用户名: 密码: 验证码:
碳纳米管/聚甲基丙烯酸甲酯复合材料的耐磨损性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)由于具有优异的物理、力学性能,在诸多领域具有广阔的应用前景,其中一个重要领域是以碳纳米管作为增强相,制备高强轻质复合材料。本文采用原位聚合方法将经酸化处理的碳纳米管,借助超声设备充分分散到甲基丙烯酸甲酯(MMA)溶液中,制备一系列聚甲基丙烯酸甲酯(PMMA)复合材料试样,并研究了碳纳米管的加入对试样的耐磨损性的影响。
     对酸化处理前后的碳纳米管及其复合材料进行了傅立叶红外吸收光谱分析、Zeta电势分析,扫描电镜和光学显微镜观察;依据GB/T6739—1996规定进行硬度测试,采用砝码质量法评价复合材料的耐磨损性。分析结果表明:混酸处理后,碳纳米管附带了-OH、-COOH等极性基团;酸化处理碳纳米管的Zeta电势绝对值要大于未处理碳纳米管电势绝对值;经混酸处理后,碳纳米管被切短,定向碳纳米管束状结构被破坏,碳纳米管以单管形态分散于基体中,碳纳米管表面包覆着PMMA;碳纳米管含量适中时,基体中的有机相与无机相相容性较好;含量过高时,无机相会发生团聚,团聚体被PMMA包覆;PMMA复合材料硬度随纳米材料含量的增加而提高。
     砝码质量法耐磨损性测试结果表明:碳纳米管的加入可提高PMMA复合材料的耐磨损性和耐划痕性;①当Aligned MWNTs 1020用量为0.7%时,复合材料的耐磨损性能提升54%;②当S.MWNTs 1020用量为1.0%时,复合材料的耐磨损性能提升42.9%;③当L.MWNTs 1020用量为1.0%时,复合材料的耐磨损性能提升61.9%。
Owing to their unique and superior physical and mechanical properties, carbon nanotubes (CNTs) hold a great promise of extensive applications in various fields. Among others, CNTs have been thought as a very promising candidate as the ideal reinforcing fibers for advanced composites with high strength and low density. In this paper, the in-situ polymerization method was adopted in preparation of serial PMMA samples with nano-materials such as CNTs, the nano-materials can disperse sufficiently in MMA solution by ultrasonic-mechanical method and wear resistance of the composites were investigated.
     The analysis methods such as FTIR, Zeta potential, SEM, and OM techniques were used for estimating CNTs and its composites. According to GB/T6739-1996, the hardness test named weights method was used to evaluate the wear-insistance of composites. The results show that -OH and -COOH groups were attached to the acid mixture-treated aligned CNTs; the acid mixture-treated aligned CNTs had higher |ζ| potential; the CNTs was shorter, and bundle-like structure of the aligned CNTs was destroyed after the acid treatment, and the acid mixture- treated aligned CNTs could disperse in the PMMA matrix well in single nanotubes; when the CNTs content reached to specific value, the organic parts and inorganic parts had best compatibility in the matrix; when the CNTs content is higher, the inorganic parts could be gathered; with addition of the nano-materials, the hardness of PMMA composite was enhanced.
     The results of wear-resistance test by weights method shows that the addition of CNTs can enhance the wear-resistance and the scratch-resistance of PMMA composite;①when the content of aligned MWNTs 1020 was 0.7% in PMMA, measured results in weights show that wear resistance of the composites was enhanced and increased by 54% at most;②when the content of S.MWNTs 1020 was 1.0% in PMMA, measured results in weights show that wear resistance of the composites was enhanced and increased by 42.9% at most;③when the content of L.MWNTs 1020 was 1.0% in PMMA, measured results in weights show that wear resistance of the composites was enhanced and increased by 61.9% at most.
引文
[1]阎利,黄承亚,王绍东.有机玻璃增韧改性的研究进展[J].中国塑料, 2001, 15(11): 10-14.
    [2]马占镖.甲基丙烯酸脂树脂及其应用[M].北京:化学工业出版社, 2002: 1-22, 78-90.
    [3]徐德仁,刘艳东.国内外甲基丙烯酸甲酯产业发展前景分析[J].化工技术经济, 2005, 23(4): 16-19.
    [4]钱汉英,王秀娴.塑料加工实用技术问答[M].北京:机械工业出版社, 2004: 73.
    [5]周维祥.塑料测试技术[M].北京:化学工业出版社, 2003: 25-60.
    [6]王经武.塑料改性技术[M].北京:化学工业出版社, 2004: 15-66.
    [7]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社, 2001: 1-9, 34-107.
