用户名: 密码: 验证码:
SiO_2及Sn:SiO_2溶胶—凝胶波导材料的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation of SiO_2 and Sn: SiO_2 Waveguide Materials by Sol-gel and the Studies of Its Characteristics
  • 作者:周翠玲
  • 论文级别:硕士
  • 学科专业名称:微电子学与固体电子学
  • 学位年度:2004
  • 导师:张玉书
  • 学科代码:080903
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-07-01
摘要
溶胶-凝胶技术是一种以金属醇盐为原料,在较低的温度条件下进行,经历水解、缩聚、陈化、干燥以及致密化等步骤,由溶胶转变凝胶,进而烧结制成玻璃、陶瓷以及其它无机材料的工艺方法。本论文的主要工作是光波导用SiO2和掺Sn的SiO2膜的溶胶-凝胶法制备过程,并且对它们的特性进行了测试分析。还研究了Sn:SiO2膜的光敏性,摸索了它在紫外光照射下折射率变化的规律,为紫外写入光波导图形奠定了基础。
    论文第一部分我们研究了用溶胶-凝胶工艺制备均匀平整、透明、低损耗的SiO2薄膜的过程。首先,我们对工艺过程进行了详细的研究,比较了溶胶时R值(反应物的比例)、PH值、共溶剂用量、烧结温度以及甩胶条件等对薄膜形态和性质的影响,给出制备SiO2薄膜的最佳的工艺条件。其次,我们对薄膜表面特性及其组分进行了研究: 分别用AFM和SEM观察薄膜表面的形貌特征。在良好的实验条件下,可以制备表面平整光滑,粗糙度在1nm左右的薄膜;用VASE测量其折射率、消光系数以及其厚度;我们制备的单层膜厚度为200-400nm,15次甩胶和烧结之后厚度为4.62μm,所制备的薄膜在1550nm导波窗口的折射率可以达到1.45,消光系数低于VASE的测量精度(10-7),相当于吸收损耗小于0.07dB/cm;薄膜在高温处理时存在醇和水的大量释放,烧结之后,薄膜中的C元素几乎完全挥发出去,经过XPS测试其组分,我们得到了纯净的SiO2;薄膜的XRD图展示了薄膜的结构形态。在适当的烧结条件下,可以制备玻璃态的二氧化硅膜。
    论文的第二部分我们在制备纯的二氧化硅膜的基础上,通过加入SnCl4·5H2O前驱体制备了含Sn量不同的Sn:SiO2 薄膜。实验发现:掺杂Sn元素之后,薄膜的结构和性质会发生了一定变化,Sn的掺入可以引起薄膜折射率在0.01量级发生变化,热处理后的薄膜在紫外光照下还会产生0.001量级的折射率变化,Sn的掺入所引起的折射率变化程度明显地大于Ge等其它元素;XPS测试证明了Sn:Si的摩尔比在实验前后基本上不发生变化,并且薄膜中只有Si、O、Sn三种元素,O:Si的摩尔比略小于纯的SiO2膜;XRD图给出了掺杂1.2%和掺杂1.0%时SnO2的结构变化,说明Sn掺杂量高于1.0%时出现SnO2析晶现象;用椭偏仪测量出薄膜的消光系数和折射率随波长的变
    
