用户名: 密码: 验证码:
分布式供电系统中储能电池均衡管理及逆变控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,我国对能源的需求逐年增加,如今全球的化石燃料资源不断枯竭,世界能源危机不断加重。太阳能和风能等可再生能源具有清洁无污染等优点,并且取之不尽用之不竭,必将成为人类未来电能需求的主要来源,也是我国缓解能源危机和提高能源安全的重要手段。目前,太阳能和风能等可再生能源在我国电能产量中所占的比例极低,因此开发太阳能和风能等可再生能源已经成为了我国的当务之急。对于太阳能和风能等可再生能源的开发利用,其关键技术在于能量的存储以及逆变控制技术,本文针对采用可再生能源发电的分布式供电系统,重点研究了储能子系统中的电池均衡管理技术和逆变控制技术,论文的主要工作和研究成果如下:
     (1)针对应用于储能系统中的开关电阻型均衡电路和反激升压变换器型均衡电路,研究了电池组均衡充电控制系统电路模型,并提出了相应的均衡充电控制策略,该控制策略不但能够实现电池组快速充电,而且能够减小甚至消除单体电池不一致对电池组循环寿命的影响。
     (2)针对单相SPWM逆变电源输出电压中存在的大量高次谐波引起的电磁干扰问题,提出了一种采用跳频调制技术对逆变电源的输出频谱进行调制的方法,该方法可以降低逆变电源输出谐波的幅度,从而达到抑制其电磁辐射的目的。
     (3)通过极坐标的形式研究并联逆变电源的功率流,首次提出将逆变电源的输出功率向量分解为两个正交的子向量,子向量的长度则分别受逆变电源输出电压幅度和相位角独立控制。基于该分析方法,对各种并联逆变电源下垂控制设计方法进行了归纳,指出除目前的几种方法外,还可以通过把逆变电源设计为纯电容性输出阻抗进行并联控制设计,并给出了其下垂控制策略。
     (4)针对逆变电源双机并联系统,通过极坐标的形式研究系统环流与逆变电源电压差和相位差的关系,首次提出将环流向量分解为两个正交的子向量,两个正交的子向量的长度分别受逆变电源间的电压差和相位差的独立控制,在极坐标系中,这两个子向量的角度由逆变电源等效输出阻抗的阻抗角决定。
     (5)提出了一种基于输出环流解耦的逆变电源并联控制策略,通过把输出环流分解为有功环流和无功环流,然后对有功环流和无功环流进行解耦,分别控制逆变电源的输出电压幅度和相位。针对有功电流和无功电流的分解,通过把单相逆变电源的输出电流构造为三相平衡电流,进而使用瞬时无功理论对电流进行分解得到有功电流和无功电流。
     (6)提出了一种基于开关时间预测的并网逆变电源恒定频率电流滞环控制策略,该控制策略通过实时预测开关切换时间控制逆变电源进行工作,不需要处理滞环宽度,从而简化了控制电路。针对采用该控制策略的单相并网逆变电源,详细的分析了逆变电源输出的稳态性能和瞬态性能,以及滤波电感的感量与设计值不一致时对逆变电源性能的影响。
With the rapid development of the society and economy, the demand of the energy is increasing year by year in our country. The fossil fuel reserve is limited and many countries are faced with the danger of the energy resources crisis. Solar and wind energy are renewable and clean energy resources and are inexhaustible. In order to relieve the energy resources crisis, every country pays more and more attention to the development of renewable energy resources, our country also emphasizes it very much. For the development and utilization of the renewable energy resources, the keys are the energy storage technology and power supply inverter control technology. Aimed at the distributed power supply system in renewable energy resources development, this paper focus on the research of battery management technology of energy storage system and inverter control technology, and the following results have be achieved:
     (1) Aiming at the switched-resistor and fly-back converter equalization circuit of battery management system, this paper studies the equalization circuit model, then corresponding charge equalization control strategy is proposed. The proposed strategy can not only quickly charge the battery, but also increase the lifecycle of the battery.
