用户名: 密码: 验证码:
钙钛矿型复合氧化物的合成与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简述了半导体光催化机理,光催化剂种类及微波技术在光催化剂制备方面的应用。阐述了钙钛矿型复合氧化物的结构、性质与制备,重点综述了钙钛矿型复合氧化物的催化应用尤其是在光催化方面的研究进展。
     第二章:以硬脂酸为络合剂,通过溶胶凝胶法制备钙钛矿型La1-xCaxCoO3与La1-xCaxFeO3系列。采用红外光谱、X射线衍射、扫描电镜、透射电镜等现代分析测试手段对粉体的结构、粒径进行分析和表征。比较了微波与常规加热对制备LaCoO3粒子的影响。结果表明制备的La1-xCaxCoO3与La1-xCaxFeO3系列都具有良好的钙钛矿型结构,粒径大小为50~200nm,其中微波法制备的LaCoO3粒子平均粒径达到30nm。并且掺钙量不同,产物的颜色和产量也不同。
     第三章:以微波硬脂酸溶胶凝胶法合成的钙钛矿型LaCoO3为催化剂,光催化降解酸性品红溶液,研究催化时间、催化剂用量、染料起始浓度与pH值对降解率的影响,并对催化剂的重复利用效果进行了探讨。结果表明,10mg/L酸性品红溶液,用0.2g LaCoO3催化剂降解60min,降解率达到90%;在pH=2的酸性品红溶液中,30min内降解率达到95%以上。说明微波法制备的LaCoO3具有良好的光催化性能。另外,LaCoO3催化剂对酸性品红的降解率高于碱性品红。
     第四章:以硬脂酸溶胶凝胶法制备的La1-xCaxCoO3为光催化剂,以高压汞灯为光源,采用紫外可见光谱研究了La1-xCaxCoO3系列对活性翠蓝KN-G、活性艳蓝X-BR的光催化降解。考察了催化剂用量、染料起始浓度、钙的掺杂量与光源对活性翠蓝溶液降解率的影响。结果表明掺钙量不同,La1-xCaxCoO3对活性染料的催化降解效果不同。La0.85Ca0.15CoO3光催化降解活性翠蓝效果最佳;La0.9Ca0.1CoO3催化降解活性艳蓝效果最好。汞灯与太阳光对催化剂反应活性的影响有所不同,但对染料总的降解效果相差不大。
     第五章:采用硬脂酸溶胶凝胶法制备的La1-xCaxFeO3为催化剂,比较其对活性深蓝B-2GLN、活性翠蓝KN-G与活性艳蓝X-BR的光催化降解效果,并对催化时间、催化剂用量和染料初始浓度对降解率的影响进行初步探讨。结果表明掺钙量不同,对三种活性染料的催化降解效果不同。L20.95Ca0.05FeO3对染料的催化降解效果最好。对5~10mg/L活性深蓝与活性艳蓝,5~20mg/L活性翠蓝,La0.85Ca0.15FeO3均有较好的催化效果。
Chapter 1:The photocatalysis mechanism of semiconductors, categories of photocatalysts and applications of microwave in photocatalyst preparation were described in brief. By introducing the structure, properties and preparation of the perovskite-type oxides, the applications of the perovskite-type oxides in catalysis were reviewed, and more emphasis was focused on the research developments of the photocatalytic application of the perovskite-type oxides.
     Chapter 2:Perovskite-type La1-xCaxCoO3 and La1-xCaxFeO3 series were synthesized with sol-gel method by using stearic acid a complexing agent. The structure and particle size of the obtained powder were analyzed and characterized by infrared spectrum(IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The effects of microwave and conventional heating on the preparation of LaCoO3 particles were compared. The results showed that La1-xCaxCoO3 and La1-xCaxFeO3 series had good perovskite structures, had particle sizes ranging from 50 to 200nm. Besides, the average size of LaCoO3 particles prepared by the microwave method was 30nm. In addition, colors and output of the products varied with the amount of the Ca-doped.
     Chapter 3:Perovskite-type LaCoO3 was prepared by stearic acid sol-gel method with microwave. It was used to photocatalytically degrade acid fuchsin solution. The effects of catalytic time, amount of catalyst, initial concentration of the dye and pH on degradation rate were investigated, and the reuse of the catalyst was also discussed. 90% acid fuchsin (10mg/L) could be degraded in 60min with 0.2g LaCoO3; a degradation rate above 95% was achieved in 30min in the acid fuchsin solution (pH=2). It indicated that LaCoO3 prepared by microwave had a good photocatalytic activity. In addition, acid fuchsin was degraded by the catalyst of LaCoO3 with a higher degaration rate than the basic fuchsin.
     Chapter 4:Over high pressure mercury lamp, the photocatalytic degradation of reactive turquoise blue KN-G and reactive brilliant blue X-BR with La1-xCaxCoO3 as photocatalyst that was prepared by stearic acid sol-gel method was investigated by using UV-Visible spectroscopy. The influence of catalyst loading, initial concentration of the dyes, the amount of the Ca-doped and light source on the degradation of the reactive turquoise blue was tested. The results showed that the photocatalytic degradation of reactive dyes varied with the amount of Ca doped, and the best photocatalytic degradation of reactive turquoise blue was observed in the system of La0.85Ca0.15CoO3, while the best photocatalytic degradation of reactive brilliant blue was obtained by La0.85Ca0.15CoO3·The reactivities of the catalyst were different under the mercury lamp and sunlight, however, the overall degradation of dyes was in the same.
