用户名: 密码: 验证码:
充放储一体化电站功率变换系统稳定分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效应对能源和环境挑战,实现汽车产业可持续发展,发展电动汽车已成为全球汽车工业应对能源和环境问题的共同选择。近年来随着电动汽车相关关键技术的攻克,加快推进了电动汽车产业化进程,与电动汽车高速发展相配套的能源供给设施的建设是产业化推广的基础,也迎来了快速发展时期。充放储一体化电站是目前新兴的多功能智能电站,可完成动力电池能量注入、向电网回馈能量、接受电网调度、经济化运行等功能。一体化电站的建设和运营有效实现了电站与智能电网的有效融合,是未来电动汽车电站运营的有效模式。本文针对充放储一体化电站中的储能电池能量变换与控制技术的基本机理和设计方法进行了探讨,主要研究了电池充电系统、放电系统、储能容量配置等方面的关键问题。
     目前电动汽车主要采用锂离子动力电池作为能量供给单元,锂离子电池工作特性决定了其在使用过程中必须保证既不能欠充也不能过充,因此好的容量注入技术是电池充电过程中必须解决的问题。本文在分析锂离子电池特性的基础上,通过实验数据拟合出了电池模型相关参数,建立了锂离子电池模型;结合电池精确模型,设计了适合充电应用的恒压恒流控制策略,并在以移相全桥拓扑为原型的充电装置上进行了验证。
     由于电动汽车的电池标准不统一,不同厂家生产的电池电压和电流等级不尽相同,因此在设计充电装置时,其输出电压、输出电流以及功率等级存在不确定因素。为满足充电应用需求,构建了新型串并混联组合充电系统结构。本文研究了基于受控源等效的多模块建模方法,在此基础上,完成了串并混联组合系统功率均分控制器的设计,并通过搭建一套串并组合充电系统进行了实验验证;结合系统结构和充电应用模态,进一步分析了电压源并联和电流源串联的系统稳定运行特性及其相关要素。
     充放储一体化电站的建设中,可充分发挥电池储能的作用,利用动力电池组在晚间低谷时段充电,白天高峰时段向电网并网送电,有效提高电池寿命及商业价值。并网放电装置作为储能动力电池与电网之间的功率控制环节,满足储能电池向电网进行能量回馈的应用需求。本文研究了弱电网下并网放电装置的并网电流控制技术,重点关注其入网电流谐波畸变问题。首先分析了两级式并网放电装置结构和协调控制机理,给出了直流母线外环设计原则;然后分析了弱电网下LC并网控制器缺陷,基于电网阻抗检测,提出了一种自适应PIR控制策略:相对与LC并网方式,LCL并网方式具有较好的高频抑制能力,但其谐振容易使并网电流波形质量变差,严重时将导致系统不稳定;提出了一种基于谐波补偿的LCL并网有源阻尼方法,通过提取并网谐波电流补偿到控制系统补偿了谐振频率附近谐波对系统的影响,提高了并网电流电能质量,该方法的引入减少了传统有源阻尼使用的传感器数量,节约了系统成本。
     充放储一体化电站中,多组电池通过多台并网放电装置集中向电网回馈能量,从而构成了电站能量回馈系统。实际应用中电网阻抗的存在给多台并网放电装置接入电网带来较大影响。本文主要关注多逆变器并网系统建模和稳定运行特性。基于电路网络理论建立多机并网系统等效模型,推导出了LC和LCL两种并网方式下的逆变器输出阻抗模型,分析了阻抗模型特征;应用电流源并网的改进型阻抗比判据,分析了LC和LCL并网方式下稳定运行特性。
     为提高电站内部供电可靠性和运营经济性,国内外一些电动汽车充电站在建设时开始考虑新能源的利用。本文采用负荷缺电率和单位运行成本为指标研究了光伏发电单元接入充放储一体化电站容量配置。选用全钒液流电池和铅酸蓄电池作为电站储能单元,基于电化学特性和运行成本差异,对比分析了两种电池应用于一体化电站供电系统中的容量配置问题。全钒液流电池因其优越的电池特性,大规模接入时具有较好的经济性。
To deal with energy and environmental challenges effectively and achieve the sustainability of automobile industry, the development of EV (Electric Vehicles) has become a common choice for global automotive industry in recent years. Construction of energy supply facilities is the basis of promotion of the EV, which also ushered in a period of rapid development with the industrialization of EV. Integrated EV power plant of charge, discharge and storage is a kind of multi-function smart power plants, which can complete these functions, such as battery energy injection, feedback energy to grid, accepting power dispatching from grid, economy operation. The construction and operation of integrated EV power plant can realize the integration of power station and smart grid effectively. And it will be the suitable mode of EV power plant in future. In this paper, basic theory, design methods and control technique of power conversion system in the EV power plant are studied and discussed. And some key issues are focus about charging and discharging system.
