用户名: 密码: 验证码:
胎面橡胶复合材料的微观结构-黏弹性-使用性能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业技术的飞速发展,人们对汽车安全,节能,耐久,舒适度的更高要求对车辆上唯一的接地部件——轮胎提出了新的挑战。由此,欧洲制定了相应的轮胎标签法规——EC1222/2009,该法规指出在欧洲市场上销售的轮胎,具体包括轿车,轻型卡车以及公共汽车轮胎需要加贴等级标签,进而标识出具体的燃油效率,湿滑路面的抓着力以及滚动噪声等性能指标,通过这一法规的强制实施来促进汽车能源消耗的降低。轮胎的抗湿滑性能,滚动阻力以及耐磨性能(这三项性能常被称作轮胎性能的“魔法三角”)的改善与胎面材料的选择,配方的设计及制备工艺的调整密切相关。众所周知,胎面材料的诸多性能可以通过其黏弹性间接表征,而橡胶复合材料的黏弹特性归根结底又是填料-橡胶相互作用以及填料网络结构的具体反映。因此,通过对胎面橡胶材料微观结构-黏弹性-使用性能关系的研究,揭示影响橡胶材料使用性能的内在机理并探索平衡轮胎“魔法三角”性能的方案是本论文的主要研究方向。
     论文第一部分(论文第三,四,五章)比较了炭黑(CB),白炭黑(Silica)以及双相填料(CSDPF)填充不同牌号丁苯橡胶(SBR)制备复合材料的物理机械性能,磨耗性能,滚动阻力和抗湿滑性能的差异。通过结合胶含量测试,差示扫描量热仪(DSC)测试以及低场核磁共振交联密度仪(NMR)测试对复合材料中的橡胶-填料相互作用进行了考察,使用橡胶加工分析仪(RPA)和动态力学热分析仪(DMTA)对橡胶材料的填料网络结构以及动态黏弹特性进行了分析。结果表明,Silica填充橡胶复合材料具有较高结合胶含量,而CB表面的橡胶分子链活动性较弱,即CB与橡胶之间具有更强的相互作用。CSDPF填充橡胶较弱的填料网络结构导致其具有最高的tan δ峰值以及橡胶态下最低的储能模量。通过不同胶料物理性能的对比可以发现,与CB填充SBR相比,经过硅烷偶联剂原位改性处理的Silica填充硫化胶具有较高的300%定伸应力,较低的扯断伸长率,较优异的抗湿滑性能和滚动阻力性能,但是其耐磨和抗切割性能较差。
     通过乳液共沉法(LCM)制备的粘土/橡胶复合材料不仅具有较好的力学性能,其良好的抗疲劳及气体阻隔性能使其成为一种具有开发潜力的橡胶填料。论文的第二部分(论文第六章)比较了少量粘土替代CB或者Silica填充SBR复合材料各项性能的差异。在50份CB填充的SBR橡胶复合材料中添加少量粘土后,材料的抗切割性能会提高30%以上。由于粘土的加入增强了填料网络结构强度,粘土/CB复合材料的阿克隆磨耗量以及滞后生热均有所增加。对于材料抗切割性能提高的内在原因,我们推断主要来源于粘土片层结构对橡胶破坏过程中“裂纹扩展”的阻碍作用以及滞后生热的增加使材料所受冲击能有效转化为热能耗散,减少了材料破坏的出现。在Silica填充橡胶中添加少量的粘土后,材料的Payne效应有所下降,说明粘土在橡胶中的聚集效应要弱于Silica在橡胶中的聚集效应。添加粘土后复合材料的物理机械性能变化不大,但是阿克隆磨耗和抗切割性能均有所降低,同时压缩疲劳温升有所增加。由此说明,在Silica填充橡胶中添加粘土并不能很好的改善Silica填充胶的综合性能。
     论文第三部分(论文第七章)通过对CB填充SBR,异戊橡胶(IR),顺丁橡胶(BR)和集成橡胶(SIBR)复合材料的阿克隆磨耗性能比较发现,几种橡胶复合材料耐磨性能的优劣顺序为BR-CB> SIBR-CB> SBR-CB>IR-CB。与此同时,我们使用凝胶渗透色谱(GPC),结合胶测试,热重分析仪(TGA)对四种橡胶的分子量及其分布,填料-橡胶相互作用以及耐热稳定性进行了研究。结果表明,填充后的IR混炼胶中大量存在的分子量约为1万的小分子组分是导致IR-CB磨耗性能最差的主要原因。而对于机械混炼后分子量降低程度较小的BR, SBR以及SIBR而言,磨耗性能的优劣顺序与填料-橡胶相互作用的强弱保持了很好的一致性。由于在阿克隆磨耗测试条件下,橡胶很难达到热分解温度,因此硫化橡胶的耐磨性能与其耐热稳定性关系不大;而“拥有较低玻璃化转变温度(Tg)值的橡胶通常会具有较好耐磨性能”这一结论仅对BR-CB胶料适用,与其他胶种的相关性并不好。
With the rapid development of automobile industry technology, thehigher requirement of improve the safety, the economic and environmentalefficiency of road transport gives a big challenge for tyres to promotingfuel-efficent, wet skid resistance and noise levels. Therefore, the EuropeanUnion puts forward the Tyre Labelling Regulation1222/2009. The rulesprescribe that information on certain characteristic of tyre performances(rolling resistance, wet grip and noise level) will have to be communicated tocunsumers, include passenger car tyres, light truck tyres and heavy dutyvehicle tyres. Generally speaking, higher performance tires should have goodwet skid resistance (WSR), abrasion resistance and low rolling resistance (RR),although these performances which often called “magic triangle” in the tireindustry are hard to be improved simultaneously. The improvement of treadrubber performance is depended on the material composition choose, formulation design and processing technology of the composite. Meanwhile,the tread performance can be forecasted by the viscoelastic property of thecomposite, such as the composite which owns a lower tan δ value at50to80°C and a higher tan δ in the temperatures range of-20to0°C will alwaysexhibit a better RR and WSR performance. For the viscoelastic properties ofthe rubber composites, filler and polymer are two main effecting factors, andin this research the filler-filler network and filler-rubber interaction are studieddeeply. Based on the investigation of the relationship of microstructure-viscoelasticity-performance of tire tread composite, we hope to get a way tobalance the “magic triangle” properties of the tire tread.
