用户名: 密码: 验证码:
三峡—葛洲坝联合通航调度问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着系统规模和复杂程度的不断增加,大规模复杂的调度问题已经成为热门的研究课题,本文以“三峡-葛洲坝水利枢纽通航调度系统工程”项目为工程背景,对具有不确定性的网络调度问题进行了探讨,并对这类调度问题的建模和优化进行了研究。长江三峡河段(庙河至中水门)全长59公里,是三峡-葛洲坝梯级枢纽所在的航道,这是长江“黄金水道”的咽喉部分。三峡-葛洲坝梯级枢纽是一个有机的整体,要充分发挥该水域的航运能力就必须对两坝的通航设施(包括三峡大坝的双线五级船闸和葛洲坝的三线单级船闸)和所有过坝船舶实行统一的通航调度管理。三峡-葛洲坝联合通航调度能有效发挥“黄金水道”咽喉部分的通航能力,这将为我国长江航运带来重大的经济效益。本论文借鉴了调度问题上已有的研究工作和通航部门的调度经验,对具体的系统工程问题提出了全面有效的模型和方法,进而为交通运输中的公路、铁路、航空、航运的调度提供了新的思路和研究方法。
     为了高效实施两坝联合通航调度,以及为三峡-葛洲坝水利枢纽通航调度系统的设计和改进提供理论依据,文本工作着力于联合通航调度的数学模型、联合通航调度的调度策略、不确定性下的滚动时窗调度、闸外编排和计划调整等问题的研究。本文的主要研究工作如下:
     (1)研究了联合通航调度系统,建立了数学模型,定义了目标函数和相应的约束条件,本文将联合调度系统的数学模型归结为一个多目标规划问题。求解三峡--葛洲坝两坝联合调度模型就是根据船舶流序列生成时间表序列,从这个意义上看,这是个时间上的scheduling问题。由于船舶需要编排到船闸之中,根据时间表序列对二维空间(船闸闸室)进行排档(排档结果包括船舶在船闸内的位置信息),即空间上的bin packing问题。二者耦合在一起是一个非常复杂的组合优化问题,具有强NP-hard的复杂度,并且在实际的通航调度系统中变量结构相当复杂,因此精确优化算法是不现实的,针对调度模型的目标和约束条件本文采用逐步最优化算法POA(Progressive Optimality Algorithm),它是求解多阶段决策问题的一种方法,采用多层循环迭代寻优的策略,适合于多约束的时间表问题的求解。
     (2)设计了两坝联合调度最优策略。从船闸的分布来看,五个船闸构成一类网络结构,这类网络系统之间通过船舶流来连接,三峡两线船闸和葛洲坝三个船闸又因地理位置而分别绑定。两坝间距为38公里,距离“不近”也“不远”。从两坝之间距离“不近”来看,调度策略归结可为分坝调度,其特点是两坝分坝调度,其性质接近船闸的现场调度,因此其优点可以尽量发挥两坝的分坝通过能力,其缺点是两坝间衔接不够,通常会使得两坝间船舶大量积压;从两坝之间距离“不远”来看,调度策略归结可为集中调度,即统一编制调度计划,其优点是计划衔接和两坝间衔接合理,其缺点是受通过能力小的一坝约束,使得整体通过能力受到影响。本文正是针对两种调度模式进行比较分析,根据调度实际情况,引入了两坝间的面积缓冲和待闸时间的惩罚,得出了两坝联合调度最优策略—集中协调结合两坝分坝实施的策略。
     (3)提出了滚动时窗调度。本文通过混沌时间序列分析的小数据量方法对船舶的历史过闸数据进行计算,得出了船舶过闸的混沌特性,根据混沌时间序列的短期预报方法,获得了能保证调度计划准确性的预测时窗范围。借鉴滚动调度的思想,根据混沌时间序列预报提供的参考时窗,设计了滚动时窗调度。通过实验分析,结果表明滚动时窗调度切实可行,合适时窗的滚动调度得出的过闸计划和船舶的实际过闸记录更为接近,因此滚动时窗调度可以生成更准确的调度计划来指导船舶的现场调度。
     (4)从全流程调度来看,为了优化船舶现场调度,本文提出了闸外编排和计划调整的概念。分析了船舶在进闸调度中的操作流程,考虑了调度的安全性和船舶进闸耗时,建立了闸外编排的数学模型,设计了相应的启发式求解算法,将模型的目标和约束条件通过启发式方法生成船舶在闸外的排序法则。在现场调度中,计划调整的操作主要用来帮助现场船舶调度的优化和应急,相对闸外编排而言,计划调整是一种闸内编排。通过实验表明闸外编排和计划调整切实可行,考虑了船舶进闸时间和安全性原则,可以提高日开闸次数,可以生成安全高效的进闸方案。
     最后本文介绍了作者作为项目负责人设计和开发的长江三峡通航管理局的“三峡—葛洲坝水利枢纽通航调度系统工程应用软件开发项目(包括系统软件)”。在实际的航运调度管理系统中包括计划编制子系统和信息管理子系统,本章从系统设计和实现的角度给出了系统的体系结构和工程应用。结合了联合通航调度模型、调度策略和算法、滚动时窗调度,以及闸外编排和计划调整这些理论的联合调度系统,经过两年的正式运行检验,表明调度系统及其相应的调度模型与调度策略具有很好的普适性,很好地实现了理论和工程实践相结合。研究三峡—葛洲坝水利枢纽通航调度问题解决了工程应用中的实际问题,也为这类带有不确定性的网络调度问题提供了一定的研究方法。
With the large-scale and complexity of systems increasing, the large-scale complex scheduling has become one of the hotest problems. Based on the background of the project on the co-scheduling systems engineering of the the Three Gorges Dam and the Gezhouba dam, the network scheduling with the uncertainty is discussed and the methods of modeling and optimization for these networks are studied.
     As the Golden Channel’s gorge of the Yangtze River, the Three Gorges reach from MiaoHe to ZhongShuiMen is 59 kilometers, where is the location of the hinge of the Three Gorges Dam and the Gezhouba dam. In order to improve the navigation capability for the establishment of the double-line five-grade ship locks of the Three Gorges Dam and the three one-step ship locks of the Gezhouba Dam as one whole framework, the co-scheduling of the Three Gorges Dam and the Gezhouba dam is implemented for all the ships to pass the dams expeditely. Effective navigation on the Golden Channel’s gorge is bound to be of great benefit to the Yangtze River economically. According to the work on the scheduling problems and the experience from the administrative bureau, the more effective models and methods are presented, so as to offer the new research and methods for the scheduling of the transportation on the highway, railway, and voyage.