     (2) A method adopting frequency-hopping spread spectrum modulation technology is put forward to suppress the harmonics of single-phase. It expands the frequency spectrum of the conventional inverter from single point to a wider band, and it makes harmonic energy of output voltage extend to a wider area evenly. Consequently, the method can reduce the output harmonic amplitude of the inverter. Then, the EMI of inverter is suppressed.
     (3) In inverter parallel operating system, the relationship between the inverter power flow and the output voltage and phase of the inverter is systemically studied for the first time in polar coordinate system. It is pointed out that the output power vector is made up of two orthmetric sub-vectors, and the length of these two sub-vectors is controlled independently by the amplitude and phase of the inverter respectively.
     (4) In two inverter parallel operating system, the relationship between the system circulating current and the differenced of voltage amplitude and phase of two inverter is systemically studied for the first time. It is pointed out that, in polar coordinate system, the system circulating current vector is made up of two orthmetric sub-vectors, and the length of these two sub-vectors is independently controlled by the differences of inverter output voltage amplitude and phase respectively, and the angle of the sub-vectors is decided by the output impedance angle of the inverter.
     (5) Aimed at single phase inverter parallel operating, a current decoupling control strategy is proposed, which decomposes the output current into active component and reactive component according to the instantaneous reactive power theory. The active and reactive current is decoupled to regulate the amplitude and phase of the output voltage, respectively. By using instantaneous reactive power theory, the proposed decoupling control strategy obtains good transient response performance and has the features of simplified algorithm, fast calculation speed and easy digital processing.
     (6) A novel constant frequency current hysteresis control strategy for grid-connected inverter based on switch time predication is proposed. The proposed control strategy retains the benefit of fast dynamic response of the conventional current hysteresis control, with constant switch frequency. The proposed current hysteresis control is based on the switch time prediction, with no hysteresis bandwidth is needed, and the circuit design is simplified.
引文
[1]穆献中,刘炳义,等编著.新能源和可再生能源发展与产业化研究[M].北京:石油工业出版社,2009.
    [2]钱伯章编著.可再生能源发展综述[M].北京:科学出版社,2010.
    [3]姚兴佳,刘国喜,朱家玲,等编著.可再生能源及其发电技术[M].北京:科学出版社,2010.
    [4]Paul Kruger编著,朱红译.可再生能源开发技术[M].北京:科学出版社,2007.
    [5]Boyle编著,中国电力科学研究院新能源研究所译.可再生能源与电网[M].北京:中国电力出版社,2011.
    [6]原鲲,王希麟编著.风能概论[M].北京:化学工业出版社,2010.
    [7]钱伯章编著.风能技术与应用[M].北京:科学出版社,2010.
    [8]张志英,赵萍,李银凤,等编著.风能与风力发电技术[M].北京:化学工业出版社,2010.
    [9]崔容强,赵春江,吴达成,等编著.并网型太阳能光伏发电系统[M].北京:化学工业出版社,2007.
    [10]冯垛生编著.太阳能发电原理与应用[M].北京:人民邮电出版社.2007.
    [11]赵争鸣,刘建政,孙晓瑛,等编著.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [12]沈辉,曾祖勤编著.太阳能光伏发电技术[M].北京:化学工业出版社,2004.
    [13]王长贵,王斯成编著.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005.
    [14]刘树民编著.太阳能光伏发电实用技术[M].北京:科学出版社,2006.
    [15]张卫钢,纯电动试验车及其相关技术研究[D].西安:长安大学博士学位论文,2006.
    [16]李国洪,混合动力汽车控制策略与动力电池系统的研究[D].天津:天津大学博士学位论文,2005.
    [17]蒋新华,锂离子电池组管理系统研究[D].上海:中国科学院上海微系统与信息技术研究所博士学位论文,2007.
    [18]南金瑞,孙逢春,王建群.纯电动汽车电池管理系统的设计及应用[J].清华大学学报(自然科学版),2007,47(S2):1831-1834.
    [19]张承宁,朱正,张彩萍,等.电传动车辆动力电池组分布式管理系统设计[J].兵工学报,2007,28(4):396-401.