     Lithium-ion batteries are usually used to store energy in the EV. Operating characteristics of lithium-ion battery determine that it can not overcharge and overdischarge. Good capacity injection technology is the key to charge the battery. Considering the characteristics of lithium-ion battery, a constant current and constant voltage charging control strategy was presented in this paper A 3-kW charging device was designed and verified the proposed strategy, which adopted phase-shifted full-bridge topology.
     Nowadays the battery standards of EV are not uniform and the batteries of different manufacturers have different voltage or current rating. To meet the different voltage or current level of battery charging requirements, modular structure can be adopted. A hybrid combination structure of charging system was proposed in this paper. For the convenience to analyze the combination system, this paper presented a kind of modelling method based on equivalent controlled source model. And the nature of power sharing of the combination system was described. Finally, power sharing controller was designed and verified at a set of charging experiment system. Further study about stability of the voltage source in parallel and current source in series was presented.
     The battery packs of integrated EV power plant can be charged at off-peak hours in the evening and discharged at peak hours during the day, which improved battery life and commercial value. Grid-connected discharging devices, which used as a power control uint between storage battery and grid, can meet the need of energy feedback to the grid. This paper studied control technology of the discharge device in weak grid, and focued on its current THD (Total Harmonic Distortion). Two-stage topology of discharge device and its coordination mechanism were introduced. Then the defects of LC grid-connected mode were presented and an adaptive PIR control strategy was proposed based on grid impedance detection. Due to the resonance phenomenon of LCL filter which could affect the grid-connected current quality of electric energy, a harmonic compensation active damping method was proposed. The method introduced can reduce the number of sensor, save system cost and decrease unreliable factors caused by the excessive introduction of sensors.
     Among the integrated EV power plant, multiple sets of discharge devices consist of energy feedback system. The interaction of multi-inverters system poses some problems. This paper focuses on the modeling and stable operating characteristics of multi-inverter grid-connected system. Equivalent model of multi-inverter grid-connected system was deduced based on circuit network theory. And the output impedance model and its characteristics of LC and LCL grid-connected inverter were presented. A current source impedance ratio criterion was proposed, and then stability was analyzed based on the criterion.
     In order to improve power supply reliability and operating economics of the power plant, the utilization of renewable energy was considered by some domestic and international EV charging station. In this paper, LPSP (Loss of Power Supply Probability) and LCE (Levelied Cost of Energy) was adopted as evaluation indicator to analysis system capacity configuration. Vanadium redox flow battery and lead-acid battery were selected as energy storage unit of the EV power plant. Based on the difference of electrochemical characteristics and operating costs, the comparative analysis of these two batteries among capacity configuration was done. Because of superior characteristics, Vanadium redox flow battery could get a better economy with large-scale access.
引文
[1]中国经济体制改革研究会公共政策研究中心.中国电动汽车充电站商业模式与配套政策,2010
    [2]Wencong Su,Eichi, H.Wente Zeng, Mo-Yuen Chow.A Survey on the Electrification of Transportation in a Smart Grid Environmen. IEEE Transactions on Industrial Informatics,2012,8(1):1-10
    [3]World Energy Outlook 2007-Executive Summary. International Energy Agency,2007.
    [4]Christophe G, George G. A conceptual framework for the vehicle-togrid (V2G) implementation,Energy Policy,2009,37(11):4379-4390
    [5]杨孝纶.电动汽车技术发展趋势及前景.汽车科技,2007,6:10-13
    [6]吴憩棠.我国“十城千辆”计划的进展.新能源汽车,2009,1(24):15-19
    [7]Foley,A.M. Winning, I.J. Gallachoir, B.P.O.State-of-the-art in electric vehicle charging infrastructure.IEEE Vehicle Power and Propulsion Conference (VPPC),2010,3:1-6
    [8]张文亮,武斌,李武峰等.我国纯电动汽车的发展方向及能源供给模式的探讨,电网技术.2009,33(4):1-5
    [9]滕乐天,何维国,杜成刚等.电动汽车能源供给模式及其对电网运营的影响,华东电力.2009,37(10):1675-1677
    [10]陈良亮,张浩等.电动汽车能源供给设施建设现状与发展探讨电力系统自动化,2011,35(14):11-17
    [11]康继光,卫振林等.电动汽车充电模式与充电站建设研究.电力需求侧管理,2009,9:64-66
    [12]藤乐天,姜久春等.电动汽车充电机(站)设计.北京:中国电力出版社,2009.