    
    化,说明在光通信波长窗口处,所制备的材料的吸收非常小。此外,我们从理论上讨论了SnO2对SiO2薄膜的紫外诱导增敏机制,并且通过实验摸索了Sn的含量、紫外曝光的时间、曝光强度对折射率变化的作用规律,为紫外诱导折射率变化制作波导图形提供了良好的研究基础。关于这方面的内容还需要进一步的研究,尤其是Sn:SiO2 厚膜的紫外折变过程。
    溶胶-凝胶技术制备平面波导层的突出优点就是成本低,所用设备简单,对实验条件要求不是很苛刻,成膜方法简单,且可以实现良好的均匀性和微观可控;这种方法可以方便地对波导层进行掺杂,并且可以灵活性地调节所制备波导层厚度和折射率等参数,制备波导的各个部分;。当然,关于如何提高溶胶-凝胶技术的成膜效率和制备周期的工作还需要继续进行,我们还可以用这种方法开发更适合作为波导层的新型材料。
A typical sol-gel process proceeds through hydrolysis and polycondensation of metal oxide precursors such as tetraethyl orthosilicate(TEOS)in ,usually ,an alcoholic solution containing an acid or base catalyst, and molding and gelation of sol, followed by aging and drying of gel at ambient temperature ,to afford inorganic materials such as silica. In my dissertation, I study the process of Silica and Sn:Silica film fabrication and their characteristics. we also study the theory of the refractive index change induced by UV-irradiation.
    In the first part of my paper, we explain the seven procedures of sol-gel with the example of silica film preparation and tell how to give out homogenous, transparent and low loss silica film . First ,we analyse all kinds of the factors that can affect the resulting quality of the thin film, such as the ratio of the reactants, pH value, drying and annealling process ,spin coating conditions and so on, finding out the best parameters of film growth procedures . Second , we study the characteristics and the composition of the film. AFM and SEM show us the surface pattern of the film ,in ideal conditions ,we can fabricate smooth film with little roughness less than 1nm. Here we use VASE to collect the data the of the thichness ,refractive index and absorption coefficient of the film .The single layer of the film is 200-400nm ,but after 15 times of spin coating and annealing ,the final thickness of the silica film can be 4.62ūm ,and film made under certain condition can reach the refractive index of 1.45 with the absorption coefficient as low as 0.07dB/cm,below the measurement precision of VASE (10-7)..The element C will evaporate from the film through annealing ,along with the release of alcohol and water.We can achieve pure SiO2 film verified by XPS.Figures of XRD shows us the structure of film ,under proper annealing condition, silica glass is possible to get.
    In the second part of my dissertation we fabricate Sn:SiO2 thin film on the ground of silica film preparation by adding SnCl4·5H2O precursor to induce the element Sn in different amount . Experiments show that the constructure and characteristics fo the film have change after the induce of Sn.The refractive index
    
    
    of the film increases with the increasing amount of the Sn in 0.01 scale ,what is more appealing is that the refractive index of the annealed Sn:SiO2 film can also increase in a 10-3 scale under uv irradiation ,and the extent of refractive index change induced by Sn is much greater than other element such as Ge. we identify the ratio of Sn:Si almost remain the same through the process of film growth by XPS, and there are only three kinds of elements Si,O,Sn, the molar ratio of O :Si is a little bigger than that in pure SiO2 film. XRD figures of the films doped with 1%and 1.2% mol Sn show different film structure morphology. VASE show us the thickness、refractive index and absorption coefficient.,from which ,we can see in the window of present optical communication (-1550nm), the absorption of the material we get is very low ,thus can be considered to practical use. In the end ,we discuss the cause of the photosensitivity of the film and explore the variation of the time and intensity of the KrF laser irradiation with the refractive index change.All the results of these experiments can give basic study of directly imprinting waveguide devices on photosensitive film materials . Of course, the UV-induced refractive index change of thick Sn:SiO2 film (such as several micrometers) needs further studies.
    Sol-gel is a smart technique and can product ideal film materials by altering many of its parameters .Compared to the conventional melting for glass, the sol-gel process offers several obvious advantages:(1)Low cost and inexpensive equipment ;(2)High homogeneity and purity of resulting materials achieved by the control of the structure in molecule or atom scale at the beginning of the preparation ;(3)Possibility of various forming process to alter the thickness or refrective index and add active element to c
引文
[1.1] 现代通信中的高速公路,华中理工大学.
    [1.2] 光纤通信.
    [1.3] H. Takahashi, I. Nishi, Y.Hibino, 10GHz spacing optical frequency division multiplexer based on arrayed waveguide grationg, Electron. Lett., (1992), 28, 380.
    [1.4] W. Liu, Arrayed waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, Electron. Lett., (1992), 28, 379.
    [1.5] M. Kawachi, Silica waveguides on silicon and their application to integrated optic components, Optical and Quantum Electronics, (1990), 22, 391.
    [1.6] 王道义,严瑛白,全国藩,Phasar解复用器的原理及其性能综述与分析,光通信技术,2000,Vol.24. No.3 ,213.
    [1.7] K.Okamoto, Recent progress of integrated optics planar lightwave circuits, Optical and Quantum Electronics, 31(1999) 107-129.
    [1.8] 张乐天,吴远大,邢华,李爱武,AWG用Si基SiO2波导材料的制备。光电子激光,(2002),13(8),867.
    [1.9]《半导体器件工艺及参数测量实验》,吉林大学电子科学系半导体器件实验室编。第6页。
    [1.10] E.Zelmon, E.Jackson.et al. A low-scattering graded-index SiO2 planar optical waveguide thermally grown on silicon. App.phys.lett.(1983), 42,565.
    [1.11] R.Herino,G.Bomchil, et al. Porosity and pore size distributions of porous silicon layers.J.Electrochem.Soc,(1987),134(8),1994.
    [1.12] OU.Haiyan,YANG.Qin-qing,Lei.Hong-bing,et al.Thick SiO2 layer produced by anodisation. Electron .Lett.(1999),35(22),1950.
    