     Chapter 5:The photocatalytic degradation of three reactive dyes, reactive dark blue B-2GLN, reactive turquoise blue KN-G and reactive brilliant blue X-BR were studied in the presence of La1-xCaxFeO3 prepared by stearic acid sol-gel method under high pressure mercury lamp. The effects of catalytic time, amount of catalyst and initial concentration of dyes on the degradation rate were discussed. It indicated that the photocatalytic degradation of the three reactive dyes varied with the amount of Ca-doped. La0.95Ca0.05FeO3 was obtained and exhibited the best photocatalytic activities. La0.85Ca0.15FeO3 also exhibited good photocatalytic activities for 5~10mg/L reactive dark blue, reactive brilliant blue or for 5~20mg/L reactive turquoise blue.
引文
[1]陈志恺.中国水资源的可持续利用问题[J].水文,2003,23(1):1-5.
    [2]胡明秀.我国水资源现状及开发利用对策[J].武汉工业学院学报,2004,23(1):104-108.
    [3]金星国,国长理.论我国水资源现状及保护对策[J].林业勘察设计,2004,131(3):13-14.
    [4]Jian-Hui Sun, Sheng-Peng Sun, Guo-Liang Wang, Li-Ping Qiao. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process [J]. Dyes and Pigments,2007,74:647-652.
    [5]Saeed B. Bukallah, M.A. Rauf, S. Salman Ashraf. Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide [J]. Dyes and Pigments,2007,72: 353-356.
    [6]D. Rajkumar, Byung Joo Song, Jong Guk Kim. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds [J]. Dyes and Pigments,2007,2:1-7.
    [7]Mohammad Hossein Habibi, Ali Hassanzadeh, Asghar Zeini-Isfahani. Effect of dye aggregation and azoehydrazone tautomerism on the photocatalytic degradation of Solophenyl red 3BL azo dye using aqueous TiO2 suspension [J]. Dyes and Pigments, 2006,69:111-117.
    [8]吴伟.物化技术处理高浓度染料废水的研究进展[J].污染防治技术,2007,20(3):39-41.
    [9]Grossman G, Krueger A. Economic growth and environment [J]. Quarterly Journal Economics,1995,110(2):352-377.
    [10]胡聃,许开鹏,等.经济发展对环境质量的影响—环境库兹涅茨曲线国内外研究进展[J].生态学报,2004,24(6):1-31.
    [11]路宁,刘玉龙.中国水环境污染与经济增长的关系研究[J].环境与可持续发展,2008.1:4-6.
    [12]S.K. Kansal, M. Singh, D. Sud. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts [J]. Journal of Hazardous Materials,2007,141:581-590.
    [13]Debabrata Chatterjee, Shimanti Dasgupta. Visible light induced photocatalytic degradation of organic pollutants [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2005,6:186-205.
    [14]Saeed B. Bukallah, M.A. Rauf, S. Salman Ashraf. Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide [J]. Dyes and Pigments,2007,72: 353-356.
    [15]Tai-Hua Xie, Xiaoyan Sun, Jun Lin. Enhanced Photocatalytic Degradation of RhB Driven by Visible Light-Induced MMCT of Ti(Ⅳ)-O-Fe(Ⅱ) Formed in Fe-Doped SrTiO3 [J]. J. Phys. Chem. C,2008,112:9753-9759.
    [16]Michael RH, Scot TM, Choi WY, et al. Environmental Applications of Semiconductor Photocataysis[J]. J. Chem. Rev.,1995,95:69-96.
    [17]Takeda N,Torimoto T. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde[J]. J. Phys. Chem.,1995,99:9986-9991.
    [18]Akira F., Tata N.R., Donald A.T. Titanium dioxide photocatalysis [J]. Photochem. Photobiol. C:Photochem. Rev.,2000,1:1-21.
    [19]Pongsapak Pawinrat, Okorn Mekasuwandumrong, Joongjai Panpranot. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes[J]. Catalysis Communications, 2009,10:1380-1385.
    [20]Mascolo G, Comparelli R., Curri M.L., Lovecchio G, Lopez A., Agostiano A.. Photocatalytic degradation of methyl red by TiO2:Comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst[J]. J. Hazard. Mater.,2007,142:130-137.
    [21]Ruh Ullah, Joydeep Dutta. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles [J]. J. Hazard. Mater.,2008,156:194-200.
    [22]A. Martinez-de la Cruz, D. Sanchez Martinez, E. Lopez Cuellar. Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: Evaluation of photocatalytic activity under vis-irradiation [J]. Solid State Sci,2010, 12(1):88-94.
    [23]Junping Li, Yao Xu, Yong Liu, Dong Wu, Yuhan Sun. Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants [J]. China Particuology,2004,2(6):266-269.
    [24]Aparna Deshpande, Pallavi Shah, R.S. Gholap, Narendra M. Gupta. Interfacial and physico-chemical properties of polymer-supported CdS-ZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water [J]. J Colloid Interface Sci,2009,333(1):263-268.
    [25]王伯勇,魏丰华,刘娅琳,等.TiO2、ZnO和CdS的光催化甲基橙脱色比较[J].工业水处理,2002,22(4):40-42.
    [26]N. Sobana, M. Swaminathan. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53 [J]. Solar Energy Materials & Solar Cells,2007,91:727-734.
    [27]Iwasaki M, Hara M, Kawada H. Cobalt ion-doped TiO2 photocatalyst response to visible light [J]. Colloid and Interface Sci,2000,224:202-204.
    [28]刘彦平,郝利辉.改性纳米二氧化钛光催化降解水中微量溶解性亚甲基蓝[J].石化技术与应用,2008,26(2):124-127.
