用户名: 密码: 验证码:
亲骨性BMP-2活性多肽及其仿生骨修复材料生物活性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分两种不同BMP2活性多肽的亲骨性评价
     目的对比研究两种不同BMP-2活性多肽的亲骨性,以探讨影响多肽亲骨性的相关因素。
     方法以固相合成法分别合成两种不同的BMP-2活性多肽P20和P24,在P24中增加设计聚天冬氨酸短肽和磷酸化丝氨酸活性位点。以纳米羟基磷灰石晶体模拟骨组织,采用经典的吸附法对两种多肽进行初步的体外骨吸附性能研究,分别在不同吸附时间和不同质量羟基磷灰石介质的条件下考察两种多肽对羟基磷灰石的吸附率。
     结果两种BMP-2活性多肽在30min内均能与羟基磷灰石迅速吸附,此后随时间延长吸附速度减缓,P20在60min时吸附率达到峰值,而P24在90min时达到峰值,为P20的两倍。两种多肽的吸附率随着羟基磷灰石质量的增多而升高,在5mg、10mg和15mg三种不同羟基磷灰石量时P24的吸附率均显著高于P20(P<0.05),P24对15mg羟基磷灰石的吸附率几乎是同样条件下P20的3倍。
     结论通过加入聚天冬氨酸和磷酸化丝氨酸活性位点可显著增强BMP-2活性多肽的亲骨性,P24具有良好的亲骨性。亲骨性BMP-2活性多肽对羟基磷灰石的最佳吸附时间是90min,且其吸附率与羟基磷灰石质量呈正相关。
     第二部分携载不同BMP2活性多肽的仿生骨基质材料体外控释及其对MC3T3-E1细胞粘附、增殖及成骨分化能力的影响
     目的观察两种BMP-2活性多肽的体外释放动力学,评价不同多肽和仿生骨基质材料对小鼠MC3T3-E1前成骨细胞粘附、增殖和成骨分化能力的影响。
     方法将两种不同的BMP-2活性多肽P20和P24分别与TBC和nHAC/PLA两种载体材料复合,构建P20/TBC、P20/nHAC/PLA、P24/TBC和P24/nHAC/PLA仿生骨基质材料,同时以P24/可吸收胶原蛋白海绵缓释体为对照比较BMP-2活性多肽在各种支架材料中的释放动力学。为评价各仿生骨基质材料的生物学活性,将实验分为空白对照、P20和P24三组,每组另设TBC和nHAC/PLA两个亚组。分别将小鼠MC3T3-E1前成骨细胞种植在各组材料表面,分别测定细胞在材料表面的粘附率,采用MTT法检测MC3T3-E1细胞在材料上的增殖活性,通过检测碱性磷酸酶(ALP)活性来评价MC3T3-E1细胞在各组材料上的成骨分化活性。
     结果体外控释实验发现P24和P20无论在nHAC/PLA还是TBC材料中,均较P24在ACS材料中释放更加缓慢,同时P24较P20在两种材料中的缓释效果更突出。而细胞粘附率、MTT实验及ALP活性检测结果显示,MC3T3-E1细胞在所有多肽组仿生骨基质材料表面的粘附和增殖能力及ALP活性均显著高于空白组,而在P24组显著高于P20组,在P24/TBC组显著高于P24/nHAC/PLA组,组间差异均有统计学意义(P<0.05)。
     结论TBC和nHAC/PLA均适合作为BMP-2活性多肽的缓释载体材料,且TBC尤为理想。亲骨性可明显增强P24在TBC和nHAC/PLA材料中的缓释性能,并能明显促进小鼠MC3T3-E1前成骨细胞在材料上的粘附、增殖和成骨分化。
     第三部分不同BMP2活性多肽/仿生骨基质材料复合物体内诱导异位成骨的实验研究
     目的比较P20和P24与TBC和nHAC/PLA构建的仿生骨基质材料的异位成骨能力,探讨亲骨性对多肽骨诱导活性的影响。
     方法将30只SD大鼠随机分为空白组、P20组及P24组,每组下设煅烧骨和nHAC/PLA两个亚组。每只大鼠制备双侧股四头肌肌袋模型,按实验分组分别于左侧放入TBC材料,右侧放入nHAC/PLA材料。植入材料后第2、8周分别做放射学检测(X-ray、3D-CT)并记录植入体CT骨密度值(HU)。术后2、8周分别处死大鼠取材,应用高分辨率Micro CT测定标本内羟基磷灰石总体积值(BV),然后标本行HE染色组织学检测。
     结果8周时X线检测可见P24组植入体密度均较2周时增高,P20及空白组密度变化不明显。CT扫描骨密度检测结果显示,8W时P20/TBC组、P24/TBC组植入体骨密度值较2W时明显增高,差异有统计学意义(P<0.05)。而空白组、P20/nHAC/PLA组和P24/nHAC/PLA组植入体骨密度值较2W时仅略增高,差异无统计学意义(P>0.05)。BV定量结果显示:在TBC组,2W和8W时P24组BV值均显著高于其他各组,P20组仅8W时显著高于对照组,差异有统计学意义(P<0.05)。nHAC/PLA组在2W时各组间无显著性差异(P>0.05),8W时P24组BV值显著高于其他各组,P20组显著高于空白组,差异有统计学意义(P<0.05)。组织形态学观察2周时P24/TBC组植入体孔隙内可看到散在的类骨质形成。8周时P24/TBC组可见大量编织骨形成、有较多活跃的成骨细胞及新生血管结构。P24/nHAC/PLA组新生骨组织明显少于P24/TBC组。P20组仅见散在类骨质形成。空白组无明显成骨。
     结论煅烧骨和nHAC/PLA均是理想的骨组织工程支架材料,增加亲骨性后能显著增强BMP-2活性多肽与两种材料复合构建的仿生骨基质材料的异位成骨能力
     第四部分亲骨性BMP2活性多肽/煅烧骨复合支架材料修复犬桡骨临界性缺损的实验研究
     目的观察亲骨性BMP-2活性多肽P24/煅烧骨复合材料修复犬桡骨临界性骨缺损的能力,探讨其进一步应用的可行性。
     方法6只比格犬制备双侧桡骨中段20mm临界性骨缺损,按侧别随机分为4组,空白对照组骨缺损处不放置任何植入物,TBC组植入单纯TBC材料,P24组植入P24/TBC复合材料,BMP2组植入rhBMP2/TBC复合材料。术后12周和24周分别行X线检测,术后24周取材行CT扫描加三维重建并行组织学检测评价各组材料的骨修复能力。
     结果影像学及组织学检测结果均提示空白对照组骨缺损处无新骨形成;TBC组各时间点影像学检查均无明显骨痂形成,骨-材料界面无明显融合,组织学观察可见缺损内少许类骨质和编织骨形成,无板层骨结构;P24组在12W时骨-材料界面模糊,有少许骨痂形成,24W时较多骨痂形成,骨-材料界面已融为一体。组织学可见缺损内较多新骨形成,有大量板层骨连接成片,可见大量活跃成骨细胞,骨-材料界面完全融合。BMP2组结果和P24组相似。P24组和BMP2组新生骨面积百分比与TBC组比较有非常显著性差异(P<0.01),P24组和BMP2组间无显著性差异(P>0.05)。
     结论自行研制的P24/TBC复合支架材料具有良好的骨诱导活性,是一种理想的组织工程骨修复材料,值得进行进一步的临床前研究。
Part Ⅰ Evaluation on Bone-Seeking Properties of two Different synthetic oligopeptides derived from BMP-2
     Objective This paper aims to compare the bone-seeking properties of two different synthetic oligopeptides derived from BMP-2, so as to explore the relevant factors to influence the bone-seeking properties of the BMP2-related oligopeptide.