    [13]储能式太阳能光伏充电站可行性报告.三门峡华豫新能源科技有限公司,2009
    [14]郭元术,吴忠华.储能式太阳能充电站关键技术研究概要.长安大学新能源及电子科学研究所
    [15]周雌理.电动汽车充电站的设计与仿真研究:[硕士学位论文].西安:安徽大学图书馆,2010.6
    [16]P. Bauer, Yi Zhou, J.Doppler, N.Stembridge. Charging of Electric Vehicles and Impact on the Grid. MECHATRONIKA,13th International Symposium,2010: 121-127
    [17]Wang Zhenpo, Liu Peng.Analysis on Storage Power of Electric Vehicle Charging Station.Asia-Pacific Power and Energy Engineering Conference,2010:1-4
    [18]刘伏萍,陈燕涛.我国电动汽车标准的现状和发展.上海电力,2006.2:36-40
    [19]标准化为电动汽车行业发展加速.中国质量报,2012.3.19
    [20]贾俊国,倪峰.电动汽车充电接口标准化探讨.电力系统自动化,2011,35(8):78-80
    [21]中国汽车标准网http://www.catarc.org.cn/
    [22]中国科技部http://www.most.gov.cn/gnwkjdt/201103/t20110309_85237.htm
    [23]美国机动车工程师协会(SAE)电动汽车标准制定动态,新能源汽车,2011.5
    [24]中国科技部http://www.most.gov.cn/gnwkjdt/201110/t20111025_90429.htm
    [25]李海莹.阀控式铅酸蓄电池的维护与监测.通信电源技术,2012,29(1):89-92
    [26]徐艳辉.铅酸蓄电池荷电状态的判定方法解析.蓄电池,2011.6:279-282
    [27]徐顺刚,王金平,许建平.一种延长电动汽车蓄电池寿命的均衡充电控制策略.中国电机工程学报,2012,32(3):43-48
    [28]Hall P J, Bain E J. Energy-storage technologies and electricity generation. Energy Policy,2008,36:4352-4355
    [29]Chen H S, Cong T N, et al. Progress in electrical energy storage system:A critical review. Progress in Natural Science,2009,19:291-312
    [30]Chan C C, Wang Y S. Electric vehicles charge forward. IEEE Power and Energy Magazine,2004,2(6):24-33
    [31]肖利芬.锂离子电池若干应用基础问题研究:[博士学位论文],武汉:武汉大学图书馆,2003
    [32]Guan-Chyun, H., Liang-Rui, C., Kuo-Shun, H. Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller. IEEE Transactions on Industrial Electronics,2001,48(3):585-593
    [33]Pei, Z., Changqing, D., Fuwu, Y., et al. Influence of practical complications on energy efficiency of the vehicle's lithium-ion batteries. International Conference on Electric Information and Control Engineering (ICEICE),2011:2278-2281
    [34]陈仲伟.基于飞轮储能的柔性功率调节器关键技术研究:[博士学位论文],武汉:华中科技大学图书馆,2011
    [35]Iijima Y, Sakanaka Y, Kawakami N, et al. Development and field experiences of NAS battery inverter for power stabilization of a 51 MW wind farm.Power Electronics Conference (IPEC),2010 International. Sapporo, Japan,2010:1837-1841.
    [36]Ohtaka T, Uchida A, Iwamoto S. A voltage Control Strategy with NAS Battery Systems Considering Interconnection of Distributed Generations. POWERCON 2004,Singapore,2004:226-231
    [37]张华民,赵平,周汉涛等.钒氧化还原液流储能电池.能源技术,2005,26(1):23-26
    [38]Ludwig Joerissen, Juergen Garche, Ch. Fabjan, et al. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. Journal of Power Sources,2004,12:98-104
    [39]Ch. Fabjan, J. Garche, B. Harrer, L. Jo" rissen,et al. The vanadium redox-battery:an efficient storage unit for photovoltaic systems, Electrochemical Acta,2001,47: 825-831
    [40]M.H.Li, T.Funaki, Thikihara. A study of output terminal voltage modeling for Redox flow battery based on charge and discharge experiments. Power conversion conference-Nagoya,2007:221-225
    [41]P. Bauer, Yi Zhou, J.Doppler, N.Stembridge.Charging of Electric Vehicles and Impact on the Grid. MECHATRONIKA,2010 13th International Symposium,2010:121-127
    [42]S. Bai and S. Lukic, Optimum Design of an EV/PHEV Charging Station with DC Bus and Storage System,IEEE Energy ConversionCongress & Expo,2010,12:1178-1184.