    [1.13] 欧海燕,杨沁清,雷红兵等,用氧化多孔硅方法制备厚的二氧化硅膜及其微观分析。半导体学报,(2000),21(3),260.
    [1.14] G.Grand, J.P.Jadot,et al, Low-loss PECVD silica channel waveguides for optical communication. Electron.Lett.(1990),26(25),2135.
    [1.15] M.Kawachi,M.Yasu,T.Edahiro. Fabrication of SiO2-TiO2 glass planar optical waveguides by Flame Hydrolysis Deposition. Electron.Lett.(1983), 19(15),583.
    [1.16] T.Kominato,Y.Ohmori,et al. Very low-loss GeO2 doped silica waveguides fabricated by flame hydrolysis deposition method. Electron.Lett.(1990),26(5),327.
    [1.17] H.Dislich.Ahagecoand. Chemic,(1971),10(6),363.
    [1.18] 潘建平,彭开萍等,溶胶-凝胶法制备薄膜涂层的技术与应用,腐蚀与防护,2001,Vol.22, No.8.
    [1.19]Soon-Ryong Park, et al., Design and fabrication of polarization-insensitive hybrid sol-gel arrayed waveguide gratings, Opt Lett. (2003), 28 (6), 381.
    [1.20] W.Huang, et al. “Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier”, IEEE Photonics Tech. Lett. 14 (7), 959 (2002).
    [2.1] A.S.Holmes, R.R.A.Syms, Ming Li, and Mino Green. “Fabrication of buried channel waveguides on silicon substrates using spin-on glass”, Applied optics , 1993, vol 32, No.25 , 4916-4921.
    [2.2] K.Gaff, A.Durandet, T.Weijers, J.Love and R.Boswell. “Strong photosensitivity in tin –doped silica films”, Electronics Letters , 27th April 2000 ,Vol.36, No.9, 842.
    [2.3] R.R.A.syms, A.S.Holmes, W.Huang, V.M.Schneider and M.Green. “Development of the SC-RTA process for fabrication of sol-gel based slica-on –silicon integrated optical components”. Journal of Sol-gel Science and
    
    
    Technology, 13,509-516(1998).
    [2.4] Doctor Dissertation of Jilin University , China .“Improvement and application of Sol-gel technique”. Yahong.Zhang. 6-9.
    [2.5] Chen Yi, Shen Jie, Xu Wei, Yan Xuejian, Zhang Zhuangjian, Hua Zhongyi, “Preparation of Si OF low dielectric constant thin film by Sol-gel process”, Vacuum Science and Technology , 2002,Vol 22, No 1, 10.
    [2.6] 潘建平等,溶胶-凝胶法制备薄膜涂层的技术与应用,腐蚀与防护,2001 ,22(8),339.
    [2.7]杨帆,沈军等,溶胶-凝胶法制备SiO2/ TiO2 多层膜工艺研究,同济大学。
    [2.8] 杨南如,余桂郁,溶胶-凝胶法工艺[J]. 硅酸盐通报, 1993(6),60.
    [2.9] Doctor Dissertaion of Jilin University , China .“Improvement and application of Sol-gel technique”. Yahong.Zhang.12-16.
    [2.10] 杨南如,余桂郁,溶胶-凝胶法原料制备[J]. 硅酸盐通报,1992(4),50.
    [2.11] Briuker .C.J., Schere.G.W, “Sol-gel Science --- the physics and chemistry of S-G processing[M] ” Academic press, INC,1990.
    [2.12] Doctor Dissertaion of Jilin University , China .“Improvement and application of Sol-gel technique”. Yahong.Zhang.20-21.
    [2.13] 铁军民等,基于溶胶-凝胶工艺的一种功能性杂化材料研究,
    西安交通大学学报,2002 ,36(3),313.
    [2.14] J.Zarzycki et al, Synthesis of Glasses from Gel&The problem of Monolithic Gels[J], J.Mater.Sci, 1982,17,3371-3379.
    [2.15] 甘国友等,溶胶-凝胶法薄膜制备工艺及其应用,材料导报,1996,22(1),142.
    
