用户名: 密码: 验证码:
滚筒式采煤机—高压水射流联合截割系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭资源的日渐减少,我国国有大中型煤矿对于坚硬煤岩的采掘技术越来越重视。由于一般采煤机截割坚硬煤岩的能力不足,因此现有技术条件下对坚硬煤岩开采难度较大。为了能够安全高效地开采坚硬煤岩资源,本文提出一种新型的截割系统,即对综采机械化设备中的采煤机加装联合截割装置,形成可以有效截割坚硬煤岩的滚筒式采煤机—高压水射流联合截割系统。该系统在采煤作业时还具有除尘、湿润和冷却截割区、减少发火危险等许多正面效应,是提高社会效益和经济效益的研究方向。
     本文对采煤机滚筒与高压水射流的结构特性分别进行了阐述分析,对二者自身结构的各项指标参数及其对截割效果的影响进行了总结,并推导了高压水射流紊流时均运动方程。对坚硬煤岩的物理参数和孔裂隙度进行了研究分析,总结了常用的复合型断裂判据,为联合截割坚硬煤岩机理研究打下基础。
     基于截齿、水射流破岩机理,将截齿与高压水射流对坚硬煤岩联合截割的过程分为四个阶段,用以指导联合截割坚硬煤岩数理分析模型的建立。在截齿破岩和高压水射流破碎坚硬煤岩理论研究的基础上,从水射流破岩经典理论、冲击动力学及损伤力学入手,结合分形理论,研究联合截割坚硬煤岩机理,揭示联合冲击动载、煤岩体应力分布变化规律以及煤岩损伤本构关系,得到了联合截割系统在坚硬煤岩内部产生的应力波叠加方程和含有夹矸层坚硬煤岩体内的应力波叠加方程,为判别坚硬煤岩内部损伤及孔裂隙发展情况提供了理论依据。
     采用基于突变理论的能量观点对坚硬煤岩受到联合截割的冲击崩落损伤进行了宏观上的分析,解决了静载、动载条件下各种破岩强度理论之间观点不一致所带来的争论,并得到了联合截割崩落坚硬煤岩的冲击能量判别式。同时,从突变、采动渗流等理论的角度,建立起全新的、能够更加准确描述坚硬煤岩在联合截割作用下失稳条件的数理分析模型。
     搭建“单截齿—喷嘴联合截割试验台”进行单截齿—喷嘴联合截割试验,对联合截割试验中所涉及的截齿冲击角、截割速度、切削厚度、水射流的靶距、入射角、水射流作用点与截齿齿尖的横向间距等参数进行系统的试验,研究各个参数组合对主要截割性能的影响,探求联合截割规律,确定联合截割滚筒的最佳结构参数;搭建“滚筒—水射流联合截割试验台”进行采煤机滚筒—高压水射流联合截割试验,解决了系统旋转密封问题,完成了联合截割试验滚筒的设计制造,对比验证了不同截割方式的截割效果,探寻出联合截割运动参数对联合截割部截割的影响规律。
     试验结果验证了本文关于联合截割过程的理论分析,证实了滚筒采煤机—高压水射流联合截割系统对坚硬煤岩体实施截割作业的可行性和有效性。本文相关的理论和试验研究对该系统的工业化生产应用提供了有力的技术支持和充足的实践经验。
With the decreasing of soft coal seam resource, the state-owned large andmedium-sized coal mines are paying more and more attention to the technology ofmining hard coal-rock seam. It is difficult to mine hard coal-rock seam under existingtechniques, because the cutting ability of common drum shearer is not adequate. Inorder to mine the hard coal-rock seam resource safely and high-effectively, a newcutting system is proposed in this dissertation. In the new cutting system, thecombined cutting device is installed on the drum shearer of full-mechanized miningequipments to form the combined cutting system of drum shearer and high pressurewater jet which can cut hard coal-rock effectively and has a lot of positive effects,such as dust removal, wetness, cutting region cooling, fire danger decreasing and soon. It is the research direction of improving social and economy benefits.
     In this dissertation,the structure characteristics of drum and high pressure waterjet are researched and analyzed, and the equation of high pressure water jet turbulentflow averaged velocity is deduced. The physical parameters and porosity of hardcoal-rock are described and analyzed, and mixed-mode fracture criterions aresummarized, which is prepared to the research of the combined cutting mechanism.
     Based on the rock breaking mechanisms of pick and water jet, the process ofcombined cutting hard coal-rock is divided into four phases. In order to show up thestatic loading of combined impact, the variation law of coal-rock stress distributionand the constitutive relationship of coal-rock damage, the classic theory of rockbreaking by water jet, impact dynamics, damage mechanics and fractal theory areapplied. And the equations of surface damage and hard coal-rock stress wavessuperimposition damage are obtained, which provides the theoretical basis to criterionof hard coal-rock internal damage and porosity development.
     Based on the energy point of catastrophe theory, the discriminant of combinedinstability caving damage is obtained. The mining seepage theory is applied, and thebran-new mathematical-physical analysis models are built to describe the instabilityprocess and conditions of hard coal-rock under combined cutting.