     In this dissertation, in order to make the co-scheduling as efficient as possibly and provide the design and betterment of the co-scheduling with the theoretical approaches, my research is foused on the mathematic model of co-scheduling, the strategies of co-scheduling, the rolling interval scheduling under uncertainty, arrangement outside of ship locks and the adjustment for scheduling.
     The main research work lies in five aspects as follows.
     (1) Navigation co-scheduling system is studied, and the mathematical model is set up with the definition of objective function and the corresponding restrictive conditions, and the mathematic model of co-scheduling is described as a multi-objective non-linear programming problem. Solving the Three Gorges Dam and the Gezhouba Dam co-scheduling model is based on the timetable sequence deduced from the ship sequence, in this sense, this is a scheduling problem of the time table from time aspect. The ship needs to be arranged into the two-dimensional space(arrange ships) in accordance with the timetable of the sequence (the arrangement answer includes the location information of the ships in the ship lock), that is, a bin packing problem from space aspect. The two problems are coupled as a NP-hard combinatorial optimization problem, and the actual shipping scheduling system variables in the structure is complex and precise, and optimization algorithm is unrealistic. Therefore, in view of the scheduling model objectives and constraints, the progressive optimality algorithm is designed, which is fit for the multi-stage decision-making for a method of using multi-cycle iterative optimization strategy with multi-constraint problem.
     (2) The best strategy is the centralized scheduling coupled with distributed scheduling. From the distribution of the five dams, they build a network. The nodes of the network are linked by the ship flow, and are bound respectively by the location of the dams. There is 38 kilometers between two dams, distributed scheduling is accepted considering the long distance between the two dams, and it is close to the scheduling at spot. Distributed scheduling is convenient to make the navigation capability maximal, and the shortcoming is that the interlinkage between the two dams is problematical to make the ships overstocked between dams. Centralized scheduling is adopted considering the short distance between the two dams, that is the united scheduling for all ship locks. The advantage of the centralized scheduling is good to the interlinkage between the two dams, and it is lack of the maximal navigation capability because of the restricted dam. By the comparison analysis of the two strategies, based on full analysis of Three Gorges-Gezhouba dam’s actual needs, the best co-scheduling of the Three Gorges Dam and the Gezhouba Dam with the area buffer and the time punishment is introduced.