    [43]M. Morcos, Curtis R. Mersman, G.D. Sugavanam, et al. Dillman. Battery Chargers for Electric Vehicles. IEEE Power Engineering Review,2000,12:8-12.
    [44]Thoralf Winkler, Przemyslaw Komarnicki. Electric Vehicle Charging Stations in Magdeburg. IEEE Vehicle Power and Propulsion Conference (VPPC '09),2009 60-65
    [45]Der-Tsai Lee, Shaw-Ji Shiah, Chien-Ming Lee, et al. State-of-Charge Estimation for Electric Scooters by Using Learning Mechanisms. IEEE Transactions on Vehicular Technology,2007,56(2):544-556
    [46]张术.电动汽车电池管理系统软件设计与SOC估算策略研究:[硕士学位论文].天津:天津大学图书馆,2006
    [47]戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锉离子动力电池荷电状态估计.机械工程学报,2007,43(2):92-103
    [48]Yi-Hwa Liu, Jen-Hao Teng,Yu-Chung Lin. Search for an Optimal Rapid Charging Pattern for Lithium-Ion Batteries Using Ant Colony System Algorithm. IEEE Transactions on Industrial Electronics,2005,52(5):1328-1336.
    [49]Liang-Rui Chen.A Design of an Optimal Battery Pulse Charge System by Frequency-Varied Technique. IEEE Transactions on Industrial Electronics,2007, 54(1):398-405.
    [50]M. Morcos, Curtis R. Mersman, G.D. Sugavanam, et al. Battery Chargers for Electric Vehicles. IEEE Power Engineering Review,2000,12:8-12.
    [51]Laing, T.J., Wen, T., Tseng, K.C., Chen, J.F. Implementation a regenerative pulse charger using hybrid buck boost converter.4th IEEE Int. Conf. on Power Electron Drive Syst,2001(2):437-442.
    [52]Chia-Hsiang, L., Chi-Lin, C., Yu-Huei, L., Shih-Jung, W., et al. Fast charging technique for Li-Ion battery charger, in:Electronics, Circuits and Systems,2008. ICECS 2008.15th IEEE International Conference on:2008.618-621.
    [53]陈全世,林成涛.电动汽车用电池性能模型研究综述.汽车技术,2005,3(2):1-5.
    [54]Lijun Gao, Shengyi Liu,Roger A. Dougal. Dynamic Lithium-Ion Battery Model for System Simulation. IEEE Transactions on Components and Packaging Technologies, 2002,25(3):495-505
    [55]Stephan Buller, Marc Thele, Rik W. A. De Doncker. Impedance-Based Simulation Models of Supercapacitors and Li-Ion Batteries for Power Electronic Applications.IEEE Transactions on Industrial Applications,2005,41(3):742-747.
    [56]Spurrett R, Thawaite C, Slimm M, et al. Lithium-ion batteries for space. Proceedings of the six European Space Power Conference. Porto, Portugal,2002:477-482
    [57]Minxin Zheng, Bojin Qi, Xiaowei Du. Dynamic Model for Characteristics of Li-ion Battery on Electric Vehicle. ICIEA,2009:2867-2871.
    [58]E. C. Gomesl L. A. R. SouzaS. Y. C. Catunda. State Space Control for Control for Buck Converter using Decoupled Block Diagram Approch.Power Electronics Conference, COBEP,2009:686-692
    [59]Byungcho Choi, Jaeyeol Kim, Bo H. Designing Control Loop for DC-to-DC Converters with Unknown AC Dynamics. IEEE Transactions on Industrial Electronics,2002,49(4):925-932
    [60]Canesin, C.A. and I. Barbi, Novel zero-current-switching PWM converters, IEEE Transactions on Industrial Electronics,1997,44(3):372-381.
    [61]Chwei-Sen, Wang, Oskar H. Stielau, Grant A. Covic. Design Considerations for a Contactless Electric Vehicle Battery Charger. IEEE Transactions on Industrial Electronics,2005,52(5):1308-1314.
    [62]Brendan Peter McGrath, Donald Grahame Holmes, Patrick John McGoldrick,et al. Design of a Soft-Switched 6-kW Battery Charger for Traction Applications. IEEE Transactions on Power Electronics,2007,22(4):1136-1144.
    [63]Ying-Chun Chuang, Yu-Lung Ke. A Novel High-Efficiency Battery Charger With a Buck Zero-Voltage-Switching Resonant Converter. IEEE Transactions on Energy Conversion,2007,22(4):848-854.