     The single pick&nozzle combined cutting test-bed is built and the test blocksare prepared to test the parameters of pick impact angle, impact speed, cuttingthickness, target distance, incidence angle, cutting distance between pick-tip andwater jet point, and so on. Through the single pick&nozzle combined cutting tests, the best parameters combination is obtained, the combined cutting laws are foundedand the process and mechanism theory analysis of the combined cutting are verified.The drum&water-jet combined cutting test-bed is built to test the drum shearer&high pressure water jet combined cutting, in which the design and manufacture ofcombined cutting drum is finished, the problem of rotary sealing is solved, the cuttingeffects of different cutting modes are contrasted and the influence laws of motionparameters on combined cutting are found.
     The theoretical analysis of combined cutting process in this dissertation isvalidated by the physical phenomenon and results of combined cutting experiments.The combined cutting system of drum shearer&high pressure water jet is proved tobe a necessary, feasible and effective technique to realize the hard coal-rock’s cutting.The sufficient technical supports and practical experience for the combined cuttingsystem to be manufactured through industrialization are acquired by the theory andexperimental research of this dissertation.
引文
[1]崔丽琼.我国煤炭资源综合利用现状及对策思考[J].煤炭经济研究,2013,33(8):46-47.
    [2]郭开文.浅析我国煤炭资源地质勘探工作现状与发展对策[J].科技致富向导,2011,(36):240-241.
    [3]刘占勇,江涛,宋洪柱.中国煤炭资源勘查开发程度分析[J].煤田地质与勘探,2013,41(5):1-5.
    [4]赵志强,高洋,汪昕.我国煤炭资源开采回采率问题研究[J].煤矿现代化,2011(1):5-7.
    [5]李祥.特厚坚硬煤岩综放开采技术及其应用研究[J].煤炭科学技术,2006,34(2):32-35.
    [6]章永久.特厚坚硬煤岩综合机械化放顶煤开采技术[J].矿山压力与顶板管理,2005,22(1):9-11.
    [7]李德玺,上官科峰.红会一矿坚硬煤岩大放高综采放顶煤开采技术[J].煤炭科学技术,2004,32(8):1-4.
    [8]李春生.利用深孔高压注水解决高瓦斯较坚硬煤岩开采[J].煤,2009,18(6):28-29.
    [9]崔漠慎,孙家骏.高压水射流技术[M].北京:煤炭工业出版社,1993.
    [10]沈娟.磨料水射流切割技术在机械检修中的应用研究[J].煤炭科技,2013,(2):19-21.
    [11] LIU Song-yong. Model test of the cutting properties of a shearer drum[J].Mining Science andTechnology,2009,19(1):74-78.
    [12] LIU Song-yong, DU Chang-long, CUI Xin-xia. Experimental research on picks arrangementof shearer drum[J].Journal of Central South University: Science and Technology,2009,40(5):1281-1287.
    [13] LIU Song-yong, DU Chang-long, CUI Xin-xia. Characteristics of different rocks cut byhelical cutting mechanism [J]. Journal of Central South University of Technology,2011,18(5):1518-1524.
    [14] LIU Song-yong, DU Chang-long, CUI Xin-xia. Method to determine installing angle ofconical point attack pick [J]. Journal of Central South University of Technology,2011,18(6):1994-2000.
    [15] DU Chang-long, LIU Song-yong, CUI Xin-xia, et al. Study on pick arrangement of shearerdrum based on load fluctuation[J]. Journal of China University of Mining&Technology,2008,18(2):305-310.
    [16]刘送永,杜长龙,崔新霞.采煤机滚筒截齿排列的试验研究[J].中南大学学报(自然科学版),2009,40(5):1282-1287.
    [17] Evans I. Line spacing of picks for effective cutting [J]. International Journal of RockMechanics and Mining Science,1972,9:355-361.
    [18] K.G.Hurt, K.M.Andrew. Cutting efficiency and life of rock-cutting picks [J]. Mining Science&Technology,1985,2(2):139-151.
    [19] T.Muro, Y.Takegaki, K.Yoshikawa. Impact cutting property of rock material using a pointattack bit [J]. Journal of Terramechanics,1997,34(2):83-108.
    [20] T.Muro, D.T.Tran. Regression analysis of the characteristics of vibro-cutting blade fortuffaceous rock [J]. Journal of Terramechanics,2004,40(1):191-219.
    [21] U.M.Rao Karanam, John P.Loui. Heat transfer simulation in drag–pick cutting of rocks [J].Tunnelling and Underground Space Technology,2005,20:263-270.
    [22] V.B.Achanti, A.W.Khair. Cutting efficiency through optimized bit configuration—anexperimental study using a simulated continuous miner [J]. Mineral Resources Engineering,2001,4:427-434.
    [23] N.Bilgin, M.A.Demircm, H.Copur, et.al. Dominant rock properties affecting the performanceof conical picks and the comparison of some experimental and theoretical results [J]. InternationalJournal of Rock Mechanics&Mining Sciences.2006,43:139-156.