    [29]Sanches E, Lopex T. Synthesis and characterization of sol-gel Pt/TiO2 catalyst [J]. J Solid State Chem,1996,122:309-314.
    [30]Jose Aguado, Rathel van Grieken, et al. A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts [J]. Applied Catalysis A,2006,312:202-212.
    [31]Hirano K., Suzuki E., et al. Sensitization of TiO2 partieles by dyes to achieve H2 evolution by visible light [J]. J. photoehem. photobio. A,2000,136:157-161.
    [32]Choi W. The role of metal ion dopants in quantum size TiO2:correlation between photo reativity and charger carrier recombination dynamics [J]. Phys Chem,1994, 98(51):13669-13679.
    [33]S Mozia. Decomposition of nonionic surfactant on a nitrogen doped photocatalyst under visible-light irradiation [J]. Applied Catalysis B:Environmental,2005,55: 195-200.
    [34]张玉红,熊国兴,等.溶胶凝胶法制备复合MxOy-TiO2光催化剂[J].物理化学学报,2001,17(3):273-277.
    [35]Hui Dong, Zhaohui Li, Ximing Xu, et al. Visible light-induced photocatalytic activity of delafossite AgMO2(M= Al, Ga, In) prepared via a hydrothermal method [J]. Applied Catalysis B:Environmental,2009,89:551-556.
    [36]Sato J, Kobayashi H, Saito N. Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A=Li,Na) with d10 configuration [J]. J Photochem Photobiology A:Chemistry,2003,158(1-3):139-144.
    [37]Hai-bo FANG, Ming-xia XU, et al. Synthesis and photocatalytic properties of InVO4 sol containing nanocrystals by mild hydrothermal processing [J]. Transactions of Nonferrous Metals Society of China,2006,16(1):373-376.
    [38]Ye J, ZouZ, Arakawa H, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysta InMO4 (M=V5+, Nb5+, Ta5+) [J]. J.Photoch. A,2002,148:79-83.
    [39]Sudarshan Mahapatra, R. Vinu, Dipankar Saha, et al. Synthesis, characterization and photocatalytic activity of MxCe1-xVO4(M= Li, Ca and Fe) [J]. Applied Catalysis A: General,2009,361(1-2):32-41.
    [40]Machida M, Ma X W, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3-xMxO7 and K2Ti4-xMxO9(M=Mn,Fe,Co,Ni,Cu) [J]. J. Mol. Catal. A:Chem.,2000,155:131-142.
    [41]Akihiro Furube, Toshihiko Shiozawa, et al. Primary process of photogenerated carriers in ion-exchanged K4Nb6O17 thin films investigated by femtosecond transient absorption spectroscopy [J]. Chem. Phys.,2002,285:31-37.
    [42]Kudo A, Samama K, Tanka A. Nickel-loaded K4NbO17 photocatalytic in the decoposition of H2O into H2 and O2 [J]. J. Catal.,1989,120(4):337-352.
    [43]Kohtaro Yoshioka, Valery Petrykin, Masato Kakihana, et al. The relationship between photocatalytic activity and crystal structure in strontium tantalates [J]. Journal of Catalysis,2005,232:102.
    [44]Leroux F, Adachi Pagano M, et al. Delamination and restacking of layered double hydroxides [J]. Mater. Chem.,2001,11:105-112.
    [45]Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238:37-38.
    [46]R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science,2001,293:269-271.
    [47]Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 [J]. Science,2002, 297:2243-2245.
    [48]Z. Zou, J. Ye, K. Sayama, H. Arakawa. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625.
    [49]D. Y. Goswami. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes [J]. J. Sol. Energy Eng., 1997,119(2):101-107.
    [50]HE Zhong, YANG Shaogui, JU Yongming, SUN Cheng. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon:Mechanism implication [J]. Journal of Environmental Sciences,2009,21:268-272.
    [51]Emad S, Elmolla, Malay Chaudhuri. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis [J]. Desalination,2010,252(1-3):46-52.
    [52]Jincai Zhao, Chuncheng Chen, Wanhong Ma. Photocatalytic degradation of organic pollutants under visible light irradiation [J]. Topics in Catalysis,2005,35(3-4): 269-277.
    [53]王浩,赵文宽.二氧化钛光催化杀灭肿瘤细胞的研究[J].催化学报,1999,20(3):3373-3374.
    [54]M.M. Ballari, M. Hunger, G. Husken, H.J.H. Brouwers. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide[J]. Applied Catalysis B:Environmental,2010,95(3-4):245-254.
    [55]Gedye R, Smith F, Westaway K, et al. The use of Microwave ovens for rapid organic synthesis[J]. Tetrahedron Letters,1986,27(3):279-282.
    [56]韩光泽,陈明东,郭平生,等.微波辅助萃取的微波吸收系数与吸收功率密度[J].华南理工大学学报(自然科学版),2007,35(4):52-57.
    [57]于会文,刘奎仁,王红伟,魏德洲.微波烧结制备Sm掺杂TiO2光催化材料与催化性能表征[J].稀土,2006,27(3):1-6.
    [58]Hart J N, Cervini R, et al. Formation of antase TiO2 by microwave processing [J]. Solar Energy Materials &Solar Cells,2004,84:135-143.
    [59]Satoru F, Makoto I, TakashiH. Sintering of partially stabilized zirconia by microwave heating using ZnO-MnO2-Al2O3 plates in a domestic microwave oven [J]. JAm Ceram Soc,2000,83(8):2085-2087.