     In the first part (Chapter3,4,5), we mainly compared the mechanicalproperties, abrasion properties, RR and WSR of carbon black (CB), carbon-silica dual phase filler (CSDPF) and silica filled different type of Styrene-Butadiene Rubber (SBR). The filler-rubber interactions were investigated viabound rubber content (BRC) of the compounds and solid-state1H low-fieldNMR spectroscopy. The results indicated that the BRC of the compound washighly related to the amount of surface area for interaction between filler andrubber, while the solid-state~1H low-field NMR spectroscopy was an effectivemethod to evaluate the intensity of filler-rubber interaction. The silica filledcompound showed the highest BRC, whereas the CB filled one had thestrongest filler-rubber interfacial interaction, verified by NMR transverserelaxation. The strain sweep measurements of the compounds were conducted via a rubber process analyzer; the results showed that the CSDPF filledcompound presented the lowest Payne effect, which is mainly related to theweakened filler network structure in the polymer matrix. The temperaturesweep measurement, tested by dynamic mechanical thermal analysis,indicated that the glass transition temperature (Tg) did not change when SBRwas filled with the different fillers, whereas the storage modulus in rubberystate and the tan δ peak height were greatly affected by the filler networkstructure of the composites. For the performance of the composites, it can befound that compared with CB filled SBR composite, the composite filled withsilica which was in-situ modified by coupling agent owns a higher modulus at300%, lower elongation at break, better RR and WSR performance, while itsabrasion resistance and cutting resistance were poor.
     Clay, different from CB and silica, is of layered structure, and it can bedispersed on a nano-meter level in rubber matrix by latex compoundingmethod (LCM). Not only owning a good mechanical property and gas barrierproperty, the incorporation of a small amount of nano-dispersed clay (NC)prepared by LCM can greatly improved the flex-fatigue life of CB filled SBRand NR composites due to the fact that NC layers had the advantage of crackblunting compared with carbon black. In the second part (Chapter6), wemainly compared the performance of CB or silica filled composite by additionof a small amount NC. CCR of CB filled SBR was dramatically improvedmore than30%by addition of4phr NC, while not decreasing the stress at100% and the Shore A hardness of the composite. The addition of clay enhanced thefiller-filler network of CB filled composite, which also lead to the value ofAkron abrasion and heat built up of the composite increased. For themechanism of CCR improved by addition of NC, it can be summarized asfollows: the addition of NC greatly increases the deformation ability (higherelongation) and the hysteresis, which are closely related to the ability totransform the cutting energy into heat energy, and thus prevents the compositebeen ruptured from cutting. At the same time,4phr NC improve the tearstrength and thus the composites exhibit higher ability of inhibiting crackpropagation. The combination of high deformation ability, hysteresis andpreventing crack propagation, contributes largely to the increase in CCR of thecomposites with NC. However, this phenomenon is not presented in thesilica/clay filled rubber composite.