    [20]刘晓康,詹琼华,何葵,等.电动汽车用电池管理系统的研究[J].华中科技大学学报(自然科学版),2007,35(8):83-86.
    [21]刘正耀,其鲁,戴嘉昆.动力锂离子电池管理系统的研究[J].北京大学学报(自然科学版),2006,42(1):72-76.
    [22]吴友宇,尹叶丹.基于CAN总线的分布式动力电池管理系统[J].汽车工程,2004,26(5):530-533.
    [23]Aiguo Xu, Shaojun Xie, Xiaobao Liu. Dynamic Voltage Equalization for Series-Connected Ultracapacitors in EV/HEV Applications [J], IEEE Trans on Vehicular Technology,2009,58(8): 3981-3987.
    [24]Andrew C. Baughman, Mehdi Ferdowsi. Double-Tiered Switched-Capacitor Battery Charge Equalization Technique [J], IEEE Trans on Industrial Electronics,2008,55(6):2277-2285.
    [25]Rengui Lu, Chunbo Zhu, Likun Tian, et al. Super-Capacitor Stacks Management System With Dynamic Equalization Techniques [J], IEEE Trans on Magnetics,2007,43(1):254-258.
    [26]Hong-Sun Park, Chol-Ho Kim, Ki-Bum Park, et al. Design of a Charge Equalizer Based on Battery Modularization [J], IEEE Trans on Vehicular Technology,2009,58(7):3216-3223.
    [27]Stephen T. Hung, Douglas C. Hopkins, Charles R. Mosling. Extension of Battery Life via Charge Equalization Control[J], IEEE Trans on Industrial Elctronics,1993,40(1):96-104.
    [28]Chamyut Kamjanapiboon, Kamon Jirasereeamornkul, Veerapol Monyakul. High Efficiency Battery Management System for Serially Connected Battery String[C], IEEE International Symposium on Industrial Electronics (IS1E 2009), Korea,2009.
    [29]Nasser H. Kutkut, Deepakraj M. Divan, Donald W. Novotny. Charge Equalization for Series Connected Battery Strings [J], IEEE Trans on industry applications,1995,31(3):562-568.
    [30]Nasser H. Kutkut, Herman L. N. Wiegman, Deepak M. Divan, and Donald W. Novotny. Design Considerations for Charge Equalization of an Electric Vehicle Battery System[J], IEEE Transactions on Industry Applications,35(1):28-35,1999.
    [31]Yuang-Shung Lee, Ming-Wang Cheng. Intelligent Control Battery Equalization for Series Connected Lithium-Ion Battery Strings [J], IEEE Trans on industrial electronics,2005,52(5):1297-1307.
    [32]Yuang-Shung Lee, Guo-Tian Cheng. Quasi-Resonant Zero-Current-Switching Bidirectional Converter for Battery Equalization Applications[J], IEEE Trans on Power Electronics,2006,21(5), 1213-1224.
    [33]刘风君编著.正弦波逆变器[M].北京:科学出版社,2002.
    [34]刘风君编著.现代逆变技术及应用[M].北京:电子工业出版社,2006.
    [35]裴雪军.PWM逆变器传导电磁干扰的研究[D].华中科技大学博士学位论文,2004.
    [36]F. Costa et al., Influence of the Driver Circuits In the Generation and Transmission of EMI in a Power Converter: Effects on its Electromagnetic Susceptibility[J]. Eur. Power Electron. J., vol.5, no. l,pp.35-44, Mar 1995.
    [37]H. Zhu, J.-S. Lai,Y. Tang, A. Hefner, D. Berning, and C. Chen, Analysis of Conducted EMI Emissions from PWM Inverter Based on Empirical Models and Comparative Experiments[C], in Proc. IEEE PESC'99, June 1999, pp.111-123.
    [38]Jih-Sheng Lai, Xudong Huang, Shaotang Chen, and Thomas W. Nehl, EMI Characterization and Simulation With Parasitic Models for a Low-Voltage High-Current AC Motor Drive[C], in IEEE transactions on applications, January 2004,pp.178-185.