     Method Two different oligopeptides P20and P24were synthesized by solid phase synthesis process, and the P24contained a repeating sequence of Asp (aspartic acid) and phosphorylated serine. The nano-HAP crystals were used to simulate bone tissues, then the bone-seeking properties of two different oligopeptides were preliminary studied through traditional hydroxyapatite binding assay so as to determine the adsorption rates of these two peptides under different absorption time with different HAP quantity.
     Results Both oligopeptides could achieve rapid adsorption of HAP within30min, then their adsorption speed decreased with the increase of time, P20achieved its peak of adsorption rate at60min, P24achieved its peak of adsorption rate which was twice as much as that of P20at90min; the adsorption rates of both oligopeptides increased along with the increase in the quantity of HAP, and the adsorption rate of P24was significantly higher than that of P20for the different quantity of HAP such as5mg,10mg or15mg.(P<0.05), the adsorption rate of P24to15mg HAP was nearly3times as much as that of P20.
     Conclusion The addition of the active sites of repeating sequence of Asp and phosphorylated serine can significantly enhance the bone-seeking properties of the P24, and P24has a better bone-seeking property. The best adsorption time of the bone-seeking oligopeptides is90min, and their adsorption rates were positively correlated to the HAP quantity.
     Part Ⅱ Adhesion, Proliferation and Osteogenic Differentiation of MC3T3-E1cells on Controlled Release Biomimetic Bone Matrix Materials Loaded with Different BMP2-related oligopeptide
     Objective This paper aims to investigate the release kinetics of two kinds of BMP-2-related oligopeptide in vitro, so as to evaluate the effect of the different biomimetic bone matrix materials loaded with BMP-2-related oligopeptides on the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1cell.
     Methods Two different BMP-2-related oligopeptides P20and P24were loaded within ture bone ceramics (TBC) or nHAC/PLA scaffold materials respectively, so as to construct4composites (P20/TBC, P20/nHAC/PLA, P24/TBC and P24/nHAC/PLA), and the P24/Absorbable collagen sponges(ACS) were used as control material. Then their in vitro release kinetics were measured. To evaluate the biologic activity of these materials, they were divided into3groups including Control, P20and P24group, and each group was divided into TBC and nHAC/PLA subgroup. The MC3T3-E1cells were cultured on six kinds of materials respectively. The cell adhesion rate were assessed by precipitation method. The proliferative ability of MC3T3-E1cells were determined by MTT assay. And the measure of alkaline phosphatase (ALP) activity were performed to assess the differentiation towards osteoblasts of MC3T3-E1cells
     Results The in vitro experiment showed that the release of P24or P20in nHAC/PLA or TBC scaffold material was slower than that of P24in ACS, and the release characteristics of P24was more striking than that of P20in TBC or nHAC/PLA material. While the cell adhesion rate, results of MTT experiments and ALP activity determination suggested that adhesion and proliferation of MC3T3-E1cells on the surfaces of all biomaterials containing BMP-2-related oligopeptides were higher than those on the surface of control groups, and those in P24group were significantly higher than those in P20group, and those in P24/TBC group were significantly higher than the P24/nHAC/PLA group (P<0.05).
     Conclusion TBC and nHAC/PLA scaffold materials are suitable as controlled release carrier for BMP-2-related oligopeptide delivery, and TBC material is particularly ideal. The bone-seeking properties of P24can markedly enhance the performance of the sustained-release of P24in the TBC and nHAC/PLA scaffold materials, and can significantly promote the MC3T3-E1cells adhesion, proliferation, and osteodifferentiation on the biomaterials.
     Part Ⅲ The effect of different BMP-2-related oligopeptides on ectopic bone formation in sintered bone or nHAC/PLA scaffold.
     Objective This paper aims to compare the ectopic osteogenesis capacities of two different BMP-2-related oligopeptides, P20and P24, combined with sintered bone (TBC) or nano-hydroxyapatite-collagen PLA (nHAC/PLA) scaffold material respectively, in order to explore the osteoinductive activity of bone-seeking BMP-2-related oligopeptide.
     Methods A total of30Sprague Dawley rats were divided into control group, P20group, and P24group randomly, each group was divided into TBC and nHAC/PLA subgroup (each n=10). Each rat was processed to prepare bilateral quadriceps muscle pouches model. Subsequently, the TBC material was implanted in left side and the nHAC/PLA material was implanted in the right side according to the experimental group. Radiographic and computer tomographic examinations were performed at2and8weeks post implantation, so as to evaluate the bone density. At2and8weeks after surgery the implanted materials were explanted, and then the total volume of the HAP in specimens (BV) were determined by high-resolution Micro CT, further histological examination were taken to determine the bone formation.
     Results The X-ray detection at8th weeks showed the densities of implants in P24groups were higher than those at2th weeks, the changes in densities of implants of P20and the control groups were not significant. The bone density results showed that, the density of implants in P20/TBC groups, P24/TBC groups at8weeks were significantly higher than those at2th week (P<0.05). While the density of implants in control groups, P20/nHAC/PLA groups, P24/nHAC/PLA groups were slightly higher than those at2th week (P>0.05). BV quantitative results showed:in TBC groups, the BV value of P24groups at2weeks or8weeks was significantly higher than that in other groups, while the that the BV value of P20only at8th week was significantly higher than that in control groups (P<0.05); in nHAC/PLA groups, the BV values of P20and P24groups at2th week were slightly higher than that in other groups(P>0.05), the BV value of P24groups at8th week was significantly higher than that in other groups (P<0.05), and the BV value of P20groups at8th week was significantly higher than that in control groups (P<0.05). The observation of histomorphology showed that sporadic osteoid could be observed in P24/TBC groups at2weeks and a large number of woven bone formation and many active osteoblasts and neovascularization structures could be seen in P24/TBC groups at8th week. Significantly less woven bone formation was seen for the P24/nHAC/PLA groups at8weeks compared to the P24/TBC groups. There were only sporadic osteoid could be seen in the P20groups; and in the control groups, no new bone structure could be found.
     Conclusion Both sintered bone and nHAC/PLA are ideal candidate for bone tissue engineering scaffold materials; the ectopic osteogenetic capacity and osteoinductivity of BMP-2-related oligopeptide was significantly improved by modified with bone-seeking moieties when coupled with TBC or nHAC/PLA scaffold material.
     Part IV Experimental Study on Repair of Critical-size Defects in Canine Radius Using Bone-Seeking BMP-2-related Oligopeptide Combined with Sintered Bone Scaffold Material
     Objective To investigate the efficacy of bone-seeking BMP-2-related oligopeptide/sintered bone (TBC) composite scaffold material for enhancing healing of critical-size defects in canine radius, so as to explore the feasibility of their further applications.