     (3) It is chaos for ships to pass the dams by by the small data sets method in chaotic time series analyzing, predicting interval is obtained to keep the scheduling plan precise, according to the method of the the rolling scheduling with the appropriate rolling interval, the rolling interval scheduling which can satisfy the spot scheduling better is presented. By means of experiment’s analysis, illustrative results show that the the rolling interval scheduling is feasible and the the scheduling plan deduced from the algorithm is quite close to the schema in practice. The rolling interval scheduling can make the more accurate scheduling plan to instruct the spot scheduling, and can significantly improve the throughput of the ship locks.
     (4) With focus on the whole process of the co-scheduling to optimize the ship scheduling, a new concept of the arrangement outside of the ship locks and the adjustment for scheduling are introduced. Based on the analysis of the operation process of ships’entry into ship locks, the mathematic model with the objectives of the safety and the time for entry into ship locks is established, followed with a corresponding heuristic solution algorithm, which can heuristically educe the arrangement approach for the ships outside of the ship locks through the objectives and constraints in the model. During the spot scheduling, the adjustment for scheduling is used to optimize and meet the emergency, and it is the arrangement inside compared with the arrangement outside. By means of experiment’s analysis, illustrative results show that the arrangement outside of the ship locks and the adjustment for scheduling are feasible. Considering the time for ships’entry into ship locks and the principle of safety , two strategies can increase the operation times of ship locks, and can make the efficient scheme for ship scheduling.
     At last, the navigation co-scheduling system is designed and developed by the author, involving the navigation co-scheduling module and navigation information management module. Based on the mathematic model, the strategies of co-scheduling, the rolling interval scheduling under uncertainty, arrangement outside of ship locks and adjustment, the co-scheduling system has worked for two years. The results show that it is general and adaptive for co-scheduling system to make the practice and theory combined. The research on the co-scheduling systems engineering of the the Three Gorges Dam and the Gezhouba dam can solve the problems in practice, at the same time, can offer the certain methods of the network scheduling with the uncertainty.
引文
[1]舒荣龙,杜宗伟,蔡汝哲.三峡明渠汛期通航技术研究.重庆交通学院学报, 1999, 18(2): 136-144.
    [2]夏凤鸣.高洪水位期船舶通过三峡明渠的理论与实践.交通科技, 1999, 4: 22-24, 26.
    [3]薛林桥,刘念.三峡工程二期施工期通航设施通过能力的系统分析与研究.系统工程理论与实践, 1997, 4: 126-131.
    [4]余绍明,华克俭,熊宇.船舶过坝优化调度辅助决策系统研究.交通与计算机, 1997, 15(5): 18-22.
    [5]余绍明,曹雄.层次分析法在船舶坝优化调度决策中的应用.交通与计算机, 1997, 15(5): 59-61.
    [6]荣天富,汪厚琏,谭德绥.导流明渠参与三峡工程施工通航的决策与作用长江科学院院报, 2002, 19(5): 3-6.
    [7]杜经农,陈淑楣.三峡工程两坝联合调度辅助决策系统的研究与实施.交通与计算机, 2002, 20(5): 40-44.
    [8]杜经农,余绍明.三峡工程船舶智能调度系统的动态规划建模与算法.计算机与数字工程, 2003, 31(3): 47-50.
    [9]高雄.三峡工程二期两坝船舶统一调度的初期实践.中国三峡建设, 2000, 7: 1-4.
    [10]宋维邦.三峡双线五级船闸通过能力分析.中国三峡建设, 2003, 9: 44-45.
    [11]高雄.三峡船闸试通航半年简析.水运工程, 2004, 5: 64-68.
    [12]卢方勇,曹杰.永久船闸运行闸室编排调度计算机应用与研究.计算机应用研究, 2000, 6: 65-67.
    [13]赖炜,齐欢,等.三峡船闸运行调度中的多属性决策问题.控制与决策, 2002, 17(2): 163-166.
    [14]刘云峰,齐欢,等.二维优化编排启发算法及其在三峡永久船闸调度决策系统中的应用.计算机与现代化, 2002(1): 1-3.