    [39]姜保军.PWM电机驱动系统传导共模EMI抑制方法研究[D].哈尔滨工业大学博士学位论文,2007.
    [40]冯利民.电力电子系统中数字控制器EMC设计[D].浙江大学博士学位论文,2007.
    [41]陈玮.功率变流器传导EMI的近场耦合建模[D].浙江大学博士学位论文,2006.
    [42]黄劲.基于三相四桥臂逆变器的电机驱动系统EMC及可靠性研究[D].华中科技大学博士学位论文,2009.
    [43]P.Caldeira, R.Liu. Comparison of EMI Performance of PWM and Resonant Power Converters[C]. IEEE PESC'93, USA,1993:134-140.
    [44]D.Zhang, D.Y.Chen, F.C.Lee. An Experimental Comparison of Conducted EMI Cmissions Between a zero Voltage Transition Circuit and a hard Switching Circuit[C]. IEEE PESC'96, Italy,1996: 1992~1997.
    [45]王斌,李兴源,K. EL KHAMLICHI DRISSI.双随机调制技术及其功率谱密度特性分析[J].中国电机工程学报,24(4):97-101,2004.
    [46]徐顺刚,许建平,曹太强.SPWM逆变电源输出谐波分析及抑制方法研究[J].电子科技大学学报,39(5):255-258,2010.
    [47]Shungang Xu, Jianping Xu, Taiqiang Cao. "Parallel Control Strategy of Single-Phase Voltage-Source Inverter Base on Synchronous Signal Bus".2009 International Conference on Communications, Circuits and System(ICCCAS'09),2009, California, USA.
    [48]Shungang Xu, Jianping Xu, Taiqiang Cao. "A Decoupling Control Strategy of Parallel Inverter Base on CAN Bus". Journal of Electronic Science and Technology of China,2009,7(3):258-262.
    [49]徐顺刚,许建平,曹太强.电压电流双闭环反馈逆变器并联控制[J].电力自动化设备,29(10):103-106,2009.
    [50]徐顺刚,许建平,曹太强.单相逆变电源并联控制技术研究[J].电子科技大学学报,38(3):380-384,2009.
    [51]Shungang Xu, Jianping Xu. Parallel Control Strategy of Single-Phase Inverter Based on Virtual Impedance".2010 International Conference on Communications[C], Circuits and System(ICCCAS'10), Chengdu, China,2010.
    [52]Shungang Xu, Jianping Xu. Decoupling Control Strategy of Single Phase SPWM Parallel Inverter[C]. 2010 the 2nd International Symposium on Power Electronics for Distributed Generation Systems(PEDG'10), Hefei, China,2010.
    [53]Shungang Xu, Jianping Xu. A Current Decoupling Parallel Control Strategy of Single Phase Inverter with Voltage and Current Dual Closed-loop Feedback[C]. The second IEEE Energy Conversion Congress and Exposition(ECCE'10), Atlanta, America,2010.
    [54]A. P. Martins, A. S. Carvalho, and A. S. Araujo, Design and Implementation of a Current Controller for the Parallel Operation of Standard UPSs[C], in Proc. IEEE IECON, pp.584-589,1995.
    [55]T. Iwade, S. Komiyama, and Y. Tanimura, A Novel Small-Scale UPS Using a Parallel Redundant Operation System[C], in Proc. IEICE/IEEE INTELEC, pp.480-483,2003.
    [56]J. Holtz, W. Lotzkat, and K. H. Werner, A High-Power Multi Transistor Inverter Uninterruptible Power Supply System[J], IEEE Trans. Power Electron., vol.3, no.3, pp.278-285, Jul.1988.
    [57]J. Holtz and K. H. Werner, Multi-Inverter UPS System with Redundant Load Sharing Control[J], IEEE Trans. Ind. Electron., vol.37, no.6, pp.506-513, Dec.1990.