     Methods A total of6beagle dogs were processed to prepare the critical-size defects (20mm) in middle section of bilateral radials, these dogs were divided into4groups according to their preparation sides randomly:there was no implant placing into the control bone defect group, pure TBC material was implanted into TBC group, the bone-seeking P24/TBC material was implanted into P24group and the rhBMP2/T material was implanted into BMP2group. After12weeks and24weeks of implantation, the X-ray detection was performed for them.3D-CT and histomorphometric evaluations were performed to evaluate the bone repair capability of each kind of material at24weeks after implantation.
     Results The results of the radiographic and histomorphometric examination suggested that no new bone was found in the control group. In TBC group, the radiographic examination result at each time point showed that no callus could be found obviously and no obvious fusion was seen in bone-material interface; A little osteoid and woven bone, but no lamellar bone structure were observed in defects histomorphologically. In P24group, the bone-material interface was unclear and there was a little callus formation at12week; There was much callus formation with good osteointegrated at bone-material interface at24week. Histomorphometric examination showed much new bone formation, a large number of inteconnected lamellar bones, numerous active osteoblasts can be found, the bone-material interface had been integrated. The results of BMP2group were similar to those of P24group. And the differences between the new bone area percentage of P24group or BMP2group and that of TBC group were extremely significant (P<0.01), while the differences between that of P24group and that of BMP2group were not significant (P>0.05).
     Conclusion The bone-seeking P24/TBC composite scaffold material has good osteoinductive activity, it's an ideal bone repair material for tissue engineering and deserve further pre-clinical research.
引文
[1]Sipos W, Pietschmann P, Rauner M, et al. Pathophysiology of osteoporosis. Wien Med Wochenschr,2009,159 (9 2 10):230 2 234.
    [2]Franceschi R T. Biological approaches to bone regeneration by gene therapy. Journal of Dental Research,2005,84(12):1093-1103.
    [3]Fernandez-Bances I, Perez-Basterrechea M, Perez-Lopez S, et al. Repair of long-bone pseudoarthrosis with autologous bone marrow mononuclear cells combined with allogenic bone graft.Cytotherapy.2013 Feb 14. doi:pii:S1465-3249(13)00117-5.
    [4]Hing KA. Bone repair in the twenty-first century:biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci.2004 Dec 15;362(1825):2821-50.
    [5]Gitelis S, Cole BJ. The use of allografts in orthopaedic surgery. Instr Course Lect 2002;51:507-20.
    [6]Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering:a review. Acta Biomater.2012 Apr;8(4):1401-21.
    [7]Shuo Tang, Jingjing Zhao, Shuyun Xu, et al. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels. Biomed. Mater. 2012; 7(1) 015008
    [8]Yuan Q, Lu HW, Tang S, et al.Ectopic bone formation in vivo induced by a novel synthetic peptide derived from BMP-2 using porous collagen scaffolds. J WUHAN UNTV TECHNOL,2007; 22 (4):701-705.
    [9]Wu B, Zheng QX, Guo XD,et al. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide. Biomed. Mater.2008; 3(4):044111.
    [10]Steendijk B. Studies on the mechanism of the fixation of the tetracycline to bone. Acta anat,1964,56:368-382.
    [11]Perrin RA. Binding of tetracycline to bone. Nature,1965,208 (11):787-788.
    [12]Uludag H. Bisphosphonates as a foundation of drug delivery to bone. Curr Pharm Design,2002,8:1929-1944
    [13]Bauss F, Esswein A, Reiff K, et al. Effect of 17beta-estradiol-bisphosphonate conjugates, potential bone-seeking estrogen pro-drugs, on 17beta-estradiol serum kinetics and bone mass in rats. Calcif Tissue Int.1996 Sep;59(3):168-73.
    [14]Wang Y, Metcalf CA 3rd, Shakespeare WC, et al. Bone-targeted 2,6,9-trisubstituted purines:novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg Med Chem Lett.2003 Sep 15;13(18):3067-70.
    [15]Willson TM, Paul SC, Anthony DB, et al. Bone targeted drug 1:identification of heterocycles w ith hydroxyapatite affinity. Bioor M ed Chem Lett,1996,6(9):1043-1046.
    [16]Sekido T, Sakura N, H igashi Y, et al. Novel drug delivery system to bone using acid ic oligopeptide:pharm acok inetic characteristics and pharm acological potential. J D rug Target,2001,9(2):111-121.
    [17]Takahashi T, Yokogawa K, Sakura N, et al. Bone-targeting of quinolones conjugated with an acidic oligopeptide. Pharm Res.2008 Dec;25(12):2881-8.
    [18]Fujisawa R, Mizuno M, Nodasaka Y, et al. Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biol.1997 Apr;16(1):21-8.
    [19]Culpepper BK, Bonvallet PP, Reddy MS, et al. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone. Biomaterials. 2013 Feb;34(5):1506-13.
    [20]毛克亚,宁江海,郝立波等.双亲桥接多肽的合成与成骨活性研究.生物医学工程与临床,2005,9(2):61-64.
    [21]Millan JL, Narisawa S, Lemire I, et al. Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res.2008 Jun;23(6):777-87.
    [22]Nishioka T, Tomatsu S, Gutierrez MA, et al. Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab.2006 Jul;88(3):244-55.
    [23]仲利萍,吕应年,崔燎等.骨靶向化合物天冬氨酸寡肽的研究及应用.齐鲁药事,2011,30(4):228-231.
    [24]Wright JE, Gittens SA, Bansal G, et al. A comparison of mineral affinity of bisphosphonate-protein conjugates constructed with disulfide and thioether linkages. Biomaterials.2006 Feb;27(5):769-84.
    [25]Kapoor KN, Barry DT, Rees RC, et al. Estimation of peptide concentration by a modified bicinchoninic acid assay. Anal Biochem.2009 Oct 1;393(1):138-40.
    [26]Ishizaki J, Waki Y, Takahashi-Nishioka T, et al. Selective drug delivery to bone using acidic oligopeptides. J Bone Miner Metab.2009;27(1):1-8.
    [27]Nagata T, Bellows CG, Kasugai S,.et al. Biosynthesis of bone proteins [SPP-1 (secreted phosphoprotein-l,osteopontin), BSP (bone sialoprotein) and SPARC (osteonectin)]in association with mineralized-tissue formation by fetal-rat cal-varial cells in culture. Biochem J 1991,274 (Pt 2):513-520.
    [28]Kasugai S, Todescan R Jr., Nagata T, et al. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: Inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol 1991, 147:111-120.
    [29]Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol 1992,152:467-477.
    [30]Fujisawa R, Wada Y, Nodasaka Y, et al. Acidic amino acid-rich sequences as binding sites of osteonectin to hydroxyapatite crystals. Biochim Biophys Acta.1996 Jan 4;1292(1):53-60.
    [31]Kasugai S, Fujisawa R, Waki Y, et al. Selective drug delivery system to bone:small peptide (Asp)6 conjugation. J Bone Miner Res.2000 May;15(5):936-43.
    [32]Sekido T, Sakura N, Higashi Y, et al. Novel drug delivery system to bone using acidic oligopeptide:pharmacokinetic characteristics and pharmacological potential. J Drug Target. 2001 Apr;9(2):111-21.