    
    
    【2.16】李彬等,溶胶一凝胶法薄膜科学与技术的未来与发展,材料学报,1992
     (6),42.
     【2.17] N.Chiodini,EMoraz_zoni,A.Paleari,R.Sconi’and C~Spinolo.“S01.gel
     synthesis of monolithic tin—doped silica glass”, J. Mater. Chem,
     1999,9,2653—2658.
     【2.18】S.M.Wiederhom et al,Stress Corrosion and Static Fatigue of Glass[J],
     J.Am.Ceram.Soc,1970,53(10),543-548.
     【2.19】卢旭晨等,陶瓷薄膜的溶胶一凝胶法制备【J],中国陶瓷,1989,35(1),
     1.
     【3.1】K.Takada,M.Abe,and K.Okamoto.Low-cross-talkpolarization-insensitive
     10-GHz-spaced 128-channelarrayed-waveguide grating multiplexer-demultiplexer
     achieved、withphotosensitive phase adjustment,Optics Letters,26(2001):64.
     【3.2】R.R.A.syms,A.S.Holmes,W.Huang,VM.Schneider and M.Green.
    “Development of the SC·RTA process for fabficmion of Sol-gel based slica-on
    -silicon integrated optical components”.Journal of Sol—gel Science and
     Technology,13,509—5 16(1998).
    【3.3】P.N.Kumta,M.A.Sriram,“Novel low-temperature synthesis of glasses and
     glass—ceramics in the B203一Si02-P205 system”,Journal of Materials science A
     28(1993),1097-1106.
    [3.4】张义华等,纳米Sn02的制备及其气敏特性分析,传感器技术,1999,Vol
     18,1.
    【3.5】李爱武硕士论文,5.
    【3.6】GBrambilla,V.pruneri and L.Reekie,“Photorefractive index gratings in
     Sn02:Si02 optical fibers”,Applied Physics LeRers,2000,Vol 76,No.7,807.
    【3.7】N.Chiodini,F.Meinardi,EMorazzoni and A.Paleariet al,Phys.Rev.B 58,
    9615(1998).
    
    
    
    【3.8】K.O.Hill,Y.Fujii,D.C.Johnson,eta1.,Appl.Phys.Lett,(1978),32,647—649.
    【3.9】D.EHang and P_stj.Russell,Opt.Lett.(1991),15,102.
    [3.10】Junji Nishii,Hiroshi Yamanaka,et a1.,Appl.Phys.Lett.(1994),64,282.
    【3.11】E.J.Friebele and D.L.Griscom,in Proceedings of the Materials Research
    Society Symposium(Materials Research Society,Pittsburgh,Pa.,(1 986),3 1 9.
    【3.12】D.EHand and ESt.J.Russell,Opt.Lett.(1990),15,12.
    【3.1 3】D.L.Williams,S.T.Davey,et a1.,Electron.Lett.(1 992),28,369.
    [3.14】R.M.Atkins,V.Mizrahi and T.Erdogan,Electron.Lett.,(1993),29,385.
    【3.1 5】J.Pbemardin and N.M.Lawandy,Opt.Commun.(1 990),79,1 94.
    【3.16]N.Chiodini,EMorazzoni,A.Paleari,R.Scotti and GSpinolo,Sol—gel
     synthesis of monolithic tiIl-doped silica glass.,J.Mater.Chem,1 999,9,2653.
    【3.17】Hideo Hosono,Junji Nishiii,Optics Letters,(1999),24,1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700