    [58]J. F. Chen and C.-L. Chu, Combination Voltage-Controlled and Current Controlled PWM Inverters for UPS parallel operation[J], IEEE Trans. Power Electron., vol.10, no.5, pp.547-558, Sep.1995.
    [59]Y. J. Cheng and E. K. K. Sng, A Novel Communication Strategy for Decentralized Control of Paralleled Multi-Inverter Systems[J], IEEE Trans. Power Electron., vol.21, no.1, pp.148-156, Jan. 2006.
    [60]X. Sun, Y.-S. Lee, and D. Xu, Modeling, Analysis, and Implementation of Parallel Multi-Inverter System with Instantaneous Average-Current-Sharing Scheme[J], IEEE Trans.
    [61]Y.-K. Chen, Y.-E. Wu, and C.-P. Ku, ACSS for Paralleled Multi-Inverter Systems with DSP-Based Robust Controls[J], IEEE Trans. Aerosp. Electron. Syst., vol.39, no.3, pp.1002-1015, Jul.2003.
    [62]S. Sun, L.-K. Wong, Y.-S. Lee, and D. Xu, Design and Analysis of an Optimal Controller for Parallel Multi-Inverter Systems[J], IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.52, no.1, pp.56-61, Jan. 2006.
    [63]T. F. Wu, Y.-K. Chen, and Y.-H. Huang,3C Strategy for Inverters in Parallel Operation Achieving an Equal Current Distribution[J], IEEE Trans. Ind. Electron., vol.47, no.2, pp.273-281, Apr.2000.
    [64]S. J. Chiang, C. H. Lin, and C. Y. Yen, Current limitation control technique for parallel operation of UPS inverters[C], in Proc. IEEE PESC,2004, pp.1922-1926.
    [65]J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, A Wireless Controller to Enhance Dynamic Performance of Parallel Inverters in Distributed Generation Systems[J], IEEE Trans. Power Electron., vol.19, no.5, pp.1205-1213, Sep.2004.
    [66]J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control[J], IEEE Trans. Ind. Electron., vol.52, no.4, pp.1126-1135, Aug.2005.
    [67]J. M. Guerrero, J. Matas, L. G. de Vicuna, M. Castilla, and J. Miret, Decentralized Control for Parallel Operation of Distributed Generations Inverters Using Resistive Output Impedance[J], IEEE Trans. Ind. Electron., vol.54, no.2, pp.994-1004, April.2007.
    [68]J. M. Guerrero, J. Matas, L. G. de Vicuna, M. Castilla, and J. Miret, Wireless-Control Strategy for Parallel Operation of Distributed Generation Inverters[J], IEEE Trans. Ind. Electron., vol.53, no.5, pp.1461-1470, Oct.2006.
    [69]J.M. Guerrero, L. Garcia de Vicuna, and J. Uceda, Uninterruptible Power Supply Systems Provide Protection[J], IEEE Ind. Electron. Mag., vol.1, no.1, pp.28-38,2007.
    [70]J. M. Guerrero, L. Garcia de Vicuna, and J. Uceda, Uninterruptible Power Supply Systems Provide Protection[J], IEEE Ind. Electron. Mag., vol.1, no.1, pp.28-38, Spring 2007.
    [71]J. M. Guerrero, L. Hang, and J. Uceda, Control of Distributed Uninterruptible Power Supply Systems[J], IEEE Trans. Ind. Electron., vol.55, no.8, pp.2845-2859, Aug.2008.
    [72]J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, and L. G. de Vicuna, Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems[J], IEEE Trans. Ind. Electron., vol.56, no.3, pp.726-736, Mar.2009.
    [73]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, Hierarchical Control of Droop-Controlled AC and DC Microgrids-a General Approach toward Standardization[J], IEEE Trans. Ind. Electron., vol.58, no.1, pp.158-172,2011.
    [74]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[D].合肥:合肥工业大学博士学位论文,2006.
    [75]余蜜.光伏发电并网与并联关键技术研究[D].武汉:华中科技大学博士学位论文,2009.
    [76]仇志凌.基于LCL滤波器的三相三线并网变流器若干关键技术研究[D].浙江大学博士学位论文,2009.