    [33]Niu XF, Feng QL, Wang MB, et al. Porous Nano-HA/Collagen/PLLA Scaffold Containing Chitosan Microspheres for Controlled Delivery of Synthetic Peptide Derived from BMP-2, Journal of Controlled Release,2009; 134(2):111-117.
    [34]Li JF, Lin ZY, Zheng QX, et al. Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2 related peptide combined with rat tail collagen. Biotechnology and Bioprocess Engineering,2010,15(5):725-732.
    [35]Lin ZY, Duan ZX, Guo XD, et al. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release,2010,144:190-195.
    [36]Wang MB, Feng QL, Guo XD, et al. A dual microsphere based on PLGA and chitosan for delivering the oligopeptide derived from BMP-2. Polymer Degradation and Stability, 2010,doi:10.1016/j.polymdegradstab.2010.10.010.
    [37]刘鹏,张昱,郭丽.L一天冬氨酸六肽一布洛芬的合成.华西药学杂志,2007,22(1):49-50
    [38]窦晓睿,艾小霞,高荧等.多肽类药物含量(效价)测定方法及其应用.药学进展,2011,35(12):536-542.
    [39]朱彭龄.梯度洗脱.分析测试技术与仪器,2010,16(1):56-59..
    [40]张云楚,纪宇.双辛可宁酸法测定胎盘多肽注射液中低浓度多肽的含量.中国生化药物杂志,2010,31(6):402-404.
    [1]Sipos W, Pietschmann P, Rauner M, et al. Pathophysiology of osteoporosis. Wien Med Wochenschr.2009 May; 159(9-10):230-4.
    [2]Hing KA. Bone repair in the twenty-first century:biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci.2004 Dec 15;362(1825):2821-50.
    [3]Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes:an update. Injury 2005;36(Suppl.3):S20e7.
    [4]Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003 Nov;24(24):4353-64.
    [5]Kim CS, Kim JI, Kim J, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phospHAPte as carriers.Biomaterials.2005 May;26(15):2501-7.
    [6]Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech,2002,15(5):337-349.
    [7]Govender S, Csimma C, Genant HK, et al. BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group, Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures:a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg (Am),2002,84-A(12):2123-2134
    [8]Chao M, Donovan T, Sotelo C, et al. In situ osteogenesis of hemimandible with rhBMP-2 in a 9-year-old boy:osteoinduction via stem cell concentration. J Craniofac Surg. 2006 May;17(3):405-12.
    [9]Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery:emerging safety concerns and lessons learned. Spine J.2011 Jun;11(6):471-91.
    [10]Obert L, Deschaseaux F, Garbuio P. Critical analysis and efficacy of BMPs in long bones non-union. Injury.2005 Nov;36 Suppl 3.S38-42.
    [11]Shields LB, Raque GH, Glassman SD,et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976).2006 Mar 1;31(5):542-7.
    [12]Lin, X.H., J.J. Elliot, D. L. Carnes, et al. Augmentation of osseous phenotypes in vivo with a synthetic peptide. J. Orthop. Res.2007,25(4):531-539.
    [13]Seol YJ, Park YJ, Lee SC, et al. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A.2006 Jun 1;77(3):599-607.
    [14]Saito A, Suzuki Y, Ogata S, et al. Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. J Biomed Mater Res A.2004 Jul 1;70(1):115-21.
    [15]Zhenyu Lin, Zhixia Duan, Xiaodong Guo, et al. Experimental research of biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2 related peptide in vitro and in vivo. Journal of Controlled Release,2010; 144(2):190-195.
    [16]Jingfeng Li; Zhenyu Lin; Qixin Zheng;et al. Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2 related peptide combined with rat tail collagen. Biotechnology and Bioprocess Engineering,2010; 15(5):725-732
    [17]Niu XF, Feng QL, Wang MB,et al. Porous Nano-HAP/Collagen/PLLA Scaffold Containing Chitosan Microspheres for Controlled Delivery of Synthetic Peptide Derived from BMP-2, Journal of Controlled Release,2009; 134(2):111-7.
    [18]Shuo Tang, Jingjing Zhao, Shuyun Xu, et al. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels. Biomed. Mater. 2012; 7(1) 015008
    [19]Culpepper BK, Phipps MC, Bonvallet PP, et al. Enhancement of peptide coupling to hydroxyapatite and implant osseointegration through collagen mimetic peptide modified with a polyglutamate domain. Biomaterials 2010; 31(36):9586-94.
    [20]Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, rgd and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 2007;28(3):383-92.
    [21]郑启新,刘苏南.煅烧牛松质骨的制备、理化性能及生物相容性研究.生物医学工程杂志.2005,22(1):95-98.
    [22]李景峰,郑启新,郭晓东等.骨形成蛋白2活性多肽/Ⅰ型胶原复合煅烧骨修复兔桡骨缺损.中华实验外科杂志,2009,26(6):693-695.
    [23]Kapoor KN, Barry DT, Rees RC, et al.Estimation of peptide concentration by a modified bicinchoninic acid assay. Anal Biochem.2009 Oct 1;393(1):138-40.
    [24]Kasten P, Luginbuhl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials,2003,24(15):2593-2603.
    [25]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods,1983,65(1-2):55-63.
    [26]Jingfeng Li, Zhenyu Lin, Qixin Zheng, et al.. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2 related peptide and type I collagen. Materials science and engineering:C, 2010,30(8):1273-1280.
    [27]葛亮,苟三怀.生长因子载体局部控释技术在骨组织修复中的应用.国际骨科学杂志,2006,27(3):168-171.
    [28]F.M. Veronese. Peptide and protein PEGylation:a review of problems and solutions, Biomaterials,2001,22 (5) 405-417.
    [29]C.C. Lin, K.S. Anseth, Controlling affinity binding with peptide functionalized poly(ethylene glycol) hydrogels, Adv. Funct. Mater.2009,19 (14):2325.
    [30]Luginbuehl V, Meinel L, Merkle HP, et al. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm.2004 Sep;58(2):197-208.
    [31]Culpepper BK, Phipps MC, Bonvallet PP,et al. Enhancement of peptide coupling to hydroxyapatite and implant osseointegration through collagen mimetic peptide modified with a polyglutamate domain. Biomaterials.2010 Dec;31(36):9586-94.
    [32]Nussenbaum B, Teknos TN, Chepeha DB. Tissue engineering:the current status of this futuristic modality in head neck reconstruction. Curr Opin Otolaryngol Head Neck Surg.2004 Aug;12(4):311-5.
    [33]崔福斋.骨组织工程的发展趋势.中国医疗器械信息,2010,16(2):16-21,45.
    [34]Matsuda M, Kita S, Takekawa M, et al. Scanning electron and light microscopic observations on the healing process after sintered bone implantation in rats. Histol Histopathol.1995 Jul;10(3):673-9.
    [35]Liao S S, Cui F Z, Zhu Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite:nHAC/PLA. Journal of Bioactive and Compatible Polymers,2004,19(2):117-130.
    [36]Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold:Nanohydroxyapatite/collagen/poly (L-lactide). Tissue Engineering,2004,10(1-2):73-80.
    [37]S.J. Hollister, Scaffold design and manufacturing:from concept to clinic, Adv. Mater. 2009,21 (32-33):3330-3342.
    [38]Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999;20:2311-21.
    [39]Baldwin SP, Saltzman WM. Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev 1998;33:71-86.