    [24] C.Balci, N.Bilgin. Correlative study of linear small and full-scale rock cutting tests to selectmechanized excavation machines [J]. International Journal of Rock Mechanics&MiningSciences.2007,44:468-476.
    [25] N.Gunes Yilmaz, M.Yurdakul, R.M.Goktan. Prediction of radial bit cutting force inhigh-strength rocks using multiple linear regression analysis [J].International Journal of RockMechanics&Mining Sciences.2007,44:962-970.
    [26] Brijes Mishra. Analysis of cutting parameters and heat generation on bits of a continuousminer–using numerical and experimental approach [D]. USA: College of Engineering and MineralResources at West Virginia University,2007.
    [27] B.Tiryaki, J.N.Boland, X.S.Li. Empirical models to predict mean cutting forces onpoint-attack pick cutters [J]. International Journal of Rock Mechanics and Mining Sciences.2010,47:858-864.
    [28] John P.Loui, U.M.Rao Karanam. Numerical studies on chip formation in drag-pick cutting ofrocks [J]. Geotechnical and Geological Engineering.2012,30:145-161.
    [29]王春华,李贵轩,姚宝恒.刀型截齿截割煤岩的实验研究[J].辽宁工程技术大学学报,2001,20(4):487-488.
    [30]宁仲良,朱华双.镐形截齿应力分布规律研究[J].西安科技学院学报,2003,23(3):325-327.
    [31]刘春生.采煤机截齿截割阻力曲线分形特征研究[J].煤炭学报,2004,29(1):115-118.
    [32]曲娟,李淮.提高国产截齿综合机械性能的措施[J].矿山机械,2009,(23):19-22.
    [33]佟海龙.采煤机新型截齿截割性能研究[J].煤矿机械,2011,32(10):62-63.
    [34]戴珊珊.基于ABAQUS模拟镐形截齿截割脆性煤岩[J].煤矿机械,2012,33(5):46-48.
    [35]纪玉杰,曹学涛.掘进机截齿截割煤岩的离散元仿真方法[J].辽宁工程技术大学学报:自然科学版,2013,(4):488-492.
    [36]纪玉杰,曹学涛.截齿截割煤岩的离散元法仿真方法研究[J].矿业研究与开发,2013,(2):84-87.
    [37]魏晓华,姚继权,刘希福.截齿截割试验台建模与仿真[J].矿山机械,2013,41(1):22-24.
    [38] H.Warren Shen, H.Reginald Hardy Jr. A.Wahab Khair. Laboratory study of acoustic emissionand particle size distribution during rotary cutting [J]. International Journal of Rock Mechanics&Mining Sciences.1997,34:121-136.
    [39] D.Mazurkiewicz. Empirical and analytical models of cutting process of rock [J]. Journal ofMining Science.2000,36(5):481-486.
    [40] Rizwan A. Qayyum. Effects of bit geometry in multiple bit rock interaction[D]. USA: Collegeof Engineering and Mineral Resources at West Virginia University,2003.
    [41] O.Z. Hekimoglu, L.Ozdemir. Effect of angle of wrap on cutting performance of drumshearers and continuous miners [J]. Mining Technology,2004,113:118-122.
    [42] Bo Yu. Numerical simulation of continuous miner rock cutting process [D]. USA:College ofEngineering and Mineral Resources at West Virginia University,2005.
    [43] Romahn.Andreas. Modern coal winning technology for the mining industry [J]. GlueckaufMining Reporter.2008,1:14-19.
    [44] U.Kumar. Reliability and maintainability analysis of electrical system of drum shearers [J].Journal of Coal Science and Engineering.2011,17(2):192-197.
    [45] E.Bakhtavar, K.Shahriar. Selection of a practicable shearer loader based on mechanicalproperties of coal for Parvadeh1mine [J]. Archives of Mining Science.2013,58(1):145-157.
    [46]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):74-82.
    [47]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):503-506.
    [48]张守柱,吕剑梅.采煤机滚筒截齿排列的研究[J].西安矿业学院学报,1998,18(2):170-172.
    [49]李晓豁,刘春生,李萍.滚筒式采煤机的动力学模型[J].黑龙江矿业学院学报,2000,10(2):1-4.
    [50]夏毅敏,卜英勇,罗柏文等.基于螺旋切削法破碎钴结壳分形行为研究[J].矿冶工程,2005,25(1):9-11.
    [51] XIA Yi-min, BU Ying-yong, TANG Pu-hua,et.al. Modeling and simulation of crushingprocess of spiral mining head[J].Journal of the Center South University Technology.2006,13(2):171-174.
    [52]刘春生,荆凯,杨秋.采煤机滚筒调高截割记忆程控的控制策略[J].辽宁工程技术大学学报,2007,26(5):751-753.
    [53]刘春生,吴卫东,宋胜伟等.采煤机滚筒灭尘喷嘴特性实验与理论模型[J].机床与液压,2009,37(3):68-70.
    [54]刘春生,陈金国.单向示范刀采煤机记忆截割的模糊白适应PID控制仿真[J].辽宁工程技术大学学报,2013,(1):85-88.