     In the third part (Chapter7), the abrasion resistance of CB filled SBR,isoprene rubber (IR), butadiene rubber (BR) and integrated rubber (SIBR)were measured by Akron abrasion machine, as the sequence of the abrasionresistance performance of the composites is BR-CB> SIBR-CB> SBR-CB>IR-CB. Meanwhile, the molecular weight and distribution, filler-rubberinteraction, as well as thermal degradation of the composites were investigatedvia gel permeation chromatography (GPC), bound rubber content, andthermo-gravimetric analysis (TGA). The results indicated that the existence oflow molecular weight (1×10~4) portion in the IR-CB composite should be the main reason for its worst abrasion resistance performance. For the syntheticrubber with good resistance of molecular chain rupture by the mechanicalshear force during compounding, such as BR, SBR and SIBR, the sequence ofabrasion resistance performance is in consistent with the filler-rubberinteraction order of the composites. In addition, due to the surface temperatureof the rubber sample during abrasion will not lead to the thermal degradation,the heat resistance temperature of the composite is beside the abrasionperformance.
引文
[1]刘霞.轮胎技术的最新进展和发展趋势[J].世界橡胶工业,2011,38(3):30-35.
    [2]叶可舒.世界轮胎技术新进展[J].橡塑技术与装备,2001,27(3):1-11.
    [3]梁诚.欧盟轮胎标签法规与原材料发展[J].橡胶科技市场,2012,10(5):5-8.
    [4]苏博,钱瑞瑾.新环保法规下看欧美载重汽车轮胎产业发展[J].橡胶科技市场,2010,8(20):1-6.
    [5]蒋鹏程,陈福林,曹有名,周彦豪,张海燕.绿色轮胎胎面胶配方研究进展[J].合成橡胶工业,2009,32(4):332-338.
    [6]蔡为民.推动绿色轮胎产业化发展迫在眉睫—轮胎行业经济运行的现状与趋势[J].轮胎工业,2012,59(7):387-389.
    [7] Roland R. Rubber compound and tires based on such a compound [P]. EP0501227A1.1992.
    [8] Liu X, Zhao S H, Yang Y, Zhang X Y, Wu Y P. Structure and properties of star-shapedsolution-polymerized styrene-butadiene rubber and its co-coagulated rubber filled withsilica/carbon black-I: morphological structure and mechanical properties[J]. Polymers forAdvanced Technologies,2009,20(11):818-825.
    [9] Wang L, Zhao S, Li A, Zhang X Y. Study on the structure and properties of SSBR withlarge-volume functional groups at the end of chains[J]. Polymer,2010,51(9):2084-2090.
    [10]王贵一.橡胶的磨耗[J].特种橡胶制品,1994,15(1):42-47.
    [11] Schallamach A. Abrasion of rubber by a needle[J]. Journal of Polymer Science,1952,9(5):385-404.
    [12] Schallamach A. Abrasion, fatigue, and smearing of rubber[J]. Journal of Applied PolymerScience,1968,12(2):281-293.
    [13] Schallamach A. How does rubber slide[J]. Wear,1971,17(4):301-312.
    [14] Johnson K L. Adhesion and friction between a smooth elastic spherical asperity and a planesurface[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical andEngineering Sciences,1997,453(1956):163-179.
    [15] Uchiyama Y, Ishino Y. Pattern abrasion mechanism of rubber[J]. Wear,1992,158(1-2):141-155.
    [16] Gent A N, Nah C. Abrasion of rubber by a blade abrader: effect of blade sharpness and testtemperature for selected compounds[J]. Rubber Chemistry and Technology,1996,69(5):819-833.
    [17] Thomas A G. The development of fracture mechanics for elastomers[J]. Rubber Chemistry andTechnology,1994,67(3):50-67.
    [18] Tsunoda K, Busfield J J C, Davies C K L, Thomas A G. Effect of materials variables on the tearbehaviour of a non-crystallising elastomer[J]. Journal of Materials Science,2000,35(20):5187-5198.
    [19] Fukahori Y, Liang H, Busfield J. Criteria for crack initiation during rubber abrasion[J]. Wear,2008,265(3):387-395.
    [20] Fukahori Y, Yamazaki H. Mechanism of rubber abrasion. Part I: Abrasion pattern formation innatural rubber vulcanizate[J]. Wear,1994,171(1):195-202.
    [21] Fukahori Y, Yamazaki H. Mechanism of rubber abrasion: Part2. General rule in abrasion patternformation in rubber-like materials[J]. Wear,1994,178(1-2):109-116.
    [22] Liang H, Fukahori Y, Thomas A G, Busfield J. Rubber abrasion at steady state[J]. Wear,2009,266(1-2):288-296.
    [23] Pulford C T R. Antioxidant effects during blade abrasion of natural rubber[J]. Journal of AppliedPolymer Science,1983,28(2):709-713.
    [24] Gent A N, Pulford C. Mechanisms of rubber abrasion[J]. Journal of Applied Polymer Science.1983,28(3):943-960.
    [25] Bunn C W, Bunn C W. Molecular structure and rubber-like elasticity III Molecular movementsin rubber-like polymers[J]. Proceedings of the Royal Society of London. Series A. Mathematicaland Physical Sciences,1942,180(980):82-99.
    [26]彭旭东,郭孔辉,丁玉华,单国玲,侯汝成.轮胎磨耗机理及炭黑对磨耗的影响[J].合成橡胶工业,2003,26(3):136-140.