    [64]Nasser H. Kutkut, Deepak M. Divan,Donald W. Novotny, et al.Design Considerations and Topology Selection for a 120-kW IGBT Converter for EV Fast Charging. IEEE Transactions on Power Electronics,1998,13(1):169-178.
    [65]Laing, T.J., Wen, T., Tseng, K.C.,et al. Implementation a regenerative pulse charger using hybrid buck boost converter. Proc.4th IEEE Int. Conf. on Power Electron Drive Syst,2001(2):437-442.
    [66]张军明.中功率DC/DC变流器模块标准化若干关键问题研究:[博士学位论文].杭州:浙江大学图书馆,2004
    [67]顾亦磊.集成模块电源拓扑标准化的研究:[博士学位论文].杭州:浙江大学图书馆,2008
    [68]吴新科.中功率单相AC-DC标准化及相关稳定性研究:[博士学位论文].杭州:浙江大学图书馆,2006
    [69]ShiguoLuo, Zhi hong ye, RyaLeeLineA Classification and Evaluation of Paralleling Methods of Power Supply Modules. Proceedings of IEEE---PESC,1999,2:901-907
    [70]张军明,谢小高,吴新科,钱照明.DC_DC模块有源均流技术研究.中国电机工程学报,2005,25(19):31-36
    [71]Jung-Won Kim,Hang-Seok Choi,Bo Hyung Cho.A Novel Droop Method for Converter Parallel Operation,IEEE Trans.on Power Electronics,2002,17(1):25-32.
    [72]J.Rajagopalan, K. Xing, Y. Guo,F.C. Lee. Modeling and Dynamic Analysis of Paralleled DC/DC Converters with Master-Slave Current Sharing Control. Proceedings of IEEE APEC,1996:678-684.
    [73]Y. Panov, J. Rajagopalan,F.C. Lee.Analysis and Design of N Paralleled DC-DCConverters with Master-Slave Current-Sharing Control Proceedings of IEEE APEC,1997:436-442.
    [74]K. Mazumder,S.M.I.,Kaustuva Acharya. Master-Slave Current-Sharing Control of a Parallel DC-DC Converter System Over an RF Communication Interface. IEEE Transactions on Industrial Electronics,2008,55(1):59-66.
    [75]Joseph Thottuvelil, George C. Verghese. Analysis and Control Design of Paralleled DC/DC Converters with Current Sharing. IEEE Transactions on Power Electronics, 1998,13(4):635-644
    [76].符赞宣,瞿文龙,张旭.平均电流模式DC/DC变换器均流控制方法.清华大学学报(自然科学版),2003,43(3):337-340.
    [77].丘东元,肖文勋,张波.改进平均电流自动均流法及其在Boost变换器并联系统中的应用.中国电机工程学报,2007,27(13):64-69.
    [78]Ravinder Pal Singh,S.M.I.A..Current Sharing and Sensing in N-Paralleled Converters Using Single Current Sensor. IEEE Transactions on Industrial Electronics,2010, 46(3):1212-1219
    [79]Chang-Shiarn Lin, Chern-Lin Chen.Single-Wire Current-Share Paralleling of Current-Mode-Controlled DC Power Supplies. IEEE Transactions on Industrial Electronics,2000,47(4):52-58.
    [80]陈武.多变换器模块串并联组合系统研究:[博士学位论文].南京:南京航空航天大学图书馆,2009
    [81]IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE Std 1547-2003,2003:1-16.
    [82]IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std 929-2000.
    [83]Bolsens, B., Brabandere, K. D., Keybus, J. V. d., Driesen, J., et al. Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter. IEEE Transactions on Power Electronics,2006,21(4):1032-1040.
    [84]K.H.Ahmed, S.J.Finney, B.W.Williams.Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation. Compatibility in Power Electronics, 2007:1-9.
    [85]Kim, R.-Y. R., Choi, S.-Y., suh, I.-Y. Instantaneous control of average power for grid tie inverter using single phase D-Q rotating frame with all pass filter.IEEE IECON'04,2004.1:274-279.
    [86]Miguel Castilla Jaume, Miret Jose Matas, Guerrero Josep M. Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators, IEEE Transactions on Industry Electronics, 2009,56(11):4492-4501.
    [87]Christian Wessels J D A F, Active damping of LCL-filter resonance based on virtual resistor for PWM rectifiers-stability analysis with different filter parameters, Power Electronics Specialists Conference, PESC 2008.6:3532-3538.