    [55]付林,杜长龙,刘送永.螺旋钻采煤机钻头截齿载荷特性研究[J].中国机械工程,2013,24(15):2020-2024.
    [56]刘送永.采煤机滚筒及截割系统动力学特性研究[D].徐州:中国矿业大学,2010.
    [57]沈忠厚.水射流理论与技术[M].山东东营:石油大学出版社,1998.
    [58]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.
    [59] D.A.Summers. Water jetting technology[A]. London:E&FNSPON,1995,277-283.
    [60] T.J.Labus. Fliud jet technology[A]. Fundamentals and Application. St.louis WJTA,1995,487-503.
    [61] G.Galecki. Abrasive grains distribution effect during jet ejection[C].Beijing: InternationalWater Jet Syposium,1987.
    [62]张庆良.水射流技术及其应用[J].液压与气动,2012,(2):70-72.
    [63]梁运培.高压水射流钻孔破煤机理研究[D].青岛:山东科技大学,2007.
    [64]常宗旭.水射流非均质破岩理论及应用[D].太原:太原理工大学,2006.
    [65]陈雪辉,袁根福,郑伟.水射流辅助激光刻蚀Al_2O_3陶瓷的试验研究[J].中国机械工程,2013,24(12):1568-1571.
    [66] D.A.Axinte, D.S.Srinivasu, J.Billingham. Geometrical modeling of abrasive waterjetfootprints: a study for90°jet impact angle[J].CIRP Annals-Manufacturing Technology,2010,(59):341-346.
    [67]陈波.超高压水切割机的现状与发展[J].航空制造技术,2009,(6):66-68.
    [68]程轶伦.超高压水射流技术在航空工业中的应用[J].航空精密制造技术,2009,45(6):23.
    [69]张凤莲.磨料水射流切割工程陶瓷机理及关键技术的研究[D].大连:大连交通大学,2010.
    [70]郭新,张西正,徐晓莹.水刀技术及其在医学领域的应用[J].医疗卫生装备,2009,30(7):34-36.
    [71]黄高,文明波,姚红兵.螺旋水刀实施精准肝切除术在胆道疾病的临床研究[J].实用医学杂志,2012,28(16):2768-2770.
    [72]侍才洪,张坤亮,柴虎.基于医用水刀的肝脏切割及力学性能[J].医用生物力学,2013,(1):85-90.
    [73]陆国胜.前混合磨料水射流切割机理及在爆炸物、险情处置中的应用研究[D].南京:解放军理工大学,2004.
    [74]胡东,夏志华,唐川林.后混合磨料水射流切割系统的研究.机床与液压,2013,41(19):33-35.
    [75] Asif.Iqbal, Naeem Udar, Ghulam Hussain. Optimization of abrasive water jet cutting ofductile materials[J].Journal of Wuhan University of Technology. Materials ScienceEdition,2011,26(1):88-92.
    [76] WANG Jian-ming, GAO Na, GONG Wen-jun. Abrasive waterjet machining simulation bycoupling smoothed particle hydrodynamics/finite element method[J]. Chinese Journal ofMechanical Engineering,2010,23(5):568-573.
    [77] D.K.Shanmugam, S.H.Masood. An investingation on kerf characteristics in abrasive waterjetcutting of layered composites[J]. Journal of materials Processing Technology,2009,209:3887-3893.
    [78] Wang J. A new model for predicting the depth of cut in abrasive waterjet contouring ofalumina ceramics[J]. Journal of Materials Processing Technology,2009,209:2314-2320.
    [79] Wang J. Particle velocity models for ultra-high pressure abrasive waterjets [J]. Journal ofMaterials Processing Technology,2009,209:4573-4577.
    [80]陆国胜,龚烈航,王强.前混合磨料水射流磨料颗粒加速机理分析[J].解放军理工大学学报(自然科学版),2006,7(3):275-280.
    [81]曾锐,王广旭,顾晓峰.前混合磨料水射流系统流化器密封套筒的选材[J].润滑与密封,2007,32(9):136-139.
    [82]王洪伦,龚烈航,武光华.前混合磨料高压水射流切割喷嘴的数值模拟[J].解放军理工大学学报(自然科学版),2007,8(4):387-390.
    [83]武光华,龚烈航,王洪伦.前混合磨料水射流切割系统压力损失分析与实验研究[J].机床与液压,2008,36(2):90-93.
    [84]曾锐,高久好,孙世安.高压水射流切割系统流化器密封套筒的裂纹特性分析[J].润滑与密封,2009,34(3):84-87.
    [85]王洪伦.便携式前混合磨料水射流切割系统喷嘴优化设计[D].南京:解放军理工大学,2005.
    [86]廖华林,牛继磊,易灿.围压条件下空化磨料射流的冲蚀特性与机制分析[J].高压物理学报,2012,26(5):590-594.
    [87]康勇,王晓川,卢义玉.磨料射流辅助三翼钻头破岩实验研究[J].中国矿业大学学报,2012,41(2):212-218.