    [27] Evans L R, Fultz W C. Tread compounds with highly-dispersible silica[J]. Rubber World,1998,219(2):38-44.
    [28] David L S, Donald W A. Reviewing C&C testing of OTR tread compounds[J]. Rubber World,2003,228(5):28-34.
    [29]郭瑞堂.橡胶疲劳破坏机理与多次冲击抗力理论在橡胶性能测试中的应用[J].合成橡胶工业,1983,6(1):6-9.
    [30] Datta R N. P-aramid dibers improve truck tire chunk resistance[J]. Rubber&Plastics News,2004,10:16-20.
    [31] Beatty J R, Miksch B J. A laboratory cutting and chipping tester for evaluating off-the-road andheavy-duty tire treads[J]. Rubber Chemistry and Technology,1982,55(5):1531-1546.
    [32] Manas D, Stanek M, Manas M, Pata V, Javorik J. Influence of Mechanical Properties on Wear ofHeavily Stressed Rubber Parts[J]. Kautschuk Gummi Kunststoffe,2009,62(5):240-245.
    [33] Lake G J, Yeoh O H. Measurement of rubber cutting resistance in the absence of friction[J].Rubber Chemistry and Technology,1980,53(1):210-227.
    [34] Nah C, Jo B W, Kaang S. Cut and chip resistance of NR–BR blend compounds[J]. Journal ofApplied Polymer Science,1998,68(9):1537-1541.
    [35] Gent A N, Lai S M, Han C, Wang C. Viscoelastic effects in cutting and tearing rubber[J].Rubber Chemistry and Technology,1994,67(4):610-618.
    [36] Heinrich G. The dynamics of tire tread compounds and their relationship to wek skidbehavior[J]. Physics of Polymer Networks,1992,90:16-26.
    [37] Grosch K A, Grosch K A. The relation between the friction and visco-elastic properties ofrubber[J]. Proceedings of the Royal Society of London. Series A. Mathematical and PhysicalSciences,1963,274(1356):21-39.
    [38] Pan X D, Kelley E D, Hayes M W. Bulk viscoelastic contribution to the wet-sliding friction ofrubber compounds[J]. Journal of Polymer Science Part B: Polymer Physics,2003,41(8):757-771.
    [39] Takino H, Nakayama R, Yamada Y, Kohjiya S, Matsuo T. Viscoelastic properties of elastomersand tire wet skid resistance[J]. Rubber Chemistry and Technology.1997,70(4):584-594.
    [40] Wang M J. Effect of filler-elastomer interaction on tire tread performance Part II Effects on wetfriction of filled vulcanizates[J]. Kautschuk Gummi Kunststoffe,2008,61(1-2):33-42.
    [41] Takino H, Takahashi H, Yamano K, Kohjiya S. Effects of carbon black and process oil onviscoelastic properties and tire wet skid resistance[J]. Tire Science and Technology,1998,26(4):241-257.
    [42] Heinrich G, Rennar N, Dumler H. The dynamic glass transition temperature as a criterion for thewet skid behaviour of tread compounds[J]. Kautschuk Gummi Kunststoffe,1996,49(1):32-37.
    [43] Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates[J].Journal of Applied Polymer Science.1962,19:67.
    [44]王元霞.轮胎胎面胶抗湿滑性能及其机理的研究[D].北京:北京化工大学,2011.
    [45] Wang M J, Kutsovsky Y. Effect of fillers on wet skid resistance of tires. Part I: Water lubricationvs. filler-elastomer interactions[J]. Rubber Chemistry and Technology,2008,81(4):552-575.
    [46] Wang M J, Kutsovsky Y. Effect of fillers on wet skid resistance of tires. Part II: Experimentalobservations on effect of filler-elastomer interactions on water lubrication[J]. Rubber Chemistryand Technology,2008,81(4):576-599.
    [47] Wang Y X, Wu Y P, Li W J, Zhang L Q. Influence of filler type on wet skid resistance ofSSBR/BR composites: Effects from roughness and micro-hardness of rubber surface[J]. AppliedSurface Science,2011,257(6):2058-2065.
    [48] Wang Y X, Ma J H, Zhang L Q, Wu Y P. Revisiting the correlations between wet skid resistanceand viscoelasticity of rubber composites via comparing carbon black and silica fillers[J].Polymer Testing,2011,30(5):557-562.
    [49]那洪东.降低轮胎滚动阻力的材料和技术[J].世界橡胶工业.2006,33(7):22-26.
    [50] Bomal Y, Touzet S, Barruel R, Cohet P, Dejean B. Developments in silica usage for decreasedtyre rolling resistance[J]. Kautschuk Gummi Kunststoffe,1997,50(6):434-439.
    [51]颜晋钧,陈宏.胎面胶对轮胎滚动阻力的影响[J].轮胎工业,2007,27(1):11-14.
