedrick P.W., Genetics of Populations (Second Edition). Jones and Bartlett, Boston, MA,2000,
    553.
    101. Helenius J., Kurppa S., Quality losses in wheat caused by the orange wheat blossom midgeSitodiplosis mosellana. Annals of Applied Biology,1989,3:409-417.
    102. Hellmann J.J. and Pineda-Krch M., Constraints and reinforcement on adaptation under climatechange: selection of genetically correlated traits. Biological Conservation.2007,137:599-609.
    103. He C.G. and Yuan F., Esterase variation and genetic structure in three geographic popularions ofSitodiplosis mosellana (Gehin)(Diptera: Cecidomyiidae) in western China. Entomologia sinica,2001,1:73-80.
    104. He H., Yuan X.Q., Wei C., et al., Genetic variation of the mitochondrial ND4region amonggeographical populations of Sitodiplosis mosellana (Gehin)(Diptera: Cec idomyiidae) in China.Journal of the Kansas. Entomological Society,2006,3:211-221.
    105. Hinks C.F., Doane J.F., Observations on rearing and diapause termination of Sitodiplosis mosellana(Diptera: Cecidomyiidae) in the laboratory. Journal of Economic Entomology,1988,6:1816-1818.
    106. Hinomoto N., Higaki T., Abe J., et al., Development and characterization of21polymorphicmicrosatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera:Cecidomyiidae). Applied Entomology and Zoology,2012,2:165-171.
    107. Huang Z.H., Liu N.F., Luo S.X., et al., Ecological genetics of rusty-necklaced partridge (Alectorismagna): Environmental factors and population genetic variability correlations. Korean journal ofgenetic,2007,2:115-120.
    108. Huang Z.H., Liu N.F., Zhou T.L., et al., Effects of environmental factors on the population geneticstructure in chukar partridge (Alectoris chukar). Journal of Arid Environments,2005,3:427-434.
    109. Johnson A.J., Shukle R.H., and schemerhorn B.J., Geographic distribution of Hessian fly (diptera:cecidomyiidae) mitochondrial haplotypes in the United States. in Entomological Society of AmericaAnnual Meeting, North Central Branch. Cincinnati, OH,2005
    110. John M.K.R. and Andrew R.W., Genetic structure and long-distance dispersal in populations of thewingless pest springtail, sminthurus viridis (collembolan: Sminthuridae). Genetical Research,2011,93:1-12.
    111. Janet K. and Mangala G.,2008, Integrated pest management of the wheat midge in North Dakota.2008,(http://www.ag.ndsu.edu/pubs/plantsci/pests/e1330.pdf)
    112. Jost L., GST and its relatives do not measure differentiation. Molecular Ecology,2008,17:4015-4026.
    113. Katiyar S.K. Chandel G., Tan Y., et al., Biodiversity of Asian rice gall midge (Orseolia oryzaeWood Mason) from five countries examined by AFLP analysis. Genome,2000,43:322-332.
    114. Kurppa S., Susceptibility and reaction of wheat and barley varieties grown in Finland to damage bythe orange wheat blossom midge Sitodiplosis mosellana (Gehin). Annales Agriculturae Fenniae,1989,4:371-383.
    115. Lalitha S., Primer Premier5. Biotech Software&Internet Report,2001,1:270-272.
    116. Lamb R.J., Tucker J.R., Wise I.L., et al., Trophic interaction between Sitodiplosism osellana(Diptera:Cecidomyiidae) and spring wheat: imlications for yield and seed quality. The CanadianEntomologist,2000,132:607-625.
    117. Lamb R.J., Sridhar P., Smith M.A.H., et al., Oviposition Preference and Offspring Performance ofa Wheat Midge Sitodiplos is mosellana (Géhin)(Diptera: Cecidomyiidae) on Defended and LessDefended Wheat Plants. Environmental Entomology,2003,2:414-420.
    118. Lamb R.J., Smith M.A.H., Wise I.L., et al., Oviposition deterrence in Sitodiplosis mosellana(Diptera: Cecidomyiidae): a source of resistance for durum wheat (Gramineae). CanadianEntomologist,2001,133:579-591.