    [88]左伟芹,卢义玉,夏彬伟.前混合磨料射流新型连续加砂系统设计与实验[J].应用基础与工程科学学报,2013,21(2):328-335.
    [89]吕仙镜,司丹丹,童明炎.高压磨料水射流水下切割不锈钢的实验研究[J].核动力工程,2013,34(4):164-167.
    [90] M.Geveci, P.O.shkai, D.Rockwell. Pollack imaging of the self-excited oscillation of flow pasta cavity during generation of a flow tone[J]. Journal of Fluids and Structures,2003,18:665-694.
    [91] K.Wang, R.J.Hosking, F.Milinazzo. Time-dependent response of a floating viscoelastic plateto an impulsively started moving load[J]. Fluid Mech,2004,521:295-317.
    [92] A.Matthujak, H.S.Hosseinir, K.Takayama. High speed jet formation by impact accelerationmethod[J].Shock Waves,2007,16(6):405-419.
    [93] V.Srinivasan. Modeling the disintegration of modulated liquid jets using volume-of-fluid(VOF) methodology[J]. Applied Mathematical Modelling,2011,35(8):3710-3730.
    [94] Jichul Shin. Characteristics of High Speed Electro-thermal Jet Activated by Pulsed DCDischarge[J]. Chinese Journal of Aeronautics,2010,(5):518-522.
    [95] J.Shin, V.Narayanaswamy, L.L.Raja. Characterization of a direct current glow dischargeplasma actuator in low-pressure supersonic flow[J]. AIAA Journal,2007,45(7):1596-1605.
    [96] M.Chaudhafi, G.Verma, B.Puranik. Frequency response of a synthetic jet cavity[J].Experimental Thermal and Fluid Science,2009,33(3):439-448.
    [97]裴江红,唐川林,胡东.双腔室自激振荡喷嘴频率特性研究[J].振动与冲击,2011,30(4):29-32.
    [98]倪红坚,王传伟,艾尼瓦尔.自激振荡脉冲消泡机制分析与性能优化[J].中国石油大学学报:自然科学版,2012,36(2):120-124.
    [99]刘新阳,王松林,高传昌.自激脉冲射流装置参数对性能影响试验研究[J].振动与冲击,2012,31(24):112-114.
    [100]陆朝晖,卢义玉,夏彬伟.冲击挤压式脉冲射流动力特性数值模拟[J].中国石油大学学报:自然科学版,2013,37(4):104-108.
    [101] K.Harada, M.Murakami. P1V measurements for flow pattern and void fraction in cavitatingflows of He II and He I[J]. Cryogenics,2006,46(9):648-657.
    [102] M.N.Patil, A.B.Pandit. Cavitation: A novel technique for making stable nano-suspensions[J].Ultrasonics Sonochemis-try,2007,14(5):519-530.
    [103] YANG Min-guan, ZHANG Feng, KANG Can. Experiment and Numerical Simulation ofFree Water Jet by a Central-body Nozzle[J]. Chinese Journal of Mechanical Engineering,2010,23(6):797-804.
    [104] FU Jia-sheng, LI Gen-sheng, SHI Huai-zhong. A novel tool to improve the rate ofpenetration hydraulic pulsed cavitating-jet generator[J]. SPE Drilling andCompletion,2012,27(3):354-361.
    [105]李赵杰,邓松圣,沈银华.空化射流实验研究[J].后勤工程学院学报,2009,25(1):40-44.
    [106]王星,张勇,张飞虎.纳米颗粒胶体动压空化射流抛光技术初探[J].纳米技术与精密工程,2011,9(6):483-487.
    [107]康学勤,杨春敏,孙智.空化射流喷丸对45钢表面性能的影响[J].北京工业大学学报,2011,37(4):554-558.
    [108]史怀忠,李根生,张浩.塔河油田深井脉冲空化射流钻井试验研究[J].石油钻探技术,2013,41(3):85-88.
    [109]廖华林,李根生,易灿.水射流作用下岩石破碎理论研究进展[J].金属矿山,2005,(7):1-5.
    [110]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [111] M.Kondo, K.Fujii, H.Syoji. On the destruction of motar specimens by submerged waterjets[C].Second International Symposium on Jet Cutting Technoloyg, Cambirdge, UK,1974,B5:69-88.
    [112]张作龙,梁忠民.高压淹没水射流破岩实验研究[J].石油矿场机械,2000,(5):27-30.
    [113] L.W.Farmer, P.B.Attewell. Rock penetration by high velocity water jets[J].Rock Mechanicsand Mining Science,1965,2(2):135-153.
    [114] F.P.Bowden, J.H.Burnton. The deformation of solids by liquid impact supersonic speeds[J].Proceedings of the Royal Society, Seires A,1963,263:433-450.
    [115] J.F.Field, StressWaves. Deformation and fractuer caused by liquid impact[J].PhilosophicalTransactions of the Royal Society of London, Seires A,1966,260:86-93.
    [116] F.J.Heymann.On the shock wave velocity and impact pressure in high speed liquid solidimpact[J]. Basic Engineeirng,1968,90:400-402.