    [1]Bieber EJ, Wood MB. Bone reconstruction. Clin Plast Surg.1986,13:645-655.
    [2]Weitzel JN, Esterhai JL. Delayed union, nonunion, and synovial pseudoarthrosis. In: Brighton CT, Friedlaender GE, Lane JM (eds.) Bone Formation and Repair. The American Academy of Orthopaedic Surgeons, Rosemont, Illinois,1994 pp.505-528.
    [3]Rajacich N, Bell DF, Armstrong PF. Pediatric applications of the Ilizarov method. Clin Orthop 1992,280:72-80.
    [4]崔福斋.骨组织工程的发展趋势.中国医疗器械信息,2010,16(2):16-21,45.
    [5]Urist MR. Bone formation by autoinduction. Science,1965,150:893-9
    [6]Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol.2000 Jan;142(1):9-21.
    [7]Chao M, Donovan T, Sotelo C,et al. In situ osteogenesis of hemimandible with rhBMP-2 in a 9-year-old boy:osteoinduction via stem cell concentration. J Craniofac Surg. 2006 May;17(3):405-12.
    [8]Govender S, Csimma C, Genant HK, et al. BMP-2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group, Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures:a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg (Am),2002,84-A(12):2123-2134
    [9]Burkus JK, Gornet MF, Dickman CA, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech,2002,15(5):337-349.
    [10]Seol, YJ., Park YJ., Lee SC.,et al. E nhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J. Biomed. Mater. Res. A 2006,77(3):599-607.
    [11]郑启新,刘苏南.煅烧牛松质骨的制备、理化性能及生物相容性研究.生物医学工程杂志.2005,22(1):95-98.
    [12]李景峰,郑启新,郭晓东等.骨形成蛋白2活性多肽/Ⅰ型胶原复合煅烧骨修复兔桡骨缺损.中华实验外科杂志,2009,26(6):693-695.
    [13]Becker ST, Bolte H, Krapf O,et al. Endocultivation:3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol.2009 Nov;45(11):e181-8.
    [14]Kasten P, Beyen I, Bormann D, et al. The effect of two point mutations in GDF-5 on ectopic bone formation in a beta-tricalciumphosphate scaffold. Biomaterials.2010 May;31(14):3878-84.
    [15]Mankani MH, Kuznetsov SA, Avila NA, et al. Bone formation in transplants of human bone marrow stromal cells and hydroxyapatite-tricalcium phosphate:prediction with quantitative CT in mice. Radiology 2004;230:369-76.
    [16]Turhani D, Weissenbock M, Stein E, et al. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg 2007;65(3):485-93.
    [17]Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of femoral massive diaphyseal defects. Clin Orthop Relat Res.1982,(171):224-31.
    [18]Bosch P, Musgrave DS, Lee JY, et al. Osteoprogenitor cells within skeletal muscle. J Orthop Res 2000;18(6):933-44.
    [19]Issa JP, Bentley MV, Iyomasa MM, et al. Sustained release carriers used to delivery bone morphogenetic proteins in the bone healing process. Anat Histol Embryol 2008;37(3):181-7.
    [20]Kim CS, Kim JI, Kim J, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers.Biomaterials.2005 May;26(15):2501-7.
    [21]Kubler N, Urist MR. Cell differentiation in response to partially purified osteosarcoma-derived bone morphogenetic protein in vivo and in vitro. Clin Orthop Relat Res.1993 Jul;(292):321-8.
    [22]Wang EA. Bone morphogenetic proteins (BMPs)therapeutic potential in healing bony defects. Trends Biotechnol,1993,11:379-383.
    [23]Drevelle O, Faucheux N. Biomimetic materials for controlling bone cell responses. Front Biosci (Schol Ed).2013 Jan 1;5:369-95.
    [24]Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev.2008 Jan 14;60(2):184-98.
    [25]Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells:an in vitro and in vivo study. Acta Biomater 2008;4:1904-15.
    [26]Jingfeng Li, Zhenyu Lin, Qixin Zheng, et al.. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2 related peptide and type I collagen. Materials science and engineering:C,2010,30(8):1273-1280.
    [27]Liao SS, Cui FZ, Zhu Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite:nHAC/PLA. Journal of Bioactive and Compatible Polymers,2004,19(2):117-130.
    [28]Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold:Nanohydroxyapatite/collagen/poly(L-Iactide). Tissue Engineering, 2004,10(1-2):73-80.
    [29]Jeon O, Song S J, Yang H S, et al. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun,2008,369(2):774-780.
    [30]Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials,2007,28(17):2763-2771.
    [31]Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 2004; 15(3):126e36.
    [32]Chang S, Chen H, Liu J, et al. Synthesis of a potentially bioactive, hydroxyapatite-nucleating molecule. Calcif Tissue Int.2006 Jan;78(1):55-61.
    [33]Wu B, Zheng QX, Guo XD, et al. Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide. Biomed. Mater.2008; 3(4):044111.
    [34]Yuan, Q; Lu, HW; Tang, S; et al. Ectopic bone formation in vivo induced by a novel synthetic peptide derived from BMP-2 using porous collagen scaffolds. J WUHAN UNIV TECHNOL,2007; 22 (4):701-705.
    [35]Choi YS, Lee JY, Suh JS, et al. The mineralization inducing peptide derived from dentin sialophosphoprotein for bone regeneration. J Biomed Mater Res A.2013 Feb;101(2):590-8.
    [36]Chang BS, Lee CK, Hong KS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials.2000 Jun;21(12):1291-8.
    [37]Ishaug SL, Crane GM, Miller MJ, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegrable polymer scaffolds. J Biomed Mater Res.1997, 36(1):17-28.
    [38]Wu G, Liu Y, Iizuka T, et al. The effect of a slow mode of BMP-2 delivery on the inflammatory response provoked by bone-defect-filling polymeric scaffolds. Biomaterials, 2010,31(29):7485-7493.
    [1]Kolambkar YM, Boerckel JD, Dupont KM, et al.. Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone.2011 Sep;49(3):485-92.
    [2]D.S. Garbuz, B.A. Masri, A.A. Czitrom. Biology of allografting, Orthop. Clin. North Am.29 (1998) 199-204.
    [3]Hing KA. Bone repair in the twenty-first century:biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci.2004 Dec;362(1825):2821-50.
    [4]Pollock R, Alcelik I, Bhatia C, et al..Donor site morbidity following iliac crest bone harvesting for cervical fusion:a comparison between minimally invasive and open techniques. Eur Spine J.2008 Jun;17(6):845-52.
    [5]Pacaccio DJ, Stern SF. Demineralized bone matrix:basic science and clinical applications. Clin Podiatr Med Surg.2005 Oct;22(4):599-606, vii.
    [6]Gitelis S, Cole BJ. The use of allografts in orthopaedic surgery. Instr Course Lect 2002;51:507-20.
    [7]Friedlander GE. Appropriate screening for prevention of infection transmission by musculoskeletal allografts. Instr Course Lect 2000;49:615-9.
    [8]Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res.2000 Feb;(371):10-27.
    [9]Khan Y, Yaszemski MJ, Mikos AG, et al.. Tissue engineering of bone:material and matrix considerations. J Bone Joint Surg Am.2008 Feb;90 Suppl 1:36-42.