    [8]李久盛.摩擦学的最新进展和发展趋势[J].润滑油与燃料, 2007, 17(1): 1-10.
    [9]赵运才,蔡伟松,李伟.摩擦学的研究与发展[J].江西理工大学学报, 2007, 28(3): 29-31.
    [10]荣长发,王严兴,杨国欣.磨损研究的状况与发展[J].工业技术经济, 1996, 15(4): 133-135.
    [11]张永振.材料的干摩擦学[M].北京:科学出版社, 2007, 43-45.
    [12]张嗣伟.摩擦学的进展与展望[J].摩擦学学报, 1994, 14 (1): 84-88.
    [13]彭军芝,汪宏涛.聚甲基丙烯酸甲酯的改性研究进展[J].广州化学, 2001, 26(4): 60-64.
    [14] TSUZAKI K, SATO E, FURIMOTO S. Formation of an(a+θ) Microduplex Structure Without Thermomechanical Processing in Superplastic Ultrahigh Carbon Steels. Scripta Materialia, 1999, 40(6): 675-681.
    [15]杨博,王玉林,黄远.超高分子量聚乙烯纤维/有机玻璃复合材料力学及摩擦磨损性能研究[J].材料导报, 2003, 17(11): 82-84.
    [16] BRISCOE B J. Scratching Maps for Polymers[J]. Wear, 1996, 200: 137-147.
    [17] BRISCOE B J. Scratch Deformation of Methanol Plasticized Poly (methyl methacrylate) Surfaces[J]. Polymer, 1998, 39(11): 2161-2168.
    [18] YANG Z. A Study on Carbon Nanotubes Reinforced Poly (methyl methacrylate)Nanocomposites[J]. Materials Letters, 2005, 59: 2128-2132.
    [19] JARDRET V. Viscoelastic Effects on the Scratch Resistance of Polymers: Relationship Between Mechanical Properties and Scratch Properties at Various[J]. Progress in Organic Coatings, 2003, 48: 322-331.
    [20] RAJESH J J. Abrasive Wear Performance of Various Polyamides[J]. Wear, 2002, 252: 769-776.
    [21] JARDRET V. Understanding and Qualification of Elastic and Plastic Deformation During a Scratch Test[J]. Wear, 1998, 218: 8-14.
    [22] LIN L, BLACKMAN G S, MATHHESON R R. Quantitative Characterization of Scratch and Mar Behavior of Polymer Coatings[J]. Materials Science and Engineering, 2001, 317: 163-170.
    [23] LIN L, BLACKMAN G S, MATHHESON R R. A New Approach to Characterize Scratch and Mar Resistance of Automotive Coatings[J]. Progress in Organic Coatings, 2000, 40: 85-91.
    [24] ADAMSA M J. An Experimental Study of the Nano-Scratch Behaviour of Poly (methyl methacrylate)[J]. Wear, 2001, 251: 1579-1583.
    [25] DEBELS E.How to Simulate Wear? Overview of Existing Methods[J]. Dental Materials, 2006, 22: 693-701.
    [26]巩强.纳米Al2O3透明耐磨复合涂料的研制[J].现代涂料与涂装, 2004, 10(2): 1-7.
    [27]刘松,李德军.氮离子注入对有机高分子表面电阻率和硬度的影响[J].微细加工技术, 1999, 17(2): 1-7.
    [28]黄泽铣.功能材料及其应用手册[M].北京:机械工业出版社, 1991: 63-66.
    [29]肖磊,周建华.纳米颗粒改性PMMA光波导薄膜的研究[J].光电子技术与信息, 2005, 18(1): 19-22.
    [30]柴红梅,赵东林,杜中杰.碳纳米管/PMMA/PVAc复合膜的微观结构研究[J].炭素技术, 2005, 24(5): 6-10.
    [31]范凌云,沈晓冬,崔升.表面改性碳纳米管/PMMA复合材料的电性能[J].电子元件与材料, 2006, 25(4): 24-26.
    [32]徐化明,梁吉. PMMA/定向碳纳米管复合材料导电与导热性能的研究[J].无机化学学报, 2005, 21(9): 1353-1357.
    [33]李文文,孔浩,高超. pH响应性聚合物功能化的多壁碳纳米管[J].科学通报, 2005, 50(17): 1834-1838.
    [34]孙玉凤,赵玲,袁渭康.制备聚甲基丙烯酸甲酯/多壁碳纳米管的动力学[J].化学反应工程与工艺, 2007, 23(2): 178-182.
    [35]刘春艳,金兆国,章文贡.纳米碳/聚甲基丙烯酸甲酯复合材料的研究[J].高分子学报, 2006, 50(2): 320-324.