    [52] Wolff S, Gorl U, Wang M J, Wolff W. Silica-based tread compounds[J]. European RubberJournal.1994,176(1):16-19.
    [53]王进文.高性能的白炭黑/硅烷补强体系[J].橡胶参考资料.2000,30(10):30-35.
    [54] Evan L R, Fultz W C. Tread compounds with highly-dispersible silica[J]. Rubber World.1998,219(2):38-44.
    [55] Blume A, Uhrlandt S. Development of HD silicas for tires: processes, properties,performance[J]. Rubber World.2002,226(1):30-36.
    [56]于宝林,范汝新,刘敏,聂绪建.低滞后炭黑DZ-13的性能及其在胎面胶中的应用研究[J].轮胎工业,2008,28(1):26-31.
    [57]范汝新.炭黑新品种进展[J].中国橡胶,2004,20(16):7-9.
    [58]王梦蛟.聚合物填料和填料填料相互作用对填充硫化胶动态力学性能的影响[J].轮胎工业,2000,20(10):601-605.
    [59]王梦蛟.填充聚合物填料和填料填料相互作用对填充硫化胶动态力学性能的影响(续1)[J].轮胎工业,2000,20(11):670-677.
    [60]李花婷,颜晋钧,陈宏,李炜东.轮胎滚动阻力测试方法研究[J].轮胎工业,2007,27(3):180-183.
    [61]王梦蛟.聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响(续2)[J].轮胎工业,2000,20(12):737-744.
    [62]王梦蛟.聚合物-填料和填料填料相互作用对填充硫化胶动态力学性能的影响(续3)[J].轮胎工业.2001,21(1):38-44.
    [63]吕百龄.高性能橡胶用于轮胎的趋势分析[J].中国轮胎资源综合利用.2007,8:41-42.
    [64]杨书廷,杨金鑫,尹艳红,岳红云,杨伟光,王辉. ENR的制备及其与SBR的相容性研究[J].橡胶工业.2007,54(3):146-149.
    [65]赵艳芳,李志君,廖思谦,黄伟坚,黎聪颖.丁苯橡胶/环氧化天然橡胶共混物力学性能研究[J].华南热带农业大学学报,2002,8(4):5-10.
    [66]于琦周,李柏林,张新惠,张学全,白晨曦.国产稀土异戊橡胶的性能[J].特种橡胶制品,2010,31(5):7-11.
    [67]王超,孙培培,徐林,赵青松,梁爱民,韩丙勇.不同品种异戊橡胶的性能对比[J].橡胶工业,2012,59(1):28-32.
    [68]于琦周,李柏林,张新惠,张学全,白晨曦.稀土异戊橡胶与天然橡胶共混胶性能的研究[J].特种橡胶制品,2011,32(2):36-39.
    [69]张志广,车永兴,杨晨燕,杜爱华.反式-1,4-聚异戊二烯的结晶性[J].合成橡胶工业,2012,35(1):36-39.
    [70]吕百龄.杜仲橡胶的应用和发展前景[J].中国橡胶,2011,27(6):10-12.
    [71]王付胜,杜爱华,黄宝琛.反式1,4-聚异戊二烯的性能及其在轮胎中的应用[J].橡胶工业,2005,52(12):762-764.
    [72]王韵然,刘莉,王进,杨军.反式1,4-聚异戊二烯性能及其并用胶的研究进展[J].橡胶工业,2010,57(5):316-319.
    [73]赵光贤.反式-1,4异戊橡胶TPI的性能和应用[J].中国橡胶,2008,24(4):34-36.
    [74]马祖伟,宋景社,黄宝琛,姚薇,王名东.反式聚异戊二烯的加工性能和流变行为[J].合成橡胶工业,2001,24(3):159-162.
    [75]马祖伟,黄宝琛,宋景社,姚薇,王名东.反式聚异戊二烯的硫化特性及硫化胶的性能[J].合成橡胶工业,2001,24(2):82-86.
    [76]李花婷,李迎.不同牌号ESBR的性能特点及应用[J].轮胎工业,2007,27(4):214-218.
    [77]贾凤玲,张允武,张洪林,高增亮,孙建一.低滚动阻力轮胎用乳聚丁苯橡胶[J].齐鲁石油化工,2005,33(1):54-58.
    [78]李迎,于晓霞.国内外丁苯橡胶市场及技术发展[J].当代石油石化,2008,16(2):35-40.
    [79]马红新,成洪波.国外乳聚丁苯橡胶品种及生产技术[J].齐鲁石油化工,2004,32(增刊):52-55.
    [80]关颖.环保型乳聚丁苯橡胶制备技术进展[J].合成橡胶工业,2006,29(6):476-479.
    [81]李花婷. S-SBR在轮胎中的应用技术进展[J].轮胎工业,2005,25(5):259-263.