    [10]Boden SD. Bioactive factors for bone tissue engineering. Clin Orthop Relat Res.1999 Oct;(367 Suppl):S84-94.
    [11]Termaat MF, Den Boer FC, Bakker FC, et al.. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am.2005 Jun;87(6):1367-78.
    [12]Schmidmaier G, Schwabe P, Wildemann B, et al. Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. Injury.2007 Sep;38 Suppl 4:S35-41.
    [13]Garrison KR, Donell S, Ryder J, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion:a systematic review. Health Technol Assess.2007 Aug;11(30):1-150, iii-iv.
    [14]Spagnoli DB, Marx RE. Dental implants and the use of rhBMP-2. Oral Maxillofac Surg Clin North Am.2011 May;23(2):347-61, vii.
    [15]Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery:emerging safety concerns and lessons learned. Spine J.2011 Jun;11(6):471-91.
    [16]Zhenyu Lin, Zhixia Duan, Xiaodong Guo,et al. Experimental research of biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2 related peptide in vitro and in vivo. Journal of Controlled Release,2010; 144(2):190-195.
    [17]Jingfeng Li; Zhenyu Lin; Qixin Zheng; et al. Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2 related peptide combined with rat tail collagen. Biotechnology and Bioprocess Engineering,2010; 15(5):725-732
    [18]Niu XF, Feng QL, Wang MB, et al. Porous Nano-HA/Collagen/PLLA Scaffold Containing Chitosan Microspheres for Controlled Delivery of Synthetic Peptide Derived from BMP-2, Journal of Controlled Release,2009; 134(2):111-7.
    [19]Shuo Tang, Jingjing Zhao, Shuyun Xu, et al. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels. Biomed. Mater. 2012; 7(1) 015008
    [20]Jingfeng Li, Zhenyu Lin, Qixin Zheng, et al. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2 related peptide and type I collagen. Materials science and engineering:C,2010,30(8):1273-1280.
    [21]郑启新,刘苏南.煅烧牛松质骨的制备、理化性能及生物相容性研究.生物医学工程杂志.2005,22(1):95-98.
    [22](美)皮耶尔马太(Piermattei. D.L.),(美)约翰逊(Johnson, K.A.)等.犬猫骨骼与关节手术入路图谱(第4版).[M].2008年5月第1版.谢富强主译.辽宁科学技术出版社,2008.5.978-7-5381-5434-4.
    [23](德)舍比茨(Schebitz.H.),(德)维肯茨(Wilkens.H.), (德)韦布(Waibl.H.) 等.犬猫放射解剖学图谱.[M].2009年7月第1版.谢富强主译.辽宁科学技术出版社,2009.7.978-7-5381-5972-1.
    [24]Buma P, Schreurs W, Verdonschot N. Skeletal tissue engineering-from in vitro studies to large animal models. Biomaterials.2004 Apr;25(9):1487-95.
    [25]Schimandle JH, Boden SD. Spine update. The use of animal models to study spinal fusion. Spine.1994; 19:1998-2006.
    [26]Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int.2005; 16 Suppl 2:S129-38.
    [27]Liebschner MA. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials.2004;25:1697-714.
    [28]Rashid ST, Salacinski HJ, Hamilton G, et al. The use of animal models in developing the discipline of cardiovascular tissue engineering:a review. Biomaterials.2004;25:1627-37.
    [29]D.A.W. Oortgiesen, G.J. Meijer, R.B.M. de Vries, et al. Animal models for the evaluation of tissue engineering constructs In:N. Pallua, C.V. Suschek (Eds.), Tissue engineering; from lab to clinic, Springer-Verlag, Berlin (2011), pp.131-154
    [30]Aerssens J, Boonen S, Lowet G, et al. Interspecies differences in bone composition, density, and quality:potential implications for in vivo bone research. Endocrinology. 1998; 139:663-70.
    [31]Gong JK, Arnold JS, Cohn SH. Composition of trabecular and cortical bone. Anat Rec. 1964;149:325-32.
    [32]Cook DS, Rueger DC. Preclinical models of recombinant BMP induced healing of orthopedic defects. In:Vukicevic S, Sampath KT (eds) Bone morphogenetic proteins from laboratory to clinical practice.Birkhauser Verlag, Basel (2002), pp 121-145
    [33]Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res.1986 Apr;(205):299-308.
    [34]Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniomaxillofac Surg.1990;1:60-8.
    [35]Key J. The effect of local calcium depot on osteogenesis and healing of fractures. J Bone Joint Surg Am 1934; 16-A:176-184.
    [36]Li J, Hong J, Zheng Q, et al. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res.2011 Nov;29(11):1745-52.
    [37]Keller S, Nickel J, Zhang JL,et al. Molecular recognition of BMP-2 and BMP receptor IA. Nat Struct Mol Biol.2004 May;11(5):481-8.
    [38]Butler WT. Dentin matrix proteins. Eur J Oral Sci 1998;106 (Suppl 1):204-210.
    [1]Pierce W M, Leonard W C. Bone-targeted inhibitors of carbonic anhydrase:EP,201057 [P].1986-11-12.
    [2]Pierce WM Jr, Waite LC. Bone-targeted carbonic anhydrase inhibitors:effect of a proinhibitor on bone resorption in vitro. Proc Soc Exp Biol Med.1987 Oct; 186(1):96-102.
    [3]R.P. Gehron, A.L. Boskey, in:R. Marchus, D. Feldman (Eds.), Osteoporosis, Raven Press, New York,1996, pp.127-142.
    [4]Shea JE, Miller SC. Skeletal function and structure:implications for tissue-targeted therapeutics. Adv Drug Deliv Rev.2005;57(7):945-57.
    [5]M. Sato, W. Grasser, N. Endo, R.et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure, J. Clin. Invest.88 (1991) 2095-2105.
    [6]J. Fang, H. Nakamura, H. Maeda, The EPR effect:unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev.63 (2010) 136-151.
    [7]M.O. Griffin, G. Ceballos, F.J. Villarreal. Tetracycline compounds with non-antimicrobial organ protective properties:possible mechanisms of action, Pharmacol. Res.63 (2011) 102-107.
    [8]J.F. Madison, Tetracycline pigmentation of teeth, Arch. Dermatol.88 (1963) 58-59.
    [9]Perrin R A. Binding of tetracycline to bone [J]. Nature,1965,208(11):787-788.
    [10]Steendijk R. Studies on the mechanism of the fixation of the tetracyclines to bone. Acta anat,1964,56:368-382
    [11]Bentz H, Rosen D. Targeted delivery of bone growth factors[P]. EP0512844A1, 1992-11-11
    [12]Bando N, Kawai T, Hamazki T, et al. Preparation of tetracycline derivatives as collagenase inhibitors[P]. JP,04178359,1992-06-25
    [13]Neale JR, Richter NB, Merten KE, et al. Bone selective effect of an estradiol conjugate with a novel tetracycline-derived bone-targeting agent. Bioorg Med Chem Lett.2009 Feb 1;19(3):680-3.
    [14]S. Nasim, A. Vartak, W.M. Pierce Jr., et al. Improved and scalable synthetic route to the synthon 17-(2-carboxyethyl)-1,3,5 (10)-estratriene:an important intermediate in the synthesis of bone-targeting estrogens, Synth. Commun.2010,40:772-781.