    [88]William Gullvik,Lars Norum,Roy Nilsen.Active damping of resonance oscillations in LCL-filters based on virtual flux and virtual resistor, European Conference on Power Electronics and Applications, Sept.2007:1-10.
    [89]Vladimir Blasko,Vikram Kaura. A Novel Control to Actively Damp Resonance in Input LC Filter of a Three-Phase, IEEE Transaction on Industry Applications, 1997,33(2):542-550.
    [90]Fei Liu,Yan Zhou,Shanxu Duan,et al. Parameter Design of a Two-Current-Loop Controller Used in a Grid-Connected Inverter System With LCL Filter. IEEE Transactions on Industrial Electronics,2009,56(11):4483-4491.
    [91]Guoqiao Shen, Xuancai Zhu, Jun Zhang,et al.A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter,IEEE Transactions on Industrial Eletronics,2010,57(6):2033-2041.
    [92]Marco Liserre M I A D.Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier,IEEE Transactions on Power Electonics, 2004,19(1):76-86.
    [93]Joerg Dannehl, MarcoLiserre,FriedrichWilhelm Fuchs, Filter-Based Active Damping of Voltage Source Converters with LCL Filter, IEEE Transactions on Industrial Electronics,2011,58(8):3623-3633.
    [94]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报,2007,27(16):60-64.
    [95]Bojoi, R. I., Griva, G., Bostan, V., Guerriero, M., et al. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Transactions on Power Electronics,2005,20(6):1402-1411.
    [96]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现.电工技术学报,2007,22(5):111-116.
    [97]Kojabadi, H. M., Yu, B.,Gadoura,I.A.,Chang,L.,et al.A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters. IEEE Transactions on Power Electronics,2006,21(4):985-993.
    [98]Bose, B. K. An adaptive hysteresis-Band current control technique of a voltage-fed PWM inverter for machine drive system. IEEE Transactions on Industrial Electronics,1990,37(5):402-408.
    [99]Pan, C. T., Huang, Y. S., Jong, T. L. A constantly sampled current controller with switch status dependent inner bound. IEEE Transactions on Industrial Electronics, 2003,50(3):528-535.
    [100]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究.中国电机工程学报,2006,26(9):108-112.
    [101]Heskes, P. J. M., Enslin, J. H. R. Power quality behavior of different photovoltaic inverter topologies. PCIM'03,Nuremberg, Germany,2003.1:1-6.
    [102]Andrew Kotsopoulos, Peter J. M. Heskes, Mark J. Jansen.Zero-Crossing Distortion in Grid-Connected PV Inverters. IEEE Transactions on Industrial Electronics, 2005,52(2):558-565
    [103]Johan H. R. Enslin, Peter J. M. Heskes.Harmonic Interaction Between a Large Number of Distributed Power Inverters and the Distribution Network. IEEE Transactions on Power Electronics,2004,19(6):1586-1593
    [104]Fei Wang, Jorge L. Duarte, Marcel A. M. Hendrix,and Paulo F. Ribeiro.Modeling and Analysis of Grid Harmonic DistortionImpact of Aggregated DG Inverters. IEEE Transactions on Power Electronics,2011,26(3):786-797
    [105]Marco Liserre, Remus Teodorescu,Frede Blaabjerg, Stability of Photovoltaic and Wind Turbine Grid-Connected Inverters for a Large Setof Grid Impedance Values. IEEE Transactions on Power Electronics,2006,21 (1):263-272.
    [106]光伏系统并网要求.中华人民共和国国家标准GB/T 19939-2005.
    [107]M. A. Redfern, O. Usta, G. Fielding. Protection against loss of utility grid supply for a dispersed storage and generation unit.IEEE Transactions on Power Delivery,1993,8:948-954
    [108]W. Wencong, J. Kliber, Z. Guibin, X. Wilsun, et al. A Power Line Signaling Based Scheme for Anti-Islanding Protection of Distributed Generators—Part II: Field Test Results. IEEE Transactions on Power Delivery,2007,22:1767-1772.
    [109]X. Wilsun, Z. Guibin, L. Chun, et al. A Power Line Signaling Based Technique for Anti-Islanding Protection of Distributed Generators&mdash:Part Ⅰ:Scheme and Analysis. IEEE Transactions on Power Delivery,2007,22:1758-1766.
    [110]W. Wencong, J. Kliber, X. Wilsun. A Scalable Power-Line-Signaling-Based Scheme for Islanding Detection of Distributed Generators.IEEE Transactions on Power Delivery,2009,24:903-909.
    [111]Singam, L. Y. Hui. Assessing SMS and PJD Schemes of Anti-Islanding with Varying Quality Factor.Power and Energy Conference,PECon '06. IEEE International,2006: 196-201.