    [117] F.J.Heymann. High speed impact between a liquid drop and a solid sufrace[J]. AppliedPhysics,1969,40(3):5113-5122.
    [118] G.P.Chermensky. Pulsed water jet pressure in rock breaking[C]. Proceedings of the5thInternational Symposium on Jet Cutting Technology,1980, C6:155-164.
    [119]卢义玉,张赛,刘勇.脉冲水射流破岩过程中的应力波效应分析[J].重庆大学学报:自然科学版,2012,35(1):117-124.
    [120] J.H.Powell, S.P.Simpson. Theoretical study of the mechanical efects of water jets impingingon a semi-Infinite elastic solid[J]. Rock Mechanics and Mining Science,1969,6:353-364.
    [121] G.Rehbinder. Some aspects on the mechanics of erosion of rock with a high speed waterjet[C]. Third Intemational Simposium on Jet Cutting Technology, Chicago, USA,1976, E1:1-20.
    [122] G.Rehbinder. A theory about cutting rock with a water jet[J]. Rock Mechanics,1980,(12):247-257.
    [123] M.M.Vijay, P.E.Grattan, W.H.Brierly. An expriemental investigation of dirlling and deepslotting of hard rocks with rotating high pressure water jets[C]. Seventh Intemational Symposiumon Jet Cutting Technology, Ottawa, Canada,1984:419-428.
    [124] M.M.Vijay, W.H.Birelfy, P.E.Grattan. Drilling of rocks with rotating high pressure waterjets:inlfuence of rock properties[C]. Sixth Intemational Symposium on Jet Cutting Teclmology,1982:179-188.
    [125] J.L.Evers, D.L.Eddingifeld. Liquid phase compressibility in the hydraulic instrusionmodel[C]. Seventh lntemational Symposium on Jet Cutting Technology, Ottawa, Canada,1984:237-248.
    [126] H.J.Cholet, C.A.Bardin. Jet-asstited oil drilling[C]. Seventh Intemational Symposium on JetCutting Technology, Ottawa, Canada,1984:33-50.
    [127] B.Hammitt. Application of water jet on mining[J].Technology of High Pressure Water jet,1987,(2):16-21.
    [128] R.J.Puchala. Cutting concrete by High Pressure Water jet[J]. High PressureWater-jet,1995,(3):32-39.
    [129] D.G.Crosby, M.M.Rahman, M.K.Rahman. Single and multiple transverse fracture initiationfrom horizontal wells[J]. Journal of Petroleum Science and Engineering,2002,(35):191-204.
    [130] M.Monno, C.Ravasio. The effect of pressure fluctuations on the cutting ability of pure waterjet [J]. Strojniski Vestnik,2006,52(7):443-450.
    [131] J.Foldyna, L.Sitek. Effects of pulsating water jet impact on aluminium surface [J]. Journal ofMaterials Processing Technology,2009,209(20):6174-6180.
    [132] S.Dehkhoda, M.Hood. An experimental study of surface and sub-surface damage in pulsedwater-jet breakage of rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2013,(63):138-147.
    [133]王瑞和,倪红坚.高压水射流破岩钻孔过程的理论研究[J].石油大学学报(自然科学版),2003,27(4):44-47.
    [134]倪红坚,王瑞和,葛洪魁.高压水射流破岩的数值模拟分析[J].岩石力学与工程学报,2004,23(4):550-554.
    [135]李根生,廖华林.超高压水射流冲蚀切割岩石断口微观断裂机理实验研究[J].高压物理学报,2005,19(4):337-341.
    [136]廖华林,李根生,熊伟.超高压水射流辅助破岩钻孔研究进展[J].岩石力学与工程学报,2002,21(增2):2583-2587.
    [137]易灿,李根生.淹没条件下锥形喷嘴射流破岩效率实验研究[J].石油钻探技术,2001,29(1):10~12.
    [138]常宗旭,邵保平,赵阳升.煤岩体水射流破碎机理[J].煤炭学报,2008,33(9):983-987.
    [139]常宗旭,赵阳升,冯增朝.水射流在煤层中水平钻孔的试验研究[J].岩石力学与工程学报,2005,24(A01):4740-4744.
    [140]穆朝民,吴阳阳.高压水射流冲击下煤体破碎强度的确定[J].应用力学学报,2013,(3):451-456.
    [141]常建勇.“高效射流技术”与小型水采模式[J].水力采煤与管道运输,2001,(4):6-9.
    [142]赵全福,吴迪儆.发展水力采煤的回顾与展望[J].中国煤炭,1996,(11):16-19.
    [143]付德华,李永海.地质构造极复杂矿井采用水力采煤是一种有效的途径[J].水力采煤与管道运输,2009,(3):4-7.
    [144]夏柏如,曾细平,毛志新.一种钻孔水力采煤系统的研究[J].地学前缘,2008,15(4):222-226.
    [145]崔巅.高产高效水力采煤采垛参数的优化[J].黑龙江科技信息,2008,(20):55.
    [146]涂敏,谢广祥.走向短壁水力采煤顶板周期垮落规律研究[J].岩石力学与工程学报,2004,23(15):2547-2550.