    [36]朱立超,张志,高彦芳.原位聚合制备碳纳米管/PMMA复合材料的研究[J].塑料工业, 2004, 35(2): 20-22.
    [37]周建,白华萍,李凤生.碳纳米管/聚甲基丙烯酸甲酯复合粒子的制备及表征[J].高分子材料科学与工程, 2006, 22(2): 90-92.
    [38]张旺玺,王艳芝.碳纳米管用核壳聚合物前驱体的合成及性能[J].高分子材料科学与工程, 2005, 21(6): 55-58.
    [39]高宏,郑俊萍,王建勋.悬浮聚合聚甲基丙烯酸甲酯/蒙脱土纳米复合材料的制备及表征[J].中国塑料, 2005, 19(11): 54-57.
    [40]杨瑞成,陈奎,张天云.水润滑条件下聚甲基丙烯酸甲酯/有机改性蒙脱土复合材料摩擦磨损性能研究[J].润滑与密封, 2007, 32(9): 32-34.
    [41]陈雪花,李春忠,邵玮.纳米碳酸钙表面原位聚合聚甲基丙烯酸甲酯微结构及性能[J].华东理工大学学报:自然科学版, 2006, 32(2): 212-216.
    [42]顾中强,王海泉,陈莉. PMMA/SiO2纳米复合膜表面性能的研究[J].南京工业大学学报, 2007, 29(3): 1-6.
    [43]徐惠,史建新,翟钧.聚甲基丙烯酸甲酯包覆纳米SiO2表面的聚合反应研究[J].兰州理工大学学报, 2007, 33(1): 62-66.
    [44]王国成,尚晓艳,蒋涛.甲基丙烯酸甲酯/蒙脱土纳米复合材料的研究[J].湖北大学学报:自然科学版, 2006, 28(3): 277-281.
    [45]陈奎,杨瑞成,张天云.聚甲基丙烯酸甲酯/纳米有机改性蒙脱土复合材料的制备及其摩擦磨损性能研究[J].摩擦学学报, 2007, 27(2): 187-191.
    [46] IIJIMA S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354: 56-58.
    [47]成会明.纳米碳管制备、结构、性能及应用[M].北京:化学工业出版社, 2002: 414-420.
    [48]吕卫卫,谷万里,庞秋.球磨法制备碳纳米管/铜复合材料[J].热加工工艺, 2007, 36(8): 34-36.
    [49]朱宏伟,吴德海,徐才录.纳米碳管[M].北京:机械工业出版社, 2003: 20-25.
    [50] AJAYAN P M, STEPHEN O. B-C-N Nanotubes and Boron Doping of CarbonNanotubes[J]. Chemical Physics Letters, 1994, 260: 465-470.
    [51] BASKARAN D, MAYS J W, BRATCHER M S. Polymer Adsorption in the Grafting Reactions of Hydroxyl Terminal Polymers with Multi-Walled Carbon Nanotubes[J]. Polymer, 2005, 46: 5050-5057.
    [52] GAO B, KLEINHAMMES A, TANG X P. Electrochemical Intercalation of Single-walled Carbon Nanotubes with Lithium[J]. Appl Phys Lett, 1999, 307: 153-157.
    [53] LAMY M, CHAPELLE D L, STEPHAN C. Raman Characterization of Single-Walled Carbon Nanotubes and PMMA-Nanotubes Composites[J]. Syntmetal. 1999, 103: 2510-2512.
    [54] STEPHAN C, NGUYEN T P, LAMY D L. Characterization of Single-Walled Carbon Nanotubes PMMA Nanocomposites[J]. Syntmetal, 2000, 108: 139-149.
    [55] BAI J B. Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix[J]. Carbon, 2003, 41: 1325 -1328.
    [56]张以河,付绍云,李国耀.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯, 2004, 14(5): 99-104.
    [57]曾汉民.高技术新材料展览[M].北京:中国科学技术出版社, 1993: 15-19.
    [58]李红,黄承亚.溶胶-凝胶法制备有机玻璃含锆耐磨涂层[J].广东工业大学学报, 2004, 21(1): 63-66.
    [59]何涛,高长有.双组分有机硅涂料及其对有机玻璃表面的增强作用[J].有机硅材料, 2006, 20(6): 288-291.
    [60]曾燕萍,向长淑,潘裕柏.碳纳米管/石英复合粉体制备[J].纳米科技, 2006, 3(4): 39-43.
    [61]杨植,陈小华,刘云泉.碳纳米管的羟甲基化及其马来酸酐接枝研究[J].化学学报, 2006, 64(3): 203-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700