    [60]Yu Bykov, Eremeev A, et al. Sintering of nano structural titanium oxide using millimeter wave radiation [J]. Nano structure Materials,1999,12:115-118.
    [61]种法国,赵景联.微波水热晶化制备纳米二氧化钛光催化剂及其性能研究[J].高校化学工程学报,2006,20(1):138-141.
    [62]白波,种法国.柠檬酸助微波水热法制备纳米ZnS及其光催化性能研究[J].化工新型材料,2005,33(7):16-18.
    [63]Newalkar B L, Komarneni S, Katsuki H. Microwave-hydrothermal synthesis and characterization of barium titanate powders [J]. Materials Research Bulletin,2001, 36(13-14):2347-2355.
    [64]Sridhar Komarnenia, Rama K.Rajha, Hiroaki Katsuki. Microwave-hydrothermal processing of titanium dioxide [J]. Materials Chemistry and Physics,1999,61(1): 50-54.
    [65]N.Kumada, N.Kinomura, S.Komarneni. Microwave hydrothermal synthesis of ABi2O6 (A=Mg, Zn) [J]. Materials Research Bulletin,1998,33(9):1411-1414.
    [66]Yuling Zhai, ChangYe, et al. A microwave-induced solution-polymerization synthesis of doped LaGaO3 powders[J]. Journal of Power Sources,2006,163: 316-322.
    [67]Yuling Zhai, Chang Ye, Feng Xia, et al. Preparation of La0.8Sr0.2Ga0.83Mg0.17O2.815 powders by microwave-induced poly(vinyl alcohol) solution polymerization[J]. Journal of Power Sources,2006,162:146-150.
    [68]张新玉,李静霞,曹锋雷,霍宇凝,李和兴.微波辅助法制备纳米TiO2及其光催化性能[J].上海师范大学学报(自然科学版),2006,35(3):47-51.
    [69]李旦振,郑宜,付贤智.微波-光催化耦合效应及其机理研究[J].物理化学学报,2002,18(4):332-335.
    [70]J. Sacanell, M.G. Bellino, D.G. Lamas, A.G. Leyva. Synthesis and characterization La0.6Sr0.4CoO3 and La0.6Sr0.4Co0.2Fe0.8O3 nanotubes for cathode of solid-oxide fuel cells [J]. Physica B,2007,398:341-343.
    [71]Leyva A G, Stoliar P, Rosenbusch M, et al. Microwave assisted synthesis of manganese mixed oxide nanostructures using plastic templates [J]. J Solid State Chem,2004,177:3949.
    [72]丁士文,李梅,王丽勇,等.微波反应制备纳米TiO2-Fe2O3复合材料及其光催化性能[J].河北大学学报(自然科学版),2005,25(1):39-43.
    [73]丁士文,王利勇,丁宇,张美红,王振兴.微波加热反应制备纳米TiO2混晶及其光催化性能[J].应用化学,2006,23(6):651-654.
    [74]周晓明,刘剑洪,张培新等.TiO2纳米晶的低温制备[J].深圳大学学报理工版,2005,22(5):277-282.
    [75]Felgnera K H, Llerb T M, Langhammera H T. On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating [J]. Materials Letters, 2004,58:1943-1947.
    [76]邓谦,周文辉,彭振山,明,李颖.纳米磷钨酸银光催化剂的微波固相合成[J].湖南科技大学学报(自然科学版),2005,20(3):67-70.
    [77]杨文,常爱民,杨邦朝.纳米(Ba,Sr)TiO3粉体材料的制备[J].中国粉体技术,2002,8(2):22-24.
    [78]Saeid Farhadi, Zohreh Momeni, Masoumeh Taherimehr. Rapid synthesis of perovskite-type LaFeO3 nanoparticles by microwave-assisted decomposition of bimetallic La[Fe(CN)6]·5H2O compound [J]. J. Alloys Compd,2009,471(1-2): L5-L8.
    [79]PenaM.A., FierroJ.L.G.. Chemical structures and permance of perovskite oxides[J]. Chem. Rev.,2001,101:1981-2017
    [80]牛新书,曹志民.钙钛矿型复合氧化物光催化研究进展[J].化学研究与应用,2006,18(7):770-775.
    [81]Megaw H D. Crystal structure of double oxide of the perovskite type [J]. Proc Phys Soc,1946,58:133-141.
    [82]Sarma D D, Chainani A. Electronic structure of pervoskite oxides,LaMO3(M=Ti-Ni), from high-energy electron spectroscopic investigations [J]. J Solid State Chem., 1994,111:208-216.
    [83]Ciambelli P, Cimno S, et al. AFeO3(A=La,Nd,Sm)and LaFe1-xMgxO3 Perovskites as Methane Combustion and CO Oxidation Catalyst:Structural, Redox and Catalyst Properties [J]. Appl Catal B.Envir,2001,29:239-250.
    [84]邓积光,王国志,张玉娟,等.钙钛矿型氧化物的制备与光催化性能研究进展 [J].中国稀土学报,2006,24(专辑):80-92.
    [85]John N. Kuhn, Umit S. Ozkan. Surface properties of Sr- and Co-doped LaFeO3 [J]. Journal of Catalysis,2008,253(1):200-211.
    [86]Min Yang, Min Zhang, Aiyu yanab, et al. Interaction of La0.8Sr0.2MnO3 interlayer with Gd0.1Ce0.9O1.95 electrolyte membrane and Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode in low-temperature solid oxide fuel cells [J]. Journal of Power Sources,2008,185: 784-789.