    [77]沈国桥.燃料电池并网逆变技术研究[D].浙江大学博士学位论文,2008.
    [78]刘飞.三相并网光伏发电系统的运行控制策略[D].华中科技大学博士学位论文,2008.
    [79]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制[J].中国电机工程学报,2008,28(18):36-41.
    [80]Bhavaraju V. B., Enjeti P. N., Analysis and Design of an Active Power Filter for Balancing Unbalanced Loads[J], IEEE Trans.On Power Electronies,1993, Vol.8, PP.640-647.
    [81]Kuo H. H., Yeh S. N., Hwang J. C., Novel Analytical Model for Design and Implementation of Three-Phase Active Power Filter Controller[J], IEE Proceedings Electric power Applications,2001, Vol.148,pp:369-383.
    [82]Salo M., Tuusa H., A New Control System With a Control Delay Compensation for a Current-Source Active Power filter[J], IEEE Trans.On Industrial Electronics,2005, Vol.52,PP.1616-1624.
    [83]Simone Buso, Sandro Fasolo, Uninterruptible Power Supply MultilooP Control Employing Digital Predietive Voltage and Current Regulators[J]. IEEE Transaetions on Industrial Applications,37(6): 1846-1854,2001.
    [84]Jos Rodriguez, Jorge Pontt, Csar A. Silva, Pablo Correa, Pablo Lezana, Patricio Cortes, Ulrich Ammann. Predictive Current Control of a Voltage Source Inverter[J]. IEEE Transactions on Industrial Electronics,54(1):495-503,2007.
    [85]Ahmed K.H., Massoud A.M., Finney S.J., Williams B.W. A Modified Stationary Reference Frame-Based Predictive Current Control With Zero Steady-State Error for LCL Coupled Inverter-Based Distributed Generation Systems[J]. IEEE Transactions on Industrial Electronics, 58(4):1359-1370,2011.
    [86]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究[D].华中科技大学博士学位论文,2000.
    [87]Amanuma, K.Fuwa, M.Sakaki Y, High Accurate Ripple Reducing Method Based on the Repetitive Control[C]. Proc. of PESC'94,1994, vol.1, pp.571-576.
    [88]Shin-Chung Yeh, Ying-Yu Tzou, Adaptive Repetitive Control of a PWM Inverter for AC Voltage Regulation with Low Harmonic Distortion[C].Proc. of PESC'95,1995, Vol.1, PP.157-163.
    [89]Xiaolin Mao, Rajapandian Ayyanar, Harish K. Krishnamurthy. Optimal Variable Switching Frequency Scheme for Reducing Switching Loss in Single-Phase Inverters Based on Time-Domain Ripple Analysis[J]. IEEE Transactions on Power Electronics,2009,24(4):991-1001.
    [90]姚文熙,吕征宇,费万民,等.一种新的三电平中点电位滞环控制法[J].中国电机工程学报,25(7):92-96,2005.
    [91]P.A. Dahono. New Hysteresis Current Controller for Single-Phase Full-Bridge Inverters[J]. IET Power Electron.,2009, Vol.2, Iss.5, pp.585-594.
    [92]乐健,姜齐荣,韩英铎.基于统一数学模型的三相四线有源电力滤波器的电流滞环控制策略分析[J].中国电机工程学报,27(10):86-91,2007.
    [93]马海啸,龚春英,严仰光.电流滞环控制半桥双降压式逆变器输出滤波器设计[J].中国电机工程学报,27(13):98-103,2007.
    [94]Maswood A. I., Liu Fangrui. A Unity Power Factor Converter Using the Synchronous Reference Frame Based Hysteresis Current Control[J]. IEEE Transaction on Industry Application,2007,43(2): 593-599.
    [95]倪雨,许建平,王金平,等.滞环调制全局滑模控制Buck变换器设计[J].中国电机工程学报,30(21):1-6,2010.
    [96]Kjaer S. B., A review of single-Phase Grid Connected Inverters for Photovoltaic Modules[J]. IEEE Transaction on Industry Applications,2005,41(5):1292-1306.