    [15]刘云峰,齐欢,等. DFS算法在三峡永久船闸优化编排中的应用.计算机工程, 2002, 28(8): 224-226.
    [16]孙波,齐欢,等.三峡-葛洲坝联合调度系统闸室编排快速算法.计算机技术与发展, 2006, 12: 19-21.
    [17]齐欢,肖恒辉,等.三峡-葛洲坝两坝联合调度数学模型及算法.系统工程理论与实践, 2007, 2: 99-104, 117.
    [18]张晓盼,齐欢,等.三峡葛洲坝联合通航调度的混合整数规划.武汉理工大学学报(交通科学与工程版), 2007, 31(1): 1-4.
    [19]王小平,齐欢,等.基于串联排队网络的三峡-葛洲坝水利枢纽联合调度模型.交通运输工程学报, 2006, 6(3): 82-86.
    [20]王小平,曾亮,等.基于J2EE的三峡-葛洲坝水利枢纽通航调度系统的设计与开发.交通与计算机, 2006, 24(5): 82-84.
    [21]张晓盼.三峡工程两坝联合通航调度算法研究(博士论文).华中科技大学,系统工程专业, 2007.
    [22]肖恒辉,齐欢,等.船舶调度闸外编排算法.交通运输工程学报, 2007, 7(1): 26-29.
    [23] Andre de Palma, Robin Lindsey. Optimal timetable for public transportation. Transportation Research Part B, 2001, 35: 789-813.
    [24] Tijs Huisman, Richard J. Boucherie, Nico M. van Dijk. A solvable queueing network model for railway networks and its validation and applications for the Netherlands. European Journal of Operational Research, 2002, 142: 30-51.
    [25]王冰.滚动时域调度方法及其性能分析研究(博士论文).上海交通大学,控制理论与控制工程专业, 2005.
    [26] Tang-Hsien Chang, Guey-Yin Sun. Modeling and optimization of an oversaturated signalized network. Transportation Research Part B, 2004, 38: 687-707.
    [27]郑应平.离散事件系统理论研究和应用进展(I).控制与决策, 1996,11(2):233-241.
    [28]郑应平.离散事件系统理论研究和应用进展(II).控制与决策, 1996,11(3):329-333.
    [29]郑大钟,郑应平.离散事件动态系统理论:现状和展望.自动化学报, 1992,18(2):129-142.
    [30]任传祥,张海,范跃祖.混合遗传-模拟退火算法在公交智能调度中的应用.系统仿真学报, 2005, 17(9): 2075-2081.
    [31] Halim Ceylan, Michael G. H. Bell. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion. Transportation Research Part B, 2005, 39: 169-185.
    [32]原清海,严隽琪. FMS调度研究的现状与发展.上海交通大学学报, 1998, 5: 124-127.
    [33]舒海生.柔性制造系统工件流和刀具流动态调度的研究(博士论文).哈尔滨工程大学,机械设计及理论专业, 2004.
    [34]周炳海,施海峰,蔡建国. FMS计划中零件分批核机床负荷分配集成算法.组合机床与自动化加工技术. 2001, 11: 1-3.
    [35]李响,陈小平.一种动态不确定性环境中的持续规划系统.计算机学报, 2005,28 (7): 1163-1170.
    [36]刘飞,杨舟,王时龙. CIMS集成制造自动化.北京:机械工业出版社, 1997.
    [37] J. Y. Liu, B.L. MacCarthy. A Global MILP Model for FMS Scheduling. European Journal of Operational Research, 1997, 100: 441-453.
    [38] Ulrich A. W. Tetzlaff, Erwin Pesch. Optimal Workload Allocation Between a Job Shop and an FMS. IEEE Transactions on Robotics and Automation. 1999, 15(1): 20-32.
    [39] George A. Rovithakis, Vassilis I. Gaganis, Stelios E. Perrakis, et al. Dynamic Neural Networks for Real Time Adaptive Control of FMS. Proceedings of the 36th Conference on Decision & Control, 1997: 2187-2192.
    [40] George A. Rovithakis, Vassilis I. Gaganis, Stelios E. Perrakis, et al. Real-time control of manufacturing cell using dynamic neural networks. Automatica, 1999, 35: 139-149.
    [41] Dowsland K A, Dowsland W B. Paking Problems. European Journal of Operational Research, 1992,56(1):2~14.