    [87]戴洪兴,何洪,李佩珩,等.稀土钙钛矿型氧化物催化剂的研究进展[J].中国稀土学报,2003,21(专辑):1.
    [88]钟慧琼,杨骏,张渊明.制备方法对LaFeO3可见光光催化活性的影响[J].中国有色金属学报,2009,19(1):160-166.
    [89]C. Monterrubio-Badillo, H. Ageorges, T. Chartier. Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes [J]. Surface & Coatings Technology,2006,200:3743-3756.
    [90]Singh R.N., Lal B. High surface area lanthanum cobaltate and it's A and Bsites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution [J]. Int J Hydrogen Energy,2002,27:45-55.
    [91]Markovi'c S, Mitri'c M, Cvjeti'canin N, Uskokovi'c D. Preparation and properties of BaTi1-xSnxO3 multilayered ceramics [J]. J Eur Ceram Soc,2007,27:505-509.
    [92]Xinzhen Ding, Jinghua Gu, Dong Gao, Guotao Chen, Yue Zhang. Preparation of supported SrCeO3-based membrane by spin coating method [J]. Journal of Power Sources,2010,195:4252-4254.
    [93]J. Wolfenstine, J.L. Allen, J. Read, et al. Hot-pressed Li0.33La0.57TiO3 [J]. Journal of Power Sources,2010,195:4124-4128.
    [94]Xingfu Zhou, Ying Chen, Hua Mei, et al. A facile route for the preparation of morphology-controlled NaTaO3 films [J]. Applied Surface Science,2008,255: 2803-2807.
    [95]JingJ, JianhuaL, GuobaoL, et al. Hydrothermal Synthesis and Structure of Lead Titanaze Pyrochlore Compounds [J]. Chem. Mater.,2003,15:3530-3536.
    [96]Yongming Hu, Haoshuang Gu, Wanping Chen, Yu Wang. Contents lists Preparation of PbTiO3 nanoceramics based on hydrothermal nanopowders and characterization of their electrical properties [J]. Materials Chemistry and Physics,2010,121:10-13.
    [97]Ahmed Galal, Nada F. Atta, Soher A. Darwish, et al. Electrocatalytic evolution of hydrogen on a novel SrPdO3 perovskite electrode [J]. Journal of Power Sources, 2010,195:3806-3809.
    [98]LI S D, JING L Q, FU W, et al. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation [J]. Mater Res Bull,2007,42:203-212.
    [99]MoriM, SammesN M, Tompsett G A. Fabrication Processing condition for dense sintered La0.6AE0.4MnO3 perovskites synthesized by the coprecipitation method (AE=Ca and Sr) [J]. J.Power Sourees.,2000,86:395.
    [100]C.S. Sanmathi, Y. Takahashi, D. Sawaki, et al. Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesised by co-precipitation technique [J]. Materials Research Bulletin,2010,45:558-563.
    [101]Lopez-Trosell A, Schomacker R. Synthesis of manganite perovskite Cao.5Sro.5Mn03 nanoparticles in W/O microemulsion [J]. Mater Res. Bull.,2006, 41(2):333.
    [102]A.E. Giannakas, A.K. Ladavos, P.J. Pomonis. Preparation, characterization and investigation of catalytic activity for NO+CO reaction of LaMnO3 and LaFeO3 perovskites prepared via microemulsion method [J]. Applied Catalysis B: Environmental,2004,49(3):147-158.
    [103]Shankar K S, Kar S, Raychaudhuri A K, et al. Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3(x=0.33) in alumina templates with enhanced ferromagnetic transition temperature[J].Appl. Phys. Lett.,2004,84:993.
    [104]Weitao Bao, Hangmin Guan, Jihai Cheng. A new anode material for intermediate solid oxide fuel cells [J]. Journal of Power Sources,2008,175:232-237.
    [105]Dragana Markovic, Vladan Kusigerski, Marin Tadic, et al. The influence of the heat treatment on the structural and magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine-nitrate method [J]. Journal of Alloys and Compounds,2010,494(1-2):52-57
    [106]Guangru Zhang, Xueliang Dong, Zhengkun Liu, Wei Zhou, Zongping Shao, Wanqin Jin. Cobalt-site cerium doped SmxSr1-xCoO3-δ oxides as potential cathode materials for solid-oxide fuel cells [J]. Journal of Power Sources,2010,195: 3386-3393.
    [107]刘丽,张彤,漆奇,等.基于La0.7Sr0.3FeO3的微结构乙醇气体传感器的研制[J].半导体学报,2007,28(4):610-613.
    [108]Meadowcroft, David B. Low-cost oxygen electrode material [J]. Nature,1970,226 (5248):847-848.
    [109]Ionel Popescu, Adriana Urda, Tatiana Yuzhakova. BaTiO3 and PbTiO3 perovskite as catalysts for methane combustion [J]. C. R. Chimie,2009,12:1072-1078.
    [110]Teruaki Asada, Teppei Kayama, et al. Preparation of alumina-Supported LaFeO3 catalysts and their catalytic activity for propane combustion [J]. Catalysis Today, 2008,139(1-2):37-42.
    [111]Haifeng Huang, Yaqin Liu, et al. Catalytic activity of nanometer La1-xSrxCoO3 (x=0,0.2) perovskites towards VOCs combustion [J]. Catalysis Communications, 2008,9:55-59.
    [112]P. Ciambelli, S. Cimino, S. De Rossi, et al. AFeO3 (A=La, Nd, Sm) and LaFe1-xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties [J]. Appl. Catal. B,2001,29:239-250.