    119. Larkin M.A., Blackshields G., Brown N.P., et al., ClustalW2and ClustalX version2.Bioinformatics,2007,23:2947-2954.
    120. Lee E.S., Shin K.S., Kim M.S., et al., The mitochondrial genome of the smaller tea tortrixadoxophyes honmai (Lepidoptera: Tortricidae). Gene,2006,373:52-57.
    121. Lloyd C.J., Norton A.P., Hufbauer R.A, et al., Microsatellite isolation from the gall midge Spurgiacapitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Molecular EcologyNotes,2004,4:605-607.
    122. Luikart G., Cornuet J., Empirica1evaluation of a test for identifying recently bottleneckedpopulations from allele frequency data. Conservation Biology,1998,1:228-237.
    123. Mantel N., The detection of disease clustering and a generalized regression approach. CancerResearch,1967,27:209-220.
    124. Manel Ste′phanie, Schwartz Michael K., Luikart Gordon and Taberlet Pierre, Landscape genetics:combining landscape ecology and population genetics. Trends in Ecology and Evolution,2003,4:189-197.
    125. Manly B.F.J., Randomization, Bootstrap And Monte Carlo Methods in Biology.2nd edn. NewYork, London, UK: Chapman&Hall.1997
    126. McKenzie R.I.H., Lamb R.J., Aung T., et al., Inheritance of resistance to wheat midge, Sitodiplos ismosellana, in spring wheat. Plant Breeding,2002,121:383-388.
    127. Merrell D. J., Ecological genetics. Minneapolis:University of Minnesota Press,1981.
    128. Mezghani-Khemakhem M., Bouktila D., Casse N., et al., Development of New PolymorphicMicrosatellite Loci for the Barley Stem Gall Midge, Mayetiola hordei (Diptera: Cecidomyiidae)from an Enriched Library. International Journal of Molecular Sciences,2012,13:14446-14450.
    129. Mezghzni M., Makni H., Marrakchi M., Comparison of Mayetiola species assemblages at differentgeographical scales:influence of host plant variation. Entomologist Croat,2002,6:23-34.
    130. Mezghani-Khemakhem M., Mohamed M. and Hanem M., Genetic diversity of Mayetioladestructor and Mayetiola hordei (Diptera: Cecidomyiidae) by inter-simple sequence repeats (ISSRs).African Journal of Biotechnology,2005,7:601-606.
    131. Miao J., Wu Y.Q., Gong Z.J., et al., Long-Distance Wind-Borne Dispersal of Sitodiplosismosellana Géhin (Diptera:Cecidomyiidae) in Northern China. Journal of Insect Behavior,2013,1:120-129.
    132. Missio R.F., Caixeta E.T., Zambolim E.M., et al., Assessment of EST-SSR markers for geneticanalisys on coffee. Bragantia,2009,3:573-581.
    133. Miller B.S. and Halton P., The damage to wheat kernels caused by the wheat blossom midge(Sitodiplosis mosellana). Journal of the Science of Food and Agriculture,1961,12:391-398.
    134. Mongrain D., Couture L., Dubuc J.P., et al., Occurrence of the orange wheat blossom midge[Diptera: Cecidomyiidae] in Quebec and its incidence on wheat grain microflora. Phytoprotection,1997,1:17-22.
    135. Mukerji M.K., Olfert O.O. and Doane J.F., Development of sampling designs for egg and larvalpopulations of the wheat midge, Sitodiplosis mosellana (Géhin)(Diptera: Cec idomyiidae), in wheat.The Canadian Entomologist,1988,120:497-505.
    136. Muturi E.J., Kim C.H., Baliraine F.N., et al., Population genetic structure of Anopheles arabiensis(Diptera: Culicidae) in a rice growing area of central Kenya. Journal of Medical Entomology,2010,2:144-151.
    137. Naber N., El Bouhssini M., Labhilili M., et al., Genetic variation among populations of the Hessianfly Mayetiola destructor (Diptera: Cecidomyiidae) in Morocco and Syria. Bulletin of EntomologicalResearch,2000,3:245-252.