    [147]何启林,吴继忠.水力采煤的采空区与尾巷瓦斯浓度变化规律的研究[J].水力采煤与管道运输,2003,(1):11-14.
    [148]李志全.金星煤矿水力采煤应用与研究[J].煤,2009,18(10):16-18.
    [149]李宏,和燕兰,潘文武.水力采煤在襄垣古韩联营煤矿的应用[J].煤,2009,18(3):15-19.
    [150]王文超,林柏泉.孔庄煤矿水力采煤生产系统的安全性分析[J].煤矿安全,2006,37(11):36-38.
    [151]刘平,刘松华.吕家坨矿井水力采煤的回顾[J].水力采煤与管道运输,2004,(3):9-11.
    [152]梁金宝.水力采煤是提高中小型煤矿机械化开采水平的有效措施[J].水力采煤与管道运输,2007,(3):4-5.
    [153] W.C.Maurer. Advanced drilling techniques[M]. Tulsa:The Petroleum Publishing Company,1980.
    [154] D.A. Summers. Application of high pressure water jet in coal [J]. Mining Engineer,1992,(8):45-50.
    [155] D.A.Summers, R.Henry. Water jet cutting of sedimentary rock[J]. Journal of PetroleumTechnology,1972:797-802.
    [156] W.C.Maurer, J.K.Heihecker, W.W.Love. High Pressure Drilling[J]. Mining Engineering,1980,319-331.
    [157] D.A.Summers, C.R.Barker, H.J.Keith. Water jet drilling horizontal holes in Coal[J].MiningEngineering,1980,273-291.
    [158] H.Becker. Drilling bore hole in coal mines using H.P. water [D].USA:2ndAmerican WaterJet Technology Conference, University Missouri-Rolla,1983.
    [159] K.Ohga. Water jet drilling for large diameter stress relief boreholes in coal seams[D].Aus:The AusIMM Annual Conference. Australia,1987.
    [160]李根生,沈忠厚,徐依吉.超高压射流辅助钻井技术研究进展[J].石油钻探技术,2005,33(5):20-23.
    [161]梁运培,孙东玲,董钢锋.高压水射流扩孔技术的研究[J].煤炭科学技术,2001,(10):28-31.
    [162]熊继有,吴芒,杨令瑞.新型射流提高机械钻速机理及研究进展[J].天然气工业,2005,25(9):51-53.
    [163]唐建新,贾剑青,胡国忠.钻孔中煤体割缝的高压水射流装置设计及试验[J].岩土力学,2007,28(7):1501-1504.
    [164]何清,孟贤正,程建圣.高压水射流扩孔在石门揭突出危险性煤层中的应用[J].矿业安全与环保,2009,36(4):41-42.
    [165]刘勇,卢义玉,李晓红.高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J].煤炭学报,2010,35(7):1115-1119.
    [166]卢义玉,刘勇,夏彬伟.石门揭煤钻孔布置优化分析及应用[J].煤炭学报,2011,36(2):283-287.
    [167]张建国,林柏泉,翟成.穿层钻孔高压旋转水射流割缝增透防突技术研究与应用[J].采矿与安全工程学报,2012,29(3):411-415.
    [168]张建国.高压水射流割缝揭穿煤层关键参数研究[J].重庆大学学报:自然科学版,2011,34(11):117-121.
    [169]弗兰克莱米斯.带有水射流装置的球形采煤机滚筒[J].国外煤炭,1990,(3):7-9.
    [170]邢济中,张邵春.高压水射流在煤矿掘进机械上的应用[J].煤炭技术,1998,(4):2-4.
    [171]张壮志,周伯春.滚筒采煤机高压水射流辅助截煤系统[J].煤炭工程师,1990,(4):60-64.
    [172]张莉.高压水射流技术在煤矿生产中的应用[J].山西煤炭管理干部学院学报,2004,(4):51~52.
    [173]段雄,程大中.射流配合刀具破岩方法的分类与进展[J].高压水射流,1993,(2):44-47.
    [174]段雄,余力.截割力信号中的岩石破碎机理信息[J].煤炭学报,1993,18(3):12-19.
    [175]段雄,余力,程大中.自控水力截齿破岩机理的混沌动力学特征[J].岩石力学与工程学报,1993,12(3):222-231.
    [176]段雄.自控水力截齿破岩机理的非线性动力学研究[D].徐州:中国矿业大学,1991.
    [177]徐晓东,段雄.水射流与刀具联合破岩模型的有限元分析[J].连云港职业大学学报,1999,12(3):38-41.
    [178]刘春生.滚筒式采煤机理论设计基础[M].徐州:中国矿业大学出版社,2003.
    [179]陈启成,李宝玉.水射流在掘进工作面的应用研究[J].煤炭科技,2003,(1):3-4.
    [180]郭峰.顺层钻孔高压水射流负压除尘装备的应用[J].煤矿安全,2010,41(11):20-22.
    [181]张建华,范付恒.水射流负压钻孔除尘技术的应用[J].煤矿安全,2011,42(3):86-87.