    [42] Hochbaum D S, Maass W. Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI. Journal of the ACM,1985,32(1):130-136.
    [43] Sigrid lise nonas,Kai a.olsen. Optimal and heuristic solutions for a scheduling problem arising in a foundry. Computers & operations research , 2005 ,(32):2351~2382.
    [44]谢凡荣.求解排课表问题的一个启发式数值算法.运筹与管理,2005,14 (05):36~40.
    [45] Halim ceylan, Michael G.H.Bell. Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion. Transportation research part B.2005,(39):169~185.
    [46] Maturana, Francisco P,Tichy, Pavel, Slechta, Petr et al. Distributed multi-agent architecture for automation systems Expert Systems with Applications. 2004, 26(1): 49~56.
    [47] Kazuo Miyashita, Kazuyuki Senoh. Constant time interval production planning with application to WIP control in semiconductor fabrication. Proceedings of the 2003 Winter simulation conference:1329~1337.
    [48] George Chryssolouris, Velusamy Subramaniam. Dynamic scheduling of manufacturing job shops using genetic algorithms . Journal of Intelligent Manufacturing, 2001, 12(3): 281-293.
    [49] S.M. Johnson. Optimal two-and three-stage production schedules with setup times included. Naval. Res. Logistics Q, 1954, 1: 61-68.
    [50] M. Held, R. M. Karp. A dynamic programming approach to sequencing problem. J. Soc. Indust. Appl. Math., 1962, 10 : 196-210.
    [51] J. Carlier, E. Pinson. An algorithm for solving the job-shop problem. Management Science, 1989, 35(2): 164-176.
    [52] H. Belouadah, M. E. Posner, C. N. Potts. Scheduling with release dates on a single machine to minimize total weighted completion time. Discrete Applied Mathematics, 1992, 36: 213-231.
    [53] A. Meral, K. Omer. On the minimization of total weighted flow time with identical and uniform parallel machines. European Journal of Operational Research, 1999, 113: 91-100.
    [54] J. Balasubramanian, I. E. Grossmann. A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times. Computers and Chemical Engineering, 2002, 26: 41-57.
    [55] Bellman R., Esogbue A., O. Nabeshima I. Mathematical aspects of scheduling and application. Pergamon Press, New York, 1982.
    [56] Bellman R., Dynamic programming. Princeton University Press, USA, 1957.
    [57] Held M., Karp R.M. A dynamic programming approach to sequencing problems. Journal of SIAM. 1962, 10(1):196-210.
    [58] Carlier J., Pinson E. An algorithm for solving the job-shop problem. Management Science, 1989, 35(2):164-176.
    [59] Belouadah H., Posner M.E., Potts C.N. Scheduling with release dates on a single machine tominimize total weighted completion time. Discrete Applied Mathematics, 1992, 36(3):213-231.
    [60] Maccarthy B.L., Liu J. Addressing the gap in scheduling research:a review of optimization and heuristic method in production scheduling. International Journal of Production Research, 1993, 31(1):59-79.
    [61] Johnson S.M. Optimal two-and three-stage production schedules with set-up times.Naval Research Logistics Quarterly, 1954, 1:61-68.
    [62] Danial A. Finke, Mark T. Traband. Shop Scheduling Using Tabu Search and Simulation. Proceedings of the 2002 Winter Simulation Conference: 1013-1017.
    [63]李霄峰,邵惠鹤,仁德祥.求解混合Flow Shop调度问题的简化禁忌搜索方案.上海交通大学学报. 2003, 37(4): 234-238.
    [64]潘全科,王文宏,朱剑英.一类解决Job Shop问题的改进遗传算法.中国机械工程, 2006, 17(8): 866-869.
    [65] Waiman Cheung, Hong Zhou. Using Genetic Algorithms and Heuristics for Job Shop Scheduling with Sequence-Dependent Setup Times. Annals of Operations Research, 2001, 107(1-4): 65-81.
    [66] Sanja Petrovic, Carole Fayad. A Genetic Algorithm for Job Shop Scheduling with Load Balancing. LNAI 3809, 2005: 339-348.
    [67] Chand S., Hsu V. N., Sethi S.. Forecast solution and rolling horizons in operations management problems: a classified bibliography. Manuf. Serv. Oper. Manag. 2002, 4(1): 25-43.