    [112]J. Sung-I, K. Kwang-Ho. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current. IEEE Transactions on Power Delivery,2004,19:745-752
    [113]W. Xu, K. Mauch, S. Martel. An assessment of DG islanding detection methods and issues for Canada, Energy Technology Centre—Varennes, Natural Resources Canada, 2004,7:69-74
    [114]H. Shyh-Jier, P. Fu-Sheng. A new approach to islanding detection of dispersed generators with self-commutated static power converters, IEEE Transactions on Power Delivery,2000,15:500-507
    [115]任碧莹,钟彦儒,孙向东等.基于周期交替电流扰动的孤岛检测方法.电力系统自动化,2008,22(19):81-84
    [116]刘方锐,余蜜,张宇等.主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究.中国电机工程学报,2009,23(12):47-51
    [117]H. Zeineldin,S. Kennedy, Sandia Frequency-Shift Parameter Selection to Eliminate Nondetection Zones. IEEE Transactions on Power Delivery,2009, (24):486-487
    [119]L. A. C. Lopes, Z. Yongzheng. Islanding Detection Assessment of Multi-Inverter Systems With Active Frequency Drifting Methods. IEEE Transactions on Power Delivery,2008,23:480-486
    [120]刘芙蓉,王辉,康勇,段善旭.滑模频率偏移法的孤岛检测盲区分析.电工技术学报,2009,2:178-182
    [121]GomezJC,Morcos M.ImPact of EV battery chargers on the Power quality of distribution systems. IEEE Transactions on Power Deliver,2003,18(3):975-998
    [122]黄少芳.电动汽车充电机(站)谐波问题的研究:[硕士学位论文].北京:北京交通大学图书馆,2008
    [123]StaatsPT,Gray WM, A rapostathis. A statistical method for predicting the net harmonic current generated by a concentration of electric vehicle battery charger. IEEE Transaction on power Delivery,1997,12(3):1255-1126
    [124]BassR, HarleyR. Residential harmonic loads and EV charging.Power Engineering Soeiety Winter Meeting,2001, (2):803-808
    [125]LuYanxia-Harmonic Study of Eleetrie Vehiele Chargers. Proeeedings of the Eighth International Conference on Eleetrieal Maehines and Systems,2005:2404-2407.
    [126]Etezadi-Amoli, M.,Choma, K., Stefani, J..Rapid Charge Electric-Vehicle Stations IEEE Transations on Power Delivery,2010,25(3):1883-1887
    [127]Kristien Clement-Nyns, Edwin Haesen, Johan Driesen.The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems,2010,25(1):371-380
    [128]牛利勇.纯电动公交充电系统关键技术研究:[博士学位论文].北京:北京交通大学图书馆,2008
    [129]E.W.C.Lo, D.Sustanto, C.C.Fo. Harmonic load flows study for electric vehicle chargers. IEEE International Conference on on Power Eleetronics and Drive systems(PEDS99),1999,1:495-500
    [130]R.Bass,R.Harley,F.Lambert,etal.Residential harmonie loads and EV charging.IEEE Power Engineering Winter Meeting,2001:803-808
    [131]张亮,高赐威.电动汽车充电对电网影响的综述.电网技术,2011,2(2):127-131
    [132]贾龙,胡泽春,宋永华等.电动汽车接入电网的影响与利用.中国电机工程学报,2012,32(4):1-10.
    [133]Saber A Y, Venayagamoorthy G K. Optimization of vehicle-to-grid scheduling in constrained parking lots. IEEE Power & Engineering Society General Meeting. Calgary,2009:1-8
    [134]陆凌蓉,文福拴,薛禹胜等.计及可入网电动汽车的电力系统机组最优组合.电力系统自动化,2011,35(21):16-20
    [135]Han Sekyung, Han Soohee, Sezaki K. Estimation of achievable power capacity from plug-in electric vehicles for V2G frequency regulation:case studies for market participation. IEEE Transactions on Smart Grid,2011,2(4):632-641.
    [136]Venayagamoorthy G K, Mitra P, Corzine K, et al. Real-time modeling of distributed plug-in vehicles for V2G transactions.IEEE Energy Conversion Congress and Exposition.2009:3937-3941.
    [137]Daan Bakker. Battery Electric Vehicles Performance, CO2 emissions, lifecycle costs and advanced battery technology development Energy and Resources.Copernicus institute University of Utrecht,2010:222-227
    [138]Chiang S J, Chang K T, Yen C Y. Residential photovoltaic energy storage system. IEEE Transactions on Industrial Electronics,1998,45(3):385-390.