    138. Nei M., Estimation of average heterozygosity and genetic distance from a small number ofindividuals. Genetics,1978,89:583-590.
    139. Nei M., Molecular Evolutionary Genetics. New York: Columbia University Press,1987
    140. Nei M., Chesser R.K., Estimation of fixation indices and gene diversities. Annals of HumanGenetics,1983,47:253-259.
    141. Nevo E., Evolution of genome–phenome diversity under environmental stress. Proceedings of theNational Academy of Sciences of the United States of America,2001,11:6233-6240.
    142. Olfert O.O., Mukerji M.K., Doan E.J.F., Relationship between infest action levels and yield losscaused by wheat midge, Sitodiplosis mosellana(Gehin)(Diptera: Cecidomyiidae), in spring wheatin Saskatchewan. The Canadian Entomologist,1985,117:593-598.
    143. Olfert O, Elliott R.H., Hartley S., Non native insects in agriculture: strategies to manage theeconomic and environmental impact of wheat midge, Sitodiplosis mosellana, in Saskatchewan. Biol.Invsions,2009.11:127-133.
    144. Paetkau D., Slade R., Burden M., et al., Direct, real-time estimation of migration rate usingassignment methods: a simulation-based exploration of accuracy and power. Molecular Ecology,2004,13:55-65.
    145. Paran I., Michelmore R.W. Development of reliable PCR-based markers linked to downy mildewresistance genes in lettuce. Theoretical and Applied Genetics,1993,85:985-993.
    146. Pivnick K.A., and LabbéE., Daily patterns of activity of females of the orange wheat blossommidge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae). The Canadian Entomologist,1993,125:725-736.
    147. Pfunder M and Frey J.E., Isolation of microsatellite markers for contarinia nasturtii, a Europeanpest invading the New World. Molecular Ecology Notes,2006,6:191-193.
    148. Powell, W.W., Koput K. and Smith-Doerr L., Interorganizational collaboration and the locus ofinnovation:Networks of learning in biotechnology. Administrative Science Quarterly,1996,41:116-145.
    149. Piry S., Luikart G., Cornuet J.M., BOTTLENECK: a computer program for detecting recentreductions in the effective population size using allele frequency data. Journal of Heredity,1999,90:502-503.
    150. Piry S., Alapetite A., Cornuet J., et al., GeneClass2: A software for genetic assignment and firstgeneration migrants detection. Journal of Heredity,2004,6:536-539.
    145. Rannala B. and Mountain J.L., Detecting immigration by using multilocus genotypes. Proc eedingsof National Academy of Sciences of the USA,1997,94:9197-9201.
    151. Rooney A.P., Honeycutt R.L., Davis S.K., et a1., Evaluating a putative bottleneck in a populationof bowhead whales from patterns of microsatellite diversity and genetic disequilibria. Journal ofMolecular Evolution,1999,49:682-690.
    152. Ramirez M.G, Eiman S.S., Wetkowski M.M., et al., Heterozygosity and fitness in a Californiapopulation of the labyrinth spider Metepeira ventura (Araneae, Araneidae). Invertebrate Biology,2007,126:67-73.
    153. Reed D.H., Frankham R., Correlation between itness and genetic diversity. Conservation Biology,2003,17:230-237.
    154. Rozas J., DNA sequence polymorphism analysis using Dnasp. Methods in Molecular Biology,2009,537:337-350.
    155. Rousset F., Genepop'007: a complete reimplementation of the Genepop software for Wind-ows and Linux. Molecular Ecology Resources,2008,8:103-106.
    156. Smith M.A.H., Lamb R.J., Fluencing oviposition by Sitodilosis mosellana (Diptera: Cecido-myiidae) on wheat spikes (Gramineae). The Canadian Entomologist,2001,133:533-548.
    157. Shirota Y., Iituka K., Asano J., et al., Intraspecific variations of mitochondrial cytochrome oxidase Isequence in an aphidophagous species, Aphidoletes aphidimyza (Diptera: Cecidomyiidae).Entomolical Science,1999,2:209-215.