    [82]程锐. SSBR2530在轮胎胎面胶中的应用[J].轮胎工业,2008,28(8):481-483.
    [83]王志远,周友生,魏静勋,李花婷.国产SSBR在轿车子午线轮胎胎面胶中的应用[J].轮胎工业,2008,28(12):731-735.
    [84]蔡尚脉,李花婷,李伟,闫冰,吴妙麟,沈均辉.溶聚丁苯橡胶T2530基本性能的研究[J].轮胎工业,2007,27(7):408-411.
    [85]那洪东.赛车轮胎胎面胶[J].橡胶参考资料,2008,38(3):34-36.
    [86]那洪东.赛车用高性能轮胎胎面胶[J].橡胶参考资料,2008,38(3):30-33.
    [87]赵志正.溶聚丁苯橡胶的品种和性能[J].橡胶参考资料,1998,28(7):42-46.
    [88] Carella J M, Graessley W W, Fetters L J. Effects of chain microstructure on the viscoelasticproperties of linear polymer melts: polybutadienes and hydrogenated polybutadienes[J].Macromolecules,1984,17(12):2775-2786.
    [89]赵素合,王真.锡偶联型SSBR的动态行为[J].合成橡胶工业,2000,23(1):20-23.
    [90]罗丽华,王兰洁.星型聚合物的合成方法综述[J].精细石油化工进展,2006,7(8):45-47.
    [91] Ueda J, Kamigaito M, Sawamoto M. Calixarene-Core Multifunctional Initiators for theRuthenium-Mediated Living Radical Polymerization of Methacrylates1[J]. Macromolecules,1998,31(20):6762-6768.
    [92] Shohi H, Sawamoto M, Higashimura T. End-functionalized polymers of p-alkoxystyrenes byliving cationic polymerization p-Methoxystyrene[J]. Macromolecules,1992,25(1):53-57.
    [93]胡育林,梁滔,张华强,崔英,董静,马朋高.溶聚丁苯橡胶改性技术及国内发展趋势[J].橡胶工业,2011,58(8):505-511.
    [94]王雷,张兴英,赵素合.分子链末端改性溶聚丁苯橡胶的结构与性能研究[J].轮胎工业,2011,58(3):152-158.
    [95]蒋修治.白炭黑/硅烷填料体系的化学与橡胶补强性[J].橡胶参考资料,2006,36(4):36-41.
    [96] Hunsche A, Gorl U, Muller A, Knaack M, Gobel T. Investigations concerning the reactionsilica/organosilane and organosilane/polymer-Part1: Reaction mechanism and reaction modelfor silica/organosilane[J]. Kautschuk Gummi Kunststoffe,1997,50(12):881-889.
    [97] Hunsche A, Gorl U, Koban H G, Lehmann T. Investigations on the reaction silica/organosilaneand organosilane/polymer-Part2. Kinetic aspects of the silica-organosilane reaction [J].Kautschuk Gummi Kunststoffe,1998,51(7):525-533.
    [98]杨锡.白炭黑/有机硅烷及有机硅烷/聚合物反应的研究[J].橡胶参考资料,2000,30(2):30-38.
    [99]翟月勤,刘俊保,吴毅,汤妍雯,王春龙.国产顺丁橡胶BR9000性能对比测试[J].合成橡胶工业,2012,35(1):78-80.
    [100] Kern W J, Futamura S. Effect of tread polymer structure on tyre performance[J]. Polymer,1988,29(10):1801-1806.
    [101]李子安,魏申莉. NR/BR胎面胶的力学性能与其热行为的关系[J].世界橡胶工业,2009,36(8):5-12.
    [102]江畹兰.顺丁橡胶系并用胶具有高耐磨性的原因[J].世界橡胶工业,2009,36(1):11-17.
    [103]张洪林,于晓霞.国内外钕系聚丁二烯橡胶生产技术[J].橡胶科技市场,2009,7:5-9.
    [104]郑国军.钕系聚丁二烯橡胶中试技术开发[J].中国橡胶,2010,26(8):33-37.
    [105]毕吉福,龚狄荣,葛建宁,胡锦昌,董为民,姜连升,张学全.高乙烯基聚丁二烯橡胶的结构与性能:第十四届中国轮胎技术研讨会[Z].山东青岛:2006.
    [106]黄宝琛,金守钢,韩杰,杨淑欣,唐学明.高乙烯基聚丁二烯橡胶与顺丁橡胶共混的研究[J].青岛化工学院学报,1989,9(5):62-69.
    [107]张文禹,黄宝琛,杜爱华,姚薇,杨少英,王明东. TPI/HVBR共混物的性能[J].橡胶工业,2001,48(12):709-712.
    [108] Wang Z S, Wang Y R, Li Y, Xu H D, Ren Y, Zhang C Q. Microstructure and glass-transitiontemperature of novel star N-SIBR[J]. Journal of Applied Polymer Science,2006,102(6):5848-5853.