    [139]Agbossou K, Kolhe M, Hamelin J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen. IEEE Transactions on Energy Conversion,2004,19(2):633-640.
    [140]陈坚.电力电子学—电力电子变换和控制技术.高等教育出版社,2002
    [141]Canesin, C.A.,I. Barbi. Novel zero-current-switching PWM converters.IEEE Transactions on Industrial Electronics,1997,44(3):372-381
    [142]Jung-Goo,C., J.Chang-Yong,F.C. Y.Lee.Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp. IEEE Transactions on Power Electronics,1998,13 (4):601-607
    [143]Steigerwald, R.L..A comparison of half-bridge resonant converter topologies.IEEE Transactions on Power Electronics,1988.3(2):174-182
    [144]Yang, B..Topology investigation for front end DC/DC power conversion for distributed power system. Virginia Polytechnic Institute and State University,2003:223-227
    [145]Liu, R.,C.Q. Lee.Series resonant converter with third-order commutation network. IEEE Transactions on Power Electronics,1992,7(3):462-468
    [146]Severns, R.P.. Topologies for three-element resonant converters. IEEE Transactions on Power Electronics,1992,7(1):89-98
    [147]Agarwal, V., A.K.S. Bhat. Small signal analysis of the LCC-type parallel resonant converter using discrete time domain modeling. IEEE Transactions on Industrial Electronics,1995,42(6):604-614
    [148]Ruan, X., et al. Zero-voltage-switching PWM three-level converter with two clamping diodes. IEEE Transactions on Industrial Electronics,2002,49(4):790-799
    [149]Vlatko V.Juan A.S.,Raymond B.R.,et al. Small-Signal Analysis of the Phase-Shifted PWM Converter. IEEE Transaction on Power Electronics,1992,7(1):128-135
    [150]孙鹏菊,周雒维,杜雄.具有延时补偿的占空比预测数字控制算法.电工技术学报,2010,25(5):123-127
    [151]刘邦银.建筑集成光伏系统的能量变换与控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008
    [152]王斯然,吕征宇.锂电池馈电并网系统进网电流谐波抑制方法.电力系统自动化,2009,33(19):90-95
    [153]Agorreta, J.L.,Borrega, M.; Lopez, J., Marroyo, L.; Modeling and Control of-Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants. IEEE Transactions on Power Electronics.2011,26(3):770-785
    [154]Cad M. Wildrick, Fred C. Lee, Bo. A Method of Defining the Load Impedance. IEEE Transaction on Power Electronics,1995,10(3):280-285
    [155]Byungcho Choi, Dongsoo Kim, Donggyu Lee,et al. Analysis of Input Filter Interactionsin Switching Power Converters. IEEE Transaction on Power Electronics, 2007,22(2):452-460
    [156]Xiaogang Feng,Jinjun Liu, Fred Lee. Impedance Specifications for Stable DC Distributed Power Systems.IEEE Transaction on Power Electronics, 2002,17(2).157-162
    [157]Agbossou K, Kolhe M, Hamelin J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen. IEEE Transactions on Energy Conversion,2004,19(2):633-640.
    [158]Singo T A, Martinez A, Saadate S. Using ultracapacitors to optimize energy storage in a photovoltaic system. International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2008,229-234.
    [159]Barote L, Weissbach R, Teodorescu R. Stand-alone wind system with vanadium Redox battery energy storage.11th International Conference on Optimization of Electrical and Electronic Equipment,2008,407-412.
    [160]Lone S A, Mufti Mairaj-ud-Din. Integrating a Redox flow battery system with a wind-diesel power system. International Conference on Power Electronics, Drives and Energy Systems,2006,1-6.
    [161]Borowy B S, Salameh Z M. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Transactions on Energy Conversion,1996,11(2):367-375.
    [162]Chahwan J, Abbey C, Joos G, et al. VRB modelling for the study of output terminal voltages, internal losses and performance. IEEE Canada Electrical Power Conference, 2007,387-392.
    [163]Chacra F A, Bastard P, Fleury G, et al. Impact of energy storage costs on economical performance in a distribution substation. IEEE Transactions on Power System,2005, 20(2):684-690.
    [164]Chacra F A, Bastard P, Fleury G, et al. Energy storage associated to wind farms in a two-tariff structure bidding tender, IEEE Russia Power Tech,2005:1-5.
    [165]Jian Sun.Small-Signal Methods for AC Distributed Power Systems-A Review. IEEE Transactions on Power Electronics,2009,24(11):2545-2554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700