    [68] Chand S., Traub R., Uzsoy T. Rolling horizon procedures for the single machine deterministic total completion time scheduling problem with release dates. Annals of Operations Research, 1997, 70: 115-125.
    [69] C. Oguz, Yu-Fai Fung, M. Fikret Ercan, et al. Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks. Lecture Notes in Computer Science, 2003: 548-559.
    [70]刘志雄.调度问题中的粒子群优化方法及其应用研究(博士论文).武汉理工大学,机械设机及理论专业, 2005.
    [71]高亮,高海兵,周驰.基于粒子群优化的开放式车间调度.机械工程学报, 2006, 42(2): 129-134.
    [72]彭传勇,高亮,邵新宇等.求解作业车间调度问题的广义粒子群优化算法.计算机集成制造系统, 2006, 12(6): 911-917,923.
    [73]梁旭,黄明,常征.求解车间调度问题的一种新遗传退火混合策略.计算机集成制造系统, 2005, 11(6): 851-854.
    [74] D. N. Zhou, V. Cherkassky, T. R. Baldwin, et al. A neural network approach to job-shop scheduling. IEEE Transactions on Neural Networks, 1991, 2(1): 175-179.
    [75] A. H. Song, J. T. Ootsuki, W. K. Yoo, et al. FMS's scheduling by colored petri net model and Hopfield neural network algorithm. Proceedings of The 34th SICE Annual Conference, 1995: 1285-1290.
    [76] Joseph D. Dillon, Mark J. O’Malley. A Lagrangian augmented Hopfield nerwork for mixed integer non-linear programming problems. Neurocomputing, 2002, 42:323-330.
    [77] Xiangtong Qi, Fengsheng Tu. Earliness and tardiness scheduling problems on a batch processor. Discrete Applied Mathematics, 1999, 98: 131-145.
    [78] C. S. Sung, J. I. Min. Scheduling in a two-machine flowshop with batch processing machine(s) for earliness/tardiness measure under a common due date. European Journal of Operational Research, 2001, 131: 95-106.
    [79] Jose A. Ventura, Daecheol Kim. Parallel machine scheduling with earliness-tardiness penalties and additional resource constraints. Computers & Operations Research, 2003, 30: 1945-1958.
    [80] Cheng-shuo Wang, Reha Uzsoy. A genetic algorithm to minimize maximum lateness on a batch processing machine. Computers & Operations Research, 2002, 29: 1621-1640.
    [81] Meral Azizoglu, Scott Webster. Scheduling a batch processing machine with incompatible job families. Computer & Industrial Engineering, 2001, 39: 325-335.
    [82]王硕苹,陈奇,俞瑞钊. Job-shop调度问题的一种遗传算法表示方法.计算机应用研究, 2004, 4: 60-62.
    [83]李松,贺国光.基于最大Lyapunov指数改进算法的交通流混沌判别.武汉理工大学学报(交通科学与工程版) , 2006,30(5):747-750.
    [84]王冰,席裕庚.一类单机动态调度问题的改进滚动时域方法.控制与决策, 2005,20(3):257-260.
    [85]尚明生,孙世新,等.周期性的多趟可分任务调度算法研究.系统工程与电子技术. 2007,29(2) :294-299.
    [86]席裕庚.动态不确定环境下广义控制问题的预测控制.控制理论与应用, 2000, 17(5): 665-670.
    [87]席裕庚.预测控制.北京:国防工业出版社, 1993.
    [88] Imelda C. Perez, John W. Fowler, W. Matthew Carlyle. Minimizing total weighted tardiness on a single batch process machine with incompatible job families. Computers & Operations Research, 2005, 32: 327-341.
    [89] Panwalker S. S., Iskander Wafik. A survey of scheduling rules. Operation Research,1977, 25(1): 45-61.
    [90] Montazeri M. Van Wassehove L. N.. Analysis of scheduling rules of an FMS. International Journal Production Research, 1990, 28(4): 785-802.
    [91] S. Thiagarajan, Chandrasekharan Rajendran. Scheduling in dynamic assembly job-shops to minimize the sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. Computers and Industrial Engineering, 2005, 49(4): 463-503.
    [92] Youngshin Park, Sooyoung Kin Young-Hoon Lee. Scheduling jobs on parallel machines applying neural network and heuristic rules. Computers & Industrial Engineering, 2000, 38: 189-202.