    [113]J.P. Dacquin, C. Lancelot, C. Dujardin, et al. Influence of preparation methods of LaCoO3 on the catalytic performancesin the decomposition of N2O[J]. Applied Catalysis B:Environmental,2009,91:596-604.
    [114]王广建,秦永宁,马智,等.含氧预硫化掺杂Cu-LaCoO3催化剂上CO还原SO2催化反应研究[J].无机化学学报,2006,22(3):571-576.
    [115]王桂,王延吉,宋宝俊,许永权.Co-SrTiO3上光催化分解水制氢的性能研究[J].无机化学学报,2003,19(9):988-992.
    [116]Jian-Hui Yan, Yi-Rong Zhu, You-Gen Tang, Shu-Qin Zheng. Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation [J]. Journal of Alloys and Compounds,2009,472(1-2):429-433.
    [117]Beata Zielinska, Ewa Borowiak-Palen, Ryszard J. Kalenczuk. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors [J]. International Journal of Hydrogen Energy,2008,33(7):1797-1802.
    [118]桑丽霞,刘宇,李群伟,等.纳米钙钛矿型复合氧化物LaFeO3光催化分解水 制氢[J].中国稀土学报,2006,24:42-45.
    [119]Akihiko Kudo, Hideki Kato, Seira Nakagawa. Water Splitting into H2 and O2 on New Sr2M2O7 (M=Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity [J]. J. Phys. Chem. B,2000,104: 571-575.
    [120]Hideki Kato, Hisayoshi Kobayashi, Akihiko Kudo. Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M:Ta and Nb) with the Perovskite Structure [J]. J. Phys. Chem. B,2002,106:12441-12447.
    [121]Hongjie Zhang, Gang Chen, Xin Li, Qun Wang. Electronic structure and water splitting under visible light irradiation of BiTa1-xCuxO4 (x=0.00-0.04) photocatalysts [J]. International journal of hydrogen energy,2009,34:3631-3638.
    [122]吴维维,张虹,常思思,等.可见光下钙钛矿LaCoO3光催化杀菌性能的应用研究[J].化工时刊,2009,23(7):25.
    [123]Shaozao TAN, Liling ZHANG, et al. Structure and antibacterial activity of new layered perovskite compounds [J]. Trans. Nonferrous Met. Soc. China,2007,17: 257-261.
    [124]史册,邵光杰,胡婕,刘日平.La0.6Sr0.4MnO3纳米薄膜的制备及其光催化活性[J].中国稀土学报,2009,27(5):624-628.
    [125]牛新书,茹祥莉,陈晓丽,等.钙钛矿型La1-xPbxCoO3的制备及其光催化性能[J].稀土,2009,30(1):40-43.
    [126]牛新书,陈晓丽,茹祥莉,等.柠檬酸络合法制备La1-xZnxMnO3的研究[J].电子元件与材料,2008,27(10):20-22.
    [127]董抒华,许珂敬,刘俊成.Sr掺杂LaFeO3纳米晶光催化活性的研究[J].人工晶体学报,2007,36(2):433-437.
    [128]李江,卫芝贤.LaCoO3光催化降解染料酸性红B的实验研究[J].光谱实验室,2007,24(2):165-168.
    [129]李江,卫芝贤,陈志敏.LaCoO3光催化降解孔雀绿燃料的研究[J].应用化工,2007,36(10):986-988.
    [130]翟永清,谷菲菲,栗志彬,等.LaCo1-xCuxO3纳米晶对燃料酸性黑10B的光催化降解研究[J].河北大学学报(自然科学版),2009,26(2):182-187.
    [131]Huoming Shu, Jimin Xie, et al. Structural characterization and photocatalytic activity of NiO/AgNbO3 [J]. Journal of Alloys and Compounds,2010.
    [132]Liang Chen, Shouchen Zhang, et al. Photocatalytic activity of Zr:SrTiO3 under UV illumination [J]. Journal of Crystal Growth,2009,311:735-737.
    [133]Tarawipa Puangpetch, Thammanoon Sreethawong, et al. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol-gel method with the aid of structure-directing surfactant [J]. Journal of Molecular Catalysis A:Chemical,2008,287:70-79.
    [134]Shuang Song, Lejin Xu, Zhiqiao He, et al. Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst [J]. Journal of Hazardous Materials,2008,152:1301-1308.
    [135]Xinshu Niu, Honghua Li, Guoguang Liu. Preparation, characterization and photocatalytic properties of REFeO3 (RE= Sm, Eu, Gd) [J]. J. Mol. Catal. A: Chem.,2005,232:89-93.
    [136]Meng Shang, Wenzhong Wang, Songmei Sun, et al. Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/BiVO4 [J]. J. Phys. Chem. C,2009,113:20228-20233.
    [137]Wenming Tong, Liping Li, Wanbiao Hu, et al. Systematic Control of Monoclinic CdWO4 Nanophase for Optimum Photocatalytic Activity [J]. J. Phys. Chem. C, 2010,114:1512-1519.
    [138]Gaoke Zhang, Jie Gong, Xi Zou, et al. Photocatalytic degradation of azo dye acid red G by KNb3O8 and the role of potassium in the photocatalysis [J]. Chemical Engineering Journal,2006,123:59-64.
    [139]Ke-Lei Zhang, Xin-Ping Lin, Fu-Qiang Huang, et al. A novel photocatalyst PbSb2O6 for degradation of methylene blue [J]. Journal of Molecular Catalysis A: Chemical,2006,258:185-190.
    [140]Xu Zhao, Tongguang Xu, Wenqing Yao, Yongfa Zhu. Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation [J]. Applied Surface Science,2009,255:8036-8040.