    [15]Lojodice G, Vento R, Cinque NA, Gilli G. Effect on dental and skeletal development of administration of tetracycline in the infant. Minerva Pediatr.1965 Sep 8; 17(25):1358-65.
    [16]Fleisch H, Russell RG, Bisaz S, et al. The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution. Calcif Tissue Res. 1968:Suppl:10-10a.
    [17]De Ligny CL, Gelseman WJ, Tji TG, et al. Bone-seeking radiopharmaceuticals. Nucl Med Biol 1990,17:161-179
    [18]Fleisch H. Bisphosphonates:mechanisms of action. Endocr Rev.1998 Feb;19(1):80-100.
    [19]Uludag H. Bisphosphonates as a foundation of drug delivery to bone. Curr Pharm Des. 2002;8(21):1929-44.
    [20]Fujisaki J, Tilunage Y Kagayama A,et al.Diphosphonate pharmaceutical conjugates with high bioavailability in bone [P]. Pat:02104593,1990-11-01.
    [21]Herczegh P, Buxton TB, McPherson JC 3rd, et al. Osteoadsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J Med Chem.2002 May 23;45(11):2338-41.
    [22]Hirabayashi H, Takahashi T, Fujisaki J, et al. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the Osteotropic Drug Delivery System (ODDS). J Control Release.2001 Jan 29;70(1-2):183-91.
    [23]Wang Y, Metcalf CA 3rd, Shakespeare WC, et al. Bone-targeted 2,6,9-trisubstituted purines:novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg Med Chem Lett.2003 Sep 15;13(18):3067-70.
    [24]Gil L, Han Y, Opas EE, et al. Prostaglandin E2-bisphosphonate conjugates:potential agents for treatment of osteoporosis. Bioorg Med Chem.1999 May;7(5):901-19.
    [25]Ziebart T, Pabst A, Klein MO, et al. Bisphosphonates:restrictions for vasculogenesis and angiogenesis:inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig.2011 Feb;15(1):105-11.
    [26]Marx RE, Sawatari Y, Fortin M. Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws:risk factors, recognition, prevention,and treatment. J Oral Maxillofac Surg.2005 Nov;63(11):1567-75.
    [27]Ishizaki J, Waki Y, Takahashi-Nishioka T, et al. Selective drug delivery to bone using acidic oligopeptides. J Bone Miner Metab.2009;27(1):1-8.
    [28]Butler WT. The nature and significance of osteopontin.Connect Tissue Res 1989, 23:123-136.
    [29]Franzen A, Heinegard D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J,1985,232:715-724.
    [30]Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence.Proc Natl Acad Sci U S A.1986 Dec;83(23):8819-23.
    [31]Nagata T, Bellows CG, Kasugai S, et al. Biosynthesis of bone proteins [SPP-1 (secreted phosphoprotein-1, osteopontin), BSP (bone sialoprotein) and SPARC (osteonectin)] in association with mineralized-tissue formation by fetal-rat calvarial cells in culture. Biochem J.1991 Mar 1;274 (Pt 2):513-20.
    [32]Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol.1992 Sep;152(3):467-77.
    [33]Kasugai S, Fujisawa R, Waki Y, et al. Selective drug delivery system to bone:small peptide (Asp)6 conjugation. J Bone Miner Res.2000 May;15(5):936-43.
    [34]Yokogawa K, Miya K, Sekido T, et al. Selective delivery of estradiol to bone by aspartic acid oligopeptide and its effects on ovariectomized mice.Endocrinology.2001 Mar;142(3):1228-33.
    [35]Wang D, Miller S, Sima M, et al. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug Chem.2003 Sep-Oct;14(5):853-9.
    [36]Sekido T, Sakura N, Higashi Y, et al. Novel drug delivery system to bone using acidic oligopeptide:pharmacokinetic characteristics and pharmacological potential. J Drug Target. 2001 Apr;9(2):111-21.
    [37]L. Ouyang, W. Huang, G. He, et al. Bone targeting prodrugs based on peptide dendrimers, synthesis and hydroxyapatite binding in vitro, Lett. Org. Chem.2009,6, 272-277.
    [38]Takahashi T, Yokogawa K, Sakura N, et al. Bone-targeting of quinolones conjugated with an acidic oligopeptide. Pharm Res.2008 Dec;25(12):2881-8.
    [39]Ouyang L, Ma L, Li Y, et al. Synthesis of water-soluble first generation Janus-type dendrimers bearing Asp oligopeptides and naproxen. ARKIVOC, II,2010,256-266
    [40]Ouyang L, He D, Zhang J, et al. Selective bone targeting 5-fluorouracil prodrugs: synthesis and preliminary biological evaluation. Bioorg Med Chem.2011 Jun 15;19(12):3750-6.
    [41]Montano AM, Oikawa H, Tomatsu S, et al. Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Mol Genet Metab.2008 Jun;94(2):178-89.
    [42]Nishioka T, Tomatsu S, Gutierrez MA, et al. Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab.2006 Jul;88(3):244-55
    [43]Sawyer AA, Weeks DM, Kelpke SS, et al. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials.2005 Dec;26(34):7046-56.
    [44]Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials.2007 Jan;28(3):383-92.
    [45]Culpepper BK, Phipps MC, Bonvallet PP, et al. Enhancement of peptide coupling to hydroxyapatite and implant osseointegration through collagen mimetic peptide modified with a polyglutamate domain. Biomaterials.2010 Dec;31(36):9586-94.
    [46]Culpepper BK, Bonvallet PP, Reddy MS, et al. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone. Biomaterials. 2013 Feb;34(5):1506-13.
    [47]张昱,彭莉,潘钧铸等.微波辅助固相合成苄基保护的天冬氨酸六肽[J].华西药学杂 志,2009,24(4):375-376.
    [48]Yokogawa K, Toshima K, Yamoto K, et al. Pharmacokinetic advantage of an intranasal preparation of a novel anti-osteoporosis drug, L-Asp-hexapeptide-conjugated estradiol. Biol Pharm Bull.2006 Jun;29(6):1229-33.
    [49]Thompson WJ, Thompson DD, Anderson PS, et al. Polymalonic acids as bone affinity agents [P]. Eur Pat:341961,1989-11-15.
    [50]Willon TM, Paul SC, Anthony DB, et al. Bone targeted drugs 1. Identification of heterocycles with hydroxyapatite affinity [J]. Bioorg Med Chem Lett, 1996,6(9):1043-1046.
    [51]Murphy MB, Hartgerink JD, Goepferich A, et al. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties.Biomacromolecules.2007 Jul;8(7):2237-43
    [52]Wang D, Miller SC, Shlyakhtenko LS, et al. Osteotropic Peptide that differentiates functional domains of the skeleton. Bioconjug Chem.2007 Sep-Oct;18(5):1375-8.
    [53]Hu Q, Li B, Wang M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:a potential material as internal fixation of bone fracture. Biomaterials.2004 Feb;25(5):779-85.
    [54]Dorozhin SV. Bioceramics of calcium orthoposphates[J]. Biomaterials,2010,31 (7): 1465-1485.
    [55]Wang D, Miller SC, Kopeckova P, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev.2005 May 25;57(7):1049-76.
    [56]Gao Weimin, Ruan Chengxiang, Chen Yunfa. Effects of acidic amino acids on hydroxyapatite morphology [J]. Key Eng Mater,2007,336(part 3):2096-2099.