    [109]崔小明. SIBR的开发和应用前景[J].橡胶科技市场.2010,4:4-7.
    [110]韩秀山,许加伟.集成溶聚丁苯橡胶―一种具有市场潜力的新型胎面胶[J].轮胎工业,2002,22(8):456-458.
    [111]田福学,张春庆.集成橡胶SIBR的合成进展[J].高分子材料科学与工程,2001,17(6):19-24.
    [112]邹华,赵素合,张兴英,王新. SIBR与NR/SSBR共混物结构与性能的比较[J].合成橡胶工业,2001,24(6):331-333.
    [113]蔡尚脉,李花婷,于国柱,陈瑞军,陈名行,王妮妮,刘瑞强,崔淑芳.集成橡胶在高性能轿车子午线轮胎胎面胶中的应用[J].中国橡胶,2011,27(18):31-34.
    [114]张立群,吴友平,王益庆,王一中,张慧峰,余鼎声,贺建芸.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,23(2):71-77.
    [115] Belmont J A, Funt J M. Carbon black surface activity and rubber properties[J]. KautschukGummi Kunststoffe,1991,44(12):1135-1136.
    [116]那洪东.胎面中橡胶和填料的相关性[J].世界橡胶工业,2003,31(4):10-14.
    [117] Wang M J, Wang T, Shell J, Mahmud K. NR/Carbon black masterbatch produced withcontinuous liquid phase mixing[A]. Presented at a international seminar on “ContinuousMixing” DIK, Hanover, Germany, December10-11,2001.
    [118]周良玉,尹荔松,周克省,胡照文,孔德明,赵新闻.白炭黑的制备、表面改性及应用研究进展[J].材料导报,2003,17(11):56-59.
    [119] Wolff S, Gorl U, Wang M J, Wolff W. Silica-based tread compounds[J]. European RubberJournal,1994,1(176):16-19.
    [120] Datta R N, Hondeveld M G J. The Effect of1,3Bis (citraconimidomethyl) benzene in SilicaContaining Compounds[J]. Kautschuk Gummi Kunststoffe,2001,6(54):308-314.
    [121]贾红兵,金志刚,文威,王颖,张士齐,王美珣.纳米白炭黑/炭黑并用对SBR硫化胶性能的影响[J].橡胶工业,2000,47(9):515-519.
    [122]贾红兵,陈跃红,刘卫东,张士齐,曹奇,崔蔚.白炭黑/炭黑并用对NR/BR硫化胶磨耗性能及形态的影响[J].合成橡胶工业,2002,25(6):376-378.
    [123]王雷,赵素合.白炭黑/炭黑/SBR复合材料的结构和抗静电性研究[J].橡胶工业,2009,56(12):709-715.
    [124]王益庆,张惠峰,吴友平,杨军,王雪飞,张立群.黏土/天然橡胶纳米复合材料的制备及性能[J].合成橡胶工业,2005,28(2):135-139.
    [125]何少剑,吴友平,贾清秀,王益庆,张立群.工程轮胎胎面胶用黏土/炭黑/天然橡胶纳米复合材料的性能[J].合成橡胶工业,2009,32(3):215-218.
    [126]赵蔚,吴友平,黄希,张立群.炭黑/黏土/丁苯橡胶纳米复合材料的性能[J].合成橡胶工业,2007,30(1):47-49.
    [127] Wu Y P, Zhao W, Zhang L Q. Improvement of Flex-Fatigue Life of Carbon-Black-FilledStyrene-Butadiene Rubber by Addition of Nanodispersed Clay[J]. Macromolecular Materialsand Engineering,2006,291(8):944-949.
    [1]马建华,吴友平.炭黑与白炭黑补强溶聚丁苯橡胶和乳聚丁苯橡胶胎面胶性能的对比研究.橡胶工业,2012,84(2):84-90.
    [2] Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates[J]. Journalof Applied Polymer Science.1962,19:67.
    [3] Frohlich J, Luginsland H. RPA studies into the silica/silane system-RPA measurements are veryuseful in optimizing the mixing procedure of silica-filled compounds[J]. Rubber world,2001,224(1):28-34.
    [4]徐春燕,吴友平,赵素合.白炭黑/SSBR复合材料的界面及硫化胶性能研究[J].橡胶工业,2008,55(9):517-520.
    [5] Hasse A, Klockmann O, Wehmeier A, Luginsland H. Influence of the amount of di-andpolysulfane silanes on the crosslinking density of silica-filled rubber compounds[J]. KautschukGummi Kunststoffe,2002,55(5):236-243.
    [6] Heinrich G, Vilgis T A. Why silica techmology needs SSBR in high performance tires? Thephysics of confined polymers in filled rubbers[J]. Kautschuk Gummi Kunststoffe,2008,61(7):370-376.
    [7]王元霞,吴友平,赵素合. SSBR和ESBR胎面胶性能研究[J].橡胶工业,2009,56(8):468-471.