    [97]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,26(9):108-112,2006.
    [98]Luigi Malesani, Paolo Mattavelli, Paolo Tomasin. Improved Constant-Frequency Hysteresis Current Control of VSI Inverters with Simple Feedforward Bandwidth Prediction[J]. IEEE Transactions on Industry Applications,1997,33(5):1194-1202.
    [99]魏克新,张书军,岳有军.可逆变流器正弦滞环宽度控制方法[J].电力自动化设备,25(9):85-100,2005.
    [100]K. M. Rahman, M. Rezwan Khan, M. A. Choudhury, etc. Variable-Band Hysteresis Current Controllers for PWM Voltage-Source Inverters[J]. IEEE Transactions on Power Electronics,1997, 12(6):964-970.
    [101]戴训江,晁勤.一种新颖的并网逆变器自适应电流滞环控制策略[J].电力自动化设备,29(9):36-38,2009.
    [102]Carl Ngai-Man Ho, Victor S. P. Cheung, and Henry Shu-Hung Chung. Constant-Frequency Hysteresis Current Control of Grid-Connected VSI Without Bandwidth Control[J]. IEEE Transactions on Power Electronics,24(11):2484-2495,2009.
    [103]White R E, Walton C W, Burney H S, et al. Predicting Shunt Currents in Stacks of Bipolar Plate Cells [J]. Journal of the Electrochemical Society,1986,133(3):485-492.
    [104]Texas Instruments Corp. Improved Charging Methods for Lead-acid Batteries Using the UC3906 [R]. U2104, Texas, USA: TI Corp.1999.
    [105]Andrzej M. Trzynadlowski, Konstantin Borisov, Yuan Li, and Ling Qin. A Novel Random PWM Technique With Low Computational Overhead and Constant Sampling Frequency for High-Volume, Low-Cost Applications [J]. IEEE Transactions on Power Electronics,20(1):116-122,2005.
    [106]Sandra Johnson, Regan Zane. Custom Spectral Shaping for EMI Reduction in High-Frequency Inverters and Ballasts[J]. IEEE Transactions on Power Electronics,20(6):1499-1505,2005.
    [107]何世彪,谭晓衡编著.扩频技术及其实现[M].北京:电子工业出版社,2007.
    [108]曾一凡,李晖编著.扩频通信原理[M].北京:机械工业出版社,2005.
    [109]Zhang Li, Qiu Shui-sheng. Analysis and Experimental Study of Proportional-Integral Sliding Mode Control for DC/DC Converter[J]. Journal of Electronic Science and Technology of China, 2005,13(2):140-143.
    [110]H. Akagi, Y. Kanazawa and A. Nabae, Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components[J], IEEE Trans. Ind. AppL, vol.20, pp. 625-630,1984.
    [111]F. Z. Peng, G. W. Ott, Jr., and D. J. Adams, Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-Phase Four-Wire Systems[J], IEEE Trans. Power Electron., vol.13, no.6, pp.1174-1181,1998.
    [112]V. Soares, P. Verdelho, and G. D. Marques, An Instantaneous Active and Reactive Current Component Method for Active Filters[J], IEEE Trans. Power Electron, vol.15, no.4, pp.660-669, 2000.
    [113]戴瑜兴,张义兵,陈际达.检测单相系统谐波电流和无功电流的一种新方法[J].电工技术学报,19(2):93-97,2004.
    [114]戴瑜兴.智能建筑配电系统谐波及无功的综合补偿研究[D].长沙:中南大学博士学位论文,2003.
    [115]L. G. Barbosa Rolim, D. Rodrigues da Costa, and M. Aredes, Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Based on the PQ Theory[J], IEEE Trans. Ind. Electron., vol.53, no.6, pp.1919-1926,2006.
    [116]J. W. Choi, Y. K. Kim, and H. G. Kim, Digital PLL Control for Single Phase Photovoltaic System[C], in Proc. Inst. Electr. Eng.-Electr. Power Appl., vol.153, no.1, pp.40-46,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700