    [57]Fujishiro Y, YABUKI H, KAWAMURA K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions [J]. J Chem Technol Biotechnol,1993,57(4):349-353.
    [58]Cao Liyun, Zhang Chuanbo, Huang Jianfeng. Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation [J]. Ceram Int,2005, 31(8):1041-1044.
    [59]郭大刚,付涛,徐可为.短棒状纳米羟基磷灰石的湿法合成及表征[J].硅酸盐学报,2002,30(2):190-192.
    [60]刘敬肖,史非,周靖等.模拟体液中仿生羟基磷灰石超细粉的制备及表征[J].硅酸盐学报,2006,34(3):334-339.
    [61]Ashok M, Sundaram N M, Kalkura S N. Crystallization of hydroxyapatite at physiological temperature [J]. Mater Lett,2003,57(13):2066-2070.
    [62]Gao Weimin, Li Qunyan, Ruan Chengxiang, et al. Morphology tailoring of hydroxyapatite nanoparticles by hydrothermal processing with amino acids [J]. Key Eng Mater,2005,280(part 2):1533-1536.
    [63]Xiao Xiufeng, He Dan, Liu Fang, et al. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis [J]. Mater Chem Phys,2008,112(3):838-843.
    [64]黄志良,刘羽, 王大伟,等.胶原蛋白模板诱导片状纳米羟基磷灰石(HA)的仿生合成[J].材料导报,2002,16(10):69-71.
    [65]Quan Wu, Xianglin Zhang, Bin Wu, et al. Fabrication and characterization of porous HA/β-TCP scaffolds strengthened with micro-ribs structure. Materials Letters,2013,92: 274~277.
    [66]LeGeros RZ, LeGeros JP, in:L.L. Hench, J. Wilson (Eds.). An Introduction to Ceramics, World Scientific, Singapore,1993:1-7.
    [67]Manjubala I,Kumar TS. Effect of TiO2-Ag2O additives on the formation of calcium phosphate biocera-mics.Biomaterials,2000,21 (19):1995-2002.
    [68]Yewle JN, Wei Y, Puleo DA, et al. Oriented immobilization of proteins on hydroxyapatite surface using bifunctional bisphosphonates as linkers.Biomacromolecules. 2012Jun 11;13(6):1742-9.
    [69]Yewle JN, Puleo DA, Bachas LG. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials.2013 Apr;34(12):3141-9.
    [70]Gitelis S, Cole BJ. The use of allografts in orthopaedic surgery. Instr Course Lect 2002;51:507-20.
    [71]Zang H, Liu Y, Chen J, et al. An experimental research on different temperature sintered bone as carrier of bone morphogenetic protein. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2006 Apr;23(2):366-9. [Article in Chinese]
    [72]Katoh T, Sato K, Kawamura M, et al. Osteogenesis in sintered bone combined with bovine bone morphogenetic protein. Clin Orthop Relat Res.1993 Feb;(287):266-75.
    [73]Lin FH, Liao CJ, Chen KS, et al. Preparation of betaTCP/HAP biphasic ceramics with natural bone structure by heating bovine cancellous bone with the addition of (NH(4))(2)HPO(4). J Biomed Mater Res.2000 Aug;51(2):157-63.
    [74]赵强,齐进,李国松等.趋骨性雌二醇/煅烧骨复合物对兔桡骨临界性缺损的修复效果[J].中国矫形外科杂志,2009,17(5):388-392.
    [75]W. Zhang, S.S. Liao, F.Z. Cui. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials 2003; 15:3221-3226
    [76]Liao S S, Cui F Z, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2004,69B(2):158-165.
    [77]Liao S S, Cui F Z, Zhu Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite:nHAC/PLA. Journal of Bioactive and Compatible Polymers,2004,19(2):117-130.
    [78]Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold:Nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering, 2004,10(1-2):73-80.
    [79]Synthetic bone. Nature Materials 2003; 2:566-566
    [80]John A, Hong L, Ikada Y, et al.. A trial to prepare biodegradable collagen-hydroxyapatite composites for bone repair. J Biomater Sci Polym Ed.2001;12(6):689-705.
    [81]Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials.2001 Jul;22(13):1705-11.
    [82]Itoh S, Kikuchi M, Takakuda K, et al. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J Biomed Mater Res.2001 Mar 5;54(3):445-53.
    [83]Itoh S, Kikuchi M, Koyama Y, et al. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials.2002 Oct;23(19):3919-26.
    [84]Culpepper BK, Morris DS, Prevelige PE, et al. Engineering nanocages with polyglutamate domains for coupling to hydroxyapatite biomaterials and allograft bone. Biomaterials.2013 Mar;34(10):2455-62.
    [85]Luhmann T, Germershaus O, Groll J, et al. Bone targeting for the treatment of osteoporosis. J Control Release.2012 Jul 20;161(2):198-213.
    [86]Vaananen K. Mechanism of osteoclast mediated bone resorption-rationale for the design of new therapeutics. Adv Drug Deliv Rev.2005 May 25;57(7):959-71.
    [87]Toyomura T, Murata Y, Yamamoto A, et al. From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem.2003 Jun 13;278(24):22023-30.
    [88]Palokangas H, Mulari M, Vaananen HK. Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J Cell Sci.1997 Aug;110(Pt15):1767-80.
    [89]Quinn JM, Horwood NJ, Elliott J, et al. Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. J Bone Miner Res. 2000Aug;15(8):1459-66.
    [90]孙世荃,马洪强,康悦等.同种异体骨移植后骨吸收和破骨细胞的形态学特点[J].中国骨肿瘤骨病,2006,5(5):276-280
    [91]Hruby M, Etrych T, Kucka J, et al. Hydroxybisphosphonate-containing polymeric drug-delivery systems designed for targeting into bone tissue. Journal of Applied Polymer Science 2006,101:3192-3201
    [92]Schoenmakers RG, van de Wetering P, Elbert DL, et al. The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J Control Release.2004 Mar 5;95(2):291-300.
    [93]E.E. Falco, M. Patel, J.P. Fisher. Recent developments in cyclic acetal biomaterials for tissue engineering applications, Pharm. Res.25 (2008) 2348-2356.
    [94]Li Z, Hou WS, Escalante-Torres CR, et al. Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem.2002 Aug 9;277(32):28669-76.
    [95]Lecaille F, Choe Y, Brandt W, et al. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry.2002 Jul 2;41(26):8447-54.
    [96]Lecaille F, Bromme D, Laimanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie.2008 Feb;90(2):208-26.
    [97]Segal E, Pan H, Ofek P, et al. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One.2009;4(4):e5233
    [98]Segal E, Pan H, Benayoun L, et al. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances.Biomaterials.2011 Jul;32(19):4450-63.
    [99]Pan H, Kopeckova P, Wang D, et al. Water-soluble HPMA copolymer--prostaglandin El conjugates containing a cathepsin K sensitive spacer. J Drug Target.2006 Jul;14(6):425-35
    [100]Pan H, Liu J, Dong Y, et al. Release of prostaglandin E (1) from N — (2 hydroxypropyl) methacrylamide copolymer conjugates by bone cells [J]. Macromol Biosci, 2008,8(7):599-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700