    [93] Imai Akio, Nishimura Etsuko, Papadimitriou Stratos. Berth allocation with service priority, Transportation Research Part B, 2003, 37(1):437-457.
    [94] Imai Akio, Sun Xin, Nishimura Etsuko. Berth allocation in a container port: using a continuous location space approach, Transportation Research Part B, 2003, 39(1):199-221.
    [95] Ronen, D. Ship scheduling: The last decade, European Journal of Operation Research, 1993, 71(3):325-333.
    [96] Chrisliansen M, Fagerholt K., Ronen, D. Ship routing and scheduling: status and perspectives, Transportation Science, 2004, 38(1):1-18.
    [97] Lars Monch, Jens Zimmermann, Peter Otto. Machine learning techniques for scheduling jobs with incompatible families and unequal ready times on parallel batch machines. Engineering Applications of Artificial Intelligence, 2006, 19: 235-245.
    [98] Tammy Holter, Xiaoqiang Yao, Luis Carlos Rabelo, et al. Integration of Neural Networks and Genetic Algorithms for an Intelligent Manufacturing Controller. Computer & Industrial Engineering, 1995, 29(4): 211-215.
    [99] Yohanan Arzi, Lior Iaroslavitz. Neural network-based adaptive production control system for a flexible manufacturing cell under a random environment. IIE Transactions, 1999, 31: 217-230.
    [100] Li-Xin Tang, Wen-Xin Liu, Ji-Yin Liu. A neural network model and algorithm forthe hybrid flow shop scheduling problem in a dynamic environment. Journal of Intelligent Manufacturing, 2005, 16: 361-370.
    [101] Y. R. Shiue, C. T. Su. Attribute Selection for Neural Network-Based Adaptive Scheduling Systems in Flexible Manufacturing Systems. The International Journal of Advanced Manufacturing Technology, 2002, 20: 532-544.
    [102] Chuan Yu Chang, Mu Der Jeng. Experimental study of a neural model for scheduling job shops. Proceeding of IEEE International Conference on Systems, Man and Cybernetics, 1995: 22-25.
    [103] Ovacik I. M., Uzsoy R. Rolling horizon algorithms for a single-machine dynamic scheduling problem with sequence-dependent setup Times. International Journal of Production Research, 1994, 32(6): 1243-1263.
    [104] Ovacik I. M., Uzsoy R. Rolling horizon procedures for dynamic parallel machine scheduling with sequence-dependent setup Times. International Journal of Production Research, 1995, 33: 3171-3192.
    [105] Keskinocak P., Ravi R., Tayur S.. Scheduling and reliable lead time quotation for orders with availability intervals and lead time sensitive revenues. Management Science, 2001, 47(2): 264-279.
    [106] Kimms A. Stability measures for rolling schedules with application to capacity expansion planning, master production scheduling, and lot sizing. Omega. Int. J. Mgme Sci., 1998, 26(3): 355-366.
    [107] Baker K. R.. An experimental study of the effectiveness of rolling schedules in production planning. Decision Sciences, 1977, 8: 19-28.
    [108] Sridharan V., Berry W. L., Udayabhanu V.. Measuring master production schedule stability under rolling horizons. Decision Sciences, 1988, 19: 147-166.
    [109] Federgruen A., Tzur M.. Minimal forecast horizons and a new planning procedure for the general dynamic lot sizing model: nervousness revisited. Operations Research, 1994, 42: 458-468.
    [110] Xiaochuan Luo, Feng Chu. A branch and bound algorithm of the single machine schedule with sequence dependent setup times for minimizing total tardiness, Applied Mathematics and Computation, 2006, 183: 575-588.
    [111] Eui-Seok Byeon, Wu S. D., Storer R. H. Decomposition heuristics for robust job shop scheduling. IEEE Transactions on Robotics and Automation, 1998, 14(2): 303-313.
    [112] Fang Jian, Xi Yugeng. A rolling horizon job shop rescheduling strategy in the dynamic environment. International Journal of Advanced Manufacturing Technology, 1997, 13(3): 227- 232.
    [113] Smith S.. Reactive scheduling systems. Carnegie Mellon University, Pitsburg, PA 15213.
    [114] Sun J., Xue D.. A dynamic reactive scheduling mechanism for responding to changes of production orders and manufacturing resources. Computers in Industry, 2001, 46: 189-207.