    [182]吕有厂.煤层钻孔风力排粉水射流负压引射除尘装置的设计与应用[J].矿业安全与环保,2012,(39):37-39.
    [183]王从东.高压水射流技术在煤矿安全生产中的应用[J].煤矿机械,2008,29(10):150-152.
    [184]许瑞.掘进机射流辅助截割技术研究[D].徐州:中国矿业大学,2011.
    [185]傅雪海,秦勇.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(10):51-55.
    [186]王生维,张明,庄小丽.煤储层裂隙形成机理及其研究意义[J].煤,1996,21(6):637-640.
    [187]程庆迎,黄炳香,李增华.煤的孔隙和裂隙研究现状[J].煤炭工程,2011,(12):91-93.
    [188]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992.
    [189]范天佑.断裂理论基础[M].北京:科学出版社,2006.
    [190] G.C.Sih, P.C.Paris. Crack tip stress intensity factors for plane extension and plate bendingproblems,[J].J.Appl.Mech,1962,29:306-312.
    [191]谢和平,鞠杨.分数维空间中的损伤力学研究初探[J].力学学报,1999,31(3):300-310.
    [192]杨永杰,宋扬.煤岩强度离散性及三轴压缩试验研究[J].岩土力学,2006,27(10):1763-1766.
    [193]黄润秋.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [194]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [195]孟召平,刘长青,贺小黑.煤系岩石声波速度及其影响因素实验分析[J].采矿与安全工程学报,2008,25(4):389-393.
    [196]司鹄,王丹丹.高压水射流破岩应力波效应的数值模拟[J].重庆大学学报,2008,31(8):942-945.
    [197]张永利.射流应力波对岩石材料的破坏作用的研究[J].岩石力学与工程学报,2002,21(增刊):2106-2109.
    [198]张守宝,田取珍.冲击破煤过程中能量耗散的理论分析[J].太原理工大学学报,2005,36(5):542-544.
    [199]李哲.水射流辅助截割滚筒载荷模拟系统研究[D].徐州:中国矿业大学,2013.
    [200]王开.裂隙煤岩中应力波的研究[J].太原理工大学学报,2005,36(增刊):37-39.
    [201]尹光志,鲜学福,代高飞.岩石非线性动力学理论及其应用[M].重庆:重庆大学出版社,2004.
    [202] Thom R. Structural stability and morphogenesis[M].1975.
    [203]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [204]崔新霞.采煤机滚筒截割复杂煤层的突变分析[J].辽宁技术工程技术大学学报(自然科学版),2011,30(6):888-891.
    [205]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [206] Bear J. Dynamics of fluids in porous media[M].NY:American Elsevier,1972.
    [207]翟云芳.渗流力学[M].北京:石油工业出版社,1999.
    [208]苑莲菊.工程渗流力学及应用[M].北京:中国建材工业出版社,2001.
    [209]孔祥言.高等渗流力学[M].中国科技大学出版社,1999.
    [210]杨天鸿,唐春安,徐涛.岩石破裂过程的渗流特性一理论、模型与应用[M].北京:科学出版社,2004.
    [211]李裕春,时党勇,赵远.ANSYS11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2008.
    [212]张文华,汪志明,于军泉.高压水射流一机械齿联合破岩数值模拟研究[J].岩土力学与工程学报,2005,24(23):4373-4382.
    [213]姬国强,廉自生.基于LS—DYNA的镐型截齿截割力模拟[J].科学之友,2008,(4):131-132.
    [214]周游,李国顺,唐进元.截齿截割煤岩的LS—DYNA仿真模拟[J].工程设计学报,2011,18(2):103-108.
    [215]李晓豁,闫建伟,张惠波.割岩截齿的应力分布及其载荷的仿真研究[J].计算机仿真,2011,28(11):405-408.
    [216]张艳林,闫炳雷,陈锷.基于ANSYS/LS_DYNA的掘进机截齿截割煤岩动力学分析[J].机械设计,2013,30(2):74-77.
    [217]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [218]张萍.金属箔式应变片三种桥式转换电路的性能研究[J].考试周刊,2011,(55):171-172.
    [219]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [220] C.D.Wilcox. Turbulence modeling for CFD[M]. LaCanada:DCW industries,2006.
    [221]胡应曦,陈启梅.采煤机滚筒截齿配制及滚筒转速与牵引速度匹配关系的研究[J].贵州工业大学学报:自然科学版,2001,30(6):15-18.
    [222]张萍,刘贵召.横轴式掘进机喷雾系统配水阀性能分析[J].煤,2000,9(2):48-49.
    [223]刘湘秋.齿形组合密封垫圈在高压容器中的应用[J].石油化工设备,1991,20(5):27.
    [224]陈社会.一种新型旋转轴密封一齿形滑环式组合密封[J].机械工程师,2000,(8):19-21.
    [225]张教超,王敏庆,李海飞.齿形滑环式组合密封的有限元分析[J].润滑与密封,2011,36(5):59-62.
    [226]董恰.采煤机水射流联合截割系统旋转密封装置研究[D].徐州:中国矿业大学机电学院,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700