    [8]王梦蛟.填料-弹性体相互作用对填充硫化胶滞后损失、湿摩擦性能和磨耗性能的影响(续一)[J].轮胎工业,2007,27:648-656.
    [9]赵青松,吴友平,赵素合.白炭黑补强SSBR和ESBR复合材料结构性能的比较[J].特种橡胶制品,2007,28(2):1-4.
    [10] Taikum O, Luginsland H. Silane-rubber coupling in sulfure, peroxide and metal oxide curingsystems[J]. Rubber World,2004,230(5):30-39.
    [11]王贵一. Schallamach图纹与橡胶性能和磨损条件的关系[J].橡胶参考资料,1995,25(7):50-56.
    [12] Manas D, Stanek M, Manas M, Pata V, Javorik J. Influence of mechanical properties on wearof heavily stressed rubber parts[J]. Kautschuk Gummi Kunststoffe,2009,62(5):240-245.
    [13] Beatty J, Miksch B. In a laboratory cutting and chipping tester for evaluating off-the road andheavy duty tire treads[J]. Rubber Chemistry and Technology,1992,55:1531-1546.
    [14]李秀贞.轮胎的摩擦与黏弹性.橡胶参考资料,1997,27(11):58-64.
    [1] Choi S S. Difference in bound rubber formation of silica and carbon black with Styrene-butadienerubber. Polymers for Advanced Technologies,2002,13(6),466-474.
    [2] Wang M J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filledvulcanizates. Rubber Chemistry and Technology,1998,71(3),520-589.
    [3] Robertson C G, Roland C M. Glass transition and interfacial segmental dynamics inpolymer-particle composites. Rubber Chemistry and Technology,2008,81(3),506-522.
    [4] Kenny J C, McBrierty V J, Rigbi Z, Douglass D C. Carbon black filled nature rubber.1. Structuralinvestigations. Macromolecules,1991,24(2),436-443.
    [5] Saalwachter K. Artifacts in transverse proton NMR relaxation studies of elastomers.Macromolecules,2005,38(4),1508-1512.
    [6] Luo H J, Klppel M, Schneider H. Study of filled SBR elastomer using NMR and mechanicalmeasurements. Macromolecules,2004,37(21),8000-8009.
    [7] Jean L L. A molecular explanation for the origin of bound rubber in carbon black filled rubbercompounds. Journal of Applied Polymer Science.1997,66(12),2257-2268.
    [8] Jean L L. Elstomer-filler interactions and the rheology of filled rubber compounds. Journal ofApplied Polymer Science,2000,78(8),1541-1550.
    [9] Jean L L. Rubber-filler interactions and the rheology properties in filled compounds. Progress inPolymer Science.2002,27(4),627-687.
    [10] Wang M J. Effect of filler-elastomer interaction on tire tread performance Part I Hysteresis offilled vulcanizates. Kautschuk Gummi Kunststoffe,2007,60(9),438-443.
    [11] Wang M J, Mahmud K, Murphy L J, Patterson W J. Carbon-silica dual phase filler, a newgeneration reinforcing agent for rubber. Part I. Characterization. Kautschuk Gummi Kunststoffe,1998,51(5),348-360.
    [12] Wang M J, Sharon X L, Khaled M. Carbon-silica dual phase filler, a new generation reinforcingagent for rubber. Part VI. Time-temperature superposition of dynamic properties of carbon-silicadual phase filler filled vulcanizates. Journal of Polymer Science Part B: Polymer Physics,2000,38(9),1240-1249.
    [13] Wolff S. Optimization of silane-silica OTR compounds. Part1: variations of mixing temperatureand time during the modification of silica with Bis-(3-Triethoxisilylpropyl)-Tetrasulfide. RubberChemistry and Technology,1982,55(4),967-989.
    [14] Laurand L, Morgan S S, Johnson E, Michael P M. New emulsion SBR technology: Part I. rawpolymer study. Rubber Chemistry and Technology,2000,73(4),731-742.
    [15] Wang Y X, Wu Y P, Li W J, Zhang L Q. Influence of filler type on wet skid resistance ofSSBR/BR composites: Effects from roughness and micro-hardness of rubber surface[J]. AppliedSurface Science,2011,257(6):2058-2065.
    [16] Wang Y X, Ma J H, Zhang L Q, Wu Y P. Revisiting the correlations between wet skid resistanceand viscoelasticity of rubber composites via comparing carbon black and silica fillers[J]. PolymerTesting,2011,30(5):557-562.
    [1]王进文.轿车子午线轮胎设计趋势及其对补强填料的影响[J].世界橡胶工业.2009,36(5):22-26.
    [2]颜晋钧,陈宏.胎面胶对轮胎滚动阻力的影响[J].轮胎工业.2007,27(1):11-14.
    [3]黄宝琛,姚薇.反式-1,4-