    [141]Fang Jiang, Zheng Zheng, Zhaoyi Xu, Shourong Zheng. Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation [J]. Journal of Hazardous Materials,2009,164: 1250-1256.
    [142]Xiukai Li, Shuxin Ouyang, Naoki Kikugawa, Jinhua Ye. Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation [J]. Applied Catalysis A:General,2008,334:51-58.
    [143]Gaoke Zhang, Xi Zou, Jie Gong, et al. Characterization and photocatalytic activity of Cu-doped K2Nb4O11 [J]. Journal of Molecular Catalysis A:Chemical,2006,255: 109-116.
    [144]Gaoke Zhang, Ming Li, Shujie Yu, et al.Synthesis of nanometer-size Bi3TaO7 and its visible-light photocatalytic activity for the degradation of a 4BS dye [J]. Journal of Colloid and Interface Science,2010.
    [145]Xinping Lin, Fuqiang Huang, Wendeng Wang, et al. Methyl orange degradation over a novel Bi-based photocatalyst Bi3SbO7:Correlation of crystal structure to photocatalytic activity [J]. Dyes and Pigments,2008,78:39-47.
    [146]Hui Xu, Huaming Li, Li Xu, et al. Enhanced Photocatalytic Activity of Ag3VO4 Loaded with Rare-Earth Elements under Visible-Light Irradiation [J]. Ind. Eng. Chem. Res.,2009,48:10771-10778.
    [147]Wei Feng Yao, Xiao Hong Xu, Hong Wang, et al. Photocatalytic property of perovskite bismuth titanate [J]. Applied Catalysis B:Environmental,2004, 52:109-116.
    [148]Kentaro Teramura, Shin-ichi Okuoka, HideoTsuneoka, et al. Photocatalytic Reduction of CO2 using H2 as Reductant over ATaO3 photocatalysts (A= Li, Na, K) [J]. Applied Catalysis B:Environmental,2010.
    [149]Dong Won Hwang, Kyung Yong Cha, Jindo Kim, et al. Photocatalytic Degradation of CH3Cl over a Nickel-Loaded Layered Perovskite [J]. Ind. Eng. Chem. Res., 2003,42:1184-1189.
    [150]PETROVIC S, TERLECKI-BARICEYIC A, et al. LaMO3 (M= Mg, Ti, Fe) Perovskite Type Oxides:Preparation, Characterization and Catalytic Properties in Methane Deep Oxidation [J]. Appl Catal B:Environmental,2008,79:186-198.
    [151]CHEN C H, KRUIDHOF H, BOUWMEESTER J M, et al. Ionic Conductivity of Perovskite LaCoO3 Measured by Oxygen Permeation Technique [J]. J. Appl. Electrochem,1997,7:71-75.
    [152]LEVASSEUR B, KALIAGUINE S. Methanol Oxidation on LaBO3(B= Co, Mn, Fe) Perovskite-Type Catalysts Prepared by Reactive Grinding [J]. Appl Catals A: General,2008,343:29-38.
    [153]傅希贤,杨秋华,王俊珍,等.水溶性染料在LaCoO3体系中的光催化降解[J].中国稀土学报,2002,20(6):689-691.
    [154]娄向东,赵晓华,成庆堂,等.镍镧复合氧化物的制备及光催化性能[J].应用化学,2004,21(2):144-149.
    [155]Teotone Vaz, A.V. Salker. Materials Preparation, characterization and catalytic CO oxidation studies on LaNi1-xCoxO3 system [J]. Science and Engineering B,2007, 143:81-84.
    [156]Xing Liu, Jifan Hu, Bin Cheng, et al. First-principles study of O2 adsorption on the LaFeO3 (010) surface [J]. Sens. Actuators, B,2009,139:520-526.
    [157]Gustavo Valderrama, A. Kiennemann, M.R. Goldwasser. Dry reforming of CH4 over solid solutions of LaNi1-xCoxO3 [J]. Catal Today,2008,133-135:142-148.
    [158]Dhahri J., Dhahri A., Oumezzine M., Dhahri E. Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of La0.67Ba0.33Mn1-xSnxO3 compounds [J]. J. Magn. Magn. Mater.,2008,320:2613-2617.
    [159]Hongtao Cui, Marcos Zayat, David Levy. Controlled homogeneity of the precursor gel in the synthesis of SrTiO3 nanoparticles by an epoxide assisted sol-gel route [J]. J. Non-Cryst. Solids,2007,353:1011-1016.
    [160]Nora A. Merino, Bibiana P. Barbero, Pierre Eloy, Luis E. Cadu's.La1-xCaxCoO3 perovskite-type oxides:Identification of the surface oxygen species by XPS [J]. Appl. Surf. Sci.,2006,253:1489-1493.
    [161]Zhang Gaoke, Liu Ying, Yang Xia, Wei Yanping, Ouyang Shixi, Liu Hangxing. Comparison of synthesis methods, crystal structure and characterization of strontium cobaltite powders [J]. Mater. Chem. Phys.,2006,99:88-95.
    [162]宫晓杰,李丽华,邵海,等.微波-凝胶法合成NdCoO3纳米粒子[J].辽宁石油化工大学学报,2005,25(2):29-31.
    [163]梁新义,张黎明,丁宏远,等.超声促进浸渍法制备催化剂LaCoO3/γ—Al2O3[J].物理化学学报,2003,19(7):666-669.
    [164]洪伟良,赵凤起,刘剑洪,等.纳米硬脂酸铅(Ⅱ)配合物的合成和性能研究[J]. 无机化学学报,2005,21(2):197-201.