    158. Slatkin M., Gene flow and the geographic structure of populations. Science,1987,236:787-792.
    159. Tajima F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,3:585-95.
    160. Tamura K., Dudley J., Nei M., et al., MEGA4: molecular evolutionary genetics analysis (MEGA)software version4.0. Molecular Biology and Evolution,2007,24:1596-1599.
    161. Takezaki N., Nei M., and Tamura K., POPTREE2: Software for constructing population trees fromallele frequency data and computing other population statistics with Windows-interface. MolecularBiology and Evolution,2010,27:747-752
    162. Tao J., Chen M., Zong S.X. Luo Y.Q., Genetic Structure in the Seabuckthorn Carpenter Moth(Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and HostFactors. Plos one,2012,7(1): e30544.
    163. Thomas J., Riedel E. and Penner G., An efficient method for assigning traits to chromosomes.Euphytica,2001,119,217-221.
    164. Thomas J., Fineberg N., Penner G., et al., Chromosome location and markers of Sm1: a gene ofwheat that conditions antibiotic resistance to orange wheat blossom midge. Mol. Breeding,2005,15,183-192.
    165. Uechi N., Yukawa J. and Yamaguchi D., Host alternation by gall midges of the genus Aspondylia(Diptera: Cecidomyiidae). Bishop Museum Bulletin in Entomology,2004,12:53-60.
    166. Wang M.L.,Barkley N.A., Jenkins T.M., Microsatellite markers in plants and insects. PartⅠ:applications of biotechnology. Genes, Genomes and genomics (global science books),2009,1:1-14.
    167. Wei S.J., Shi B.C., Gong Y.J., Jin G.H., Chen X.X., Meng X.F., Genetic Structure and DemographicHistory Reveal Migration of the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae)from the Southern to Northern Regions of China. Plos one,2013,4:e59654.
    168. Waltes K.F.A. Orange wheat bolssom midge: the scourge of1993? Bis logist (London),1993,5:215.
    169. Weir B.S. and Cockerham C.C., Estimating F-statistics for the analysis of population structure.Evolution,1984,38:1358–1370.
    170. Wise I. L. and Lamb R.J., Diapause and emergence of Sitodiplosis mosellana (Diptera:Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). TheCanadian Entomologist,2004,136:77-90.
    171. Wellso S.G. and Freed R.D., Positive Association of the Wheat Midge Sitodiplosis-MosellanaDiptera Cecidomyiidae with Glume Blotch Septoria-Nodorum. Journal of Economic Entomology,1982,5:885-887.
    172. Wilke K., Jung M., Chen Y., et al., Porcine (GT)n sequences:structure and association withdispersed and tandem repeats. Genomics,1994,21:63-67.
    173. Wright A.T., and Doane J., Wheat midge infestation of spring cereals in northeastern Saskatchewan.Canadian Journal of Plant Science,1987,67:117-120.
    174. Whitlock M.C. and McCauley D.E., Indirect measures of gene flow and migration: FST1/(4Nm+1). Heredity,1999,82:117-125.
    175. Van O.C.; Hutchinson W.F., Wills D.P.M., et al., MICRO-CHECKER: software for identifying andcorrecting genotyping errors in microsatellite data. Molecular Ecology Notes,2004,3:535-538.
    176. Yan G., Romero-Severson J, Walton M, Chadee DD, Severson DW, Population genetics of theyellow fever mosquito in Trinidad: comparisons of amplified fragment length polymer-phism (AFLP) and restriction fragment length polymorphism (RFLP) markers. Molecular Ecology,1999,6:951-963.
    177. Yeh F.C., Yang R.C. and Boylet T., POPGENE (version1.32): Software microsoft windows-basedfreeware for population genetics analysis. Alberta: University of Alberta, Canada:1997
    178. Yuan J.H., Cheng F.Y., Zhou S.L., Genetic structure of the tree peony (Paeonia rockii) and theQinling Mountains as a geographic barrier driving the fragmentation of a large population. PLoSOne,2012,4: e34955.
    179. Zilvinas L., Vytautas R. and Remigijus S., Sitodiplosis mosellana-a new winter wheat pest inLithuania. Ekologija,2009,3-4:215-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700