    [115] Sabuncuoglu I. Bayiz M.. Analysis of reactive scheduling problems in a job shop environment. European Journal of Operational Research, 2000, 126: 567-586.
    [116] Mehta S. V., Reha M., Uzsoy R. Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 1998, 14(3): 365-378.
    [117] Ronan O’Donovan, Uzsoy R., McKay K. N.. Predictable scheduling of a single machine with breakdown and sensitive jobs. Int. J. Prod. Res., 1999, 37(18): 4217-4233.
    [118] J.R. Jackson. Networks of waiting lines. Operations Research, 1957, 5: 518-521.
    [119] (美)WILLIAM F.LUCAS.离散与系统模型.安徽:国防科技大学出版社, 1996.
    [120]姜启源.数学模型(第二版).北京:高等教育出版社, 2003.
    [121] A. S. Jain, S. Meeran. Deterministic Job Shop scheduling: past, present and future. European Journal of Operational Research, 1999, 113: 390-434.
    [122] Adams J., Balas E.and Zawack D. The shifting bottleneck procedure for job shop scheduling. Management Science, 1988, 34(3):391-401.
    [123] Chen D., Liu F.and Luh P.B. Scheduling job shops with uncertainties. Proceedings of the 36th Conference on Decision and Control, San Diego, California USA, 1997.
    [124] Singer M. Decomposition methods for large job shops. Computers and Operations Research. 2001, 28(3):193-207.
    [125] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, et al. Sequencing and scheduling: algorithms and complexity. In: Handbook in Operations Research and Management Science 4: Logistics of Production and Inventory, 1993.
    [126] J. Adams, E. Balas, D. Zawack. The shifting bottleneck procedure for job shop scheduling. Management Science, 1989, 34: 391-401.
    [127] C. Y. Low, T. H. Wu. Mathematical Modelling and Heuristics Approaches to Operation Scheduling Problems in an FMS Environment. International Journal of Product Research, 2001, 39: 689-708.
    [128] C. Y. Low, Y. YIP, T. H. Wu. Modelling and Heuristics of FMS Scheduling with Multiple Objectives. Computers & Operations Research, 2006, 33: 674-694.
    [129] A. Haskose, B. G. Kingsman, D. Worthington. Modelling flow and jobbing shops as a queueing network for workload control. International Journal of Production Economics, 2002, 78(3): 271-285.
    [130]田澎,杨自厚,张嗣瀛.同顺序Flow Shop排序问题的模拟退火求解.信息与控制. 1994, 23(3): 133-139.
    [131] Hisao O., Shinta M., Hideo T.. Modified simulated annealing algorithms for the flow shop sequencing problem. European Journal of Operation Research. 1995, 81: 388-398.
    [132] Ramudhin A., Philip M. The generalized shifting bottleneck procedure. European Journal of Operational Research. 1996, 93(1):34-48.
    [133] Pinedo M., Singer M. A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop. Naval Research and Logistics. 1999, 46:1-17.P.R. Kumar, T. I. Seidman. Dynamic Instabilities And Stabilization Methods In Distributed Real-Time Scheduling Of Manufacturing Systems. IEEE Transactions on Automatic Control, 1990, 35(3): 289-298.
    [134] J. G. Dai, Caiwei Li. Stabilizing Queueing Networks with Setups. Mathematics of Operations Research, 2004, 29(4): 891-922.
    [135] Hong Chen, Hanqin Zhang. Stability of Multiclass Queueing Networks under FIFO Service Discipline. Mathematics of operations research, 1997, 22(2): 691-725.
    [136] Hong Chen, Hanqin Zhang. Stability of Multiclass Queueing Networks underPriority Service Discipline. Operations Research, 2000, 48(1): 26-37.
    [137] Niruhn Harnpanichpan, Guy Pujolle. Product-form discrete-time queues in series with batch transition: late arrival case. Performance Evaluation, 1995, 21: 261-269.
    [138] J. G. Dai, Caiwei Li. Stabilizing Batch Processing Networks. Operations Research, 2001: 1-23.
    [139] Shane G. Henderson, Sean P. Meyn, Vladislav B. Tadic. Performance Evaluation and Policy Selection in Multiclass Networks. Discrete Event Dynamic Systems, 2003, 13(1): 149-189.
    [140]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700