    [165]朱俊武,王艳萍,汪信,等.纳米LaCoO3的制备及其对高氯酸铵分解的催化性能[J].中国稀土学报,2007,25(3):364-367.
    [166]M.A. Pena, J.L.G. Fierro. Chemical Structures and Performance of Perovskite Oxides [J]. Chem. Rev.,2001,101:1981-2017.
    [167]G. Pecchi, P. Reyes, R. Zamora, et al. Effect of the preparation method on the catalytic activity of La1-xCaxFeO3 perovskite-type oxides [J]. Catal. Today,2008, 133-135:420-427.
    [168]Yuxin Wen, Changbin Zhang, Hong He, Yunbo Yu, Yasutake Teraoka. Catalytic oxidation of nitrogen monoxide over La1-xCexCoO3 perovskites [J]. Catal. Today, 2007,126:400-405.
    [169]Nguyen Tien-Thao, Houshang Alamdari, Serge Kaliaguine. Characterization and reactivity of nanoscale La(Co,Cu)O3 perovskite catalyst precursors for CO hydrogenation [J]. J. Solid State Chem.,2008,181:2006-2019.
    [170]陈永红,童悦,魏亦军,刘杏芹,孟广耀.Pr0.6Sr0.4Feo3-δ钙钛矿结构材料的制备与表征[J].稀有金属,2007,31(1):57-62.
    [171]Tarte P, Rulmont A, et al. Vibrational spectroscopy and solid state chemistry [J]. Solid State Ionics,1990,42:177.
    [172]化学工业部染料工业科技情报中心站.化工产品手册(染料)[M].化学工业出版社,1985,252.
    [173]何海兰.染料,精细化工产品手册[M].化学工业出版社.2004.
    [174]李树元.纳米氧化亚铜的制备及其光催化性能的研究.武汉大学硕士论文,2006.
    [175]王欢.纳米掺杂TiO2及碱性品红光催化氧化研究.四川大学硕士论文,2004.
    [176]梅光军,师伟,解科峰,夏洋.纳米氧化亚铜的制备及其光催化性能研究[J].资源环境与工程,2007,21(3):335-338.
    [177]赵玉翠,石建稳,郑经堂.纳米TiO2的制备、表征及光催化降解酸性品红[J].应用化工,2007,36(10):993-997.
    [178]齐帅,刘义新,孟丽华,王阿楠.掺铜TiO2薄膜光催化降解碱性品红的研究[J].工业水处理,2009,29(5):50-53.
    [179]桑丽霞,傅希贤,白树林,杨秋华,王俊珍,曾淑兰.ABO3钙钛矿型复合氧化 物光催化活性与B离子d电子结构的关系[J].感光科学与光化学,2001,19(2):109-114.
    [180]Lou X D, Zhao X H, Cheng O T, Lu Y. Progress in ABO3 perovskite composite oxides [J]. J. Trans. Technol.,2002,21(7):5.
    [181]Bai Shulin, Fu Xixian, Sang Lixia, Yang Qiuhua, et al. Change Tendency of photocatalytic activity in system of perovskite (ABO3) type oxide and analysis [J]. Chem. J. Chinese Universities,2001,22(4):663.
    [182]J. Weber, V.C. Stickney. Hydrolysis kinetics of Reactive Blue19-vinyl sulfone [J]. Water Res,1993,27:63-67.
    [183]Ronaldo Pelegrini, Patricio Peralta-Zamora, Adalgisa R. de Andrade, Juan Reyes, et al. Electrochemically assisted photocatalytic degradation of reactive dyes [J]. Appl Catal B:Environmental,1999,22:83-90.
    [184]W.J. Epolito, Y.H. Lee, L.A. Bottomley, S.G. Pavlostathisa. Characterization of the textile anthraquinone dye Reactive Blue 4 [J]. Dyes and Pigments,2005,67:35-46.
    [185]Mathews RW, McEvoy SR. Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide [J]. J. Photochem. PhotobiolA. Chem.,1992, 64:231-246.
    [186]M. Abu Tariq, M. Faisal, M. Saquib, M. Muneer. Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor [J]. Dyes and Pigments,2008,76:358-365.
    [187]Pritam Borker, A.V. Salker. Solar assisted photocatalytic degradation of Naphthol Blue Black dye using Ce1-xMnxO2 [J]. Mater. Chem. Phy.,2007,103:366-370.
    [188]S. Royer, B. Levasseur, H. Alamdari, et al. Mechanism of stearic acid oxidation over nanocrystalline La1-xA'xBO3(A'= Sr, Ce; B= Co, Mn):The role of oxygen mobility [J]. Appl. Catal. B:Environmental,2008,80:51-61.
    [189]Abderrezak Hammouche, Abdelkrim Kahoul, Dirk Uwe Sauer, Rik W. De Doncker. Influential factors on oxygen reduction at La1-xCaxCoO3 electrodes in alkaline electrolyte [J]. Journal of Power Sources,2006,53:239-244.
    [190]梁淑惠,滕飞,姚文清,朱永法.Ce掺杂对La1-xCexCoO3催化剂的结构和催化氧化性能的影响[J].物理化学学报,2008,24(2):205-210.
    [191]杨秋华,傅希贤,王俊珍,等.La1-xSrxFeO3光催化降解水溶性染料[J].应用化 学,2000,17(6):585-588.
    [192]Bibiana P. Barbero, Julio Andrade Gamboa, Luis E. Cadu's. Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds [J]. Appl. Cata. B:Environmental,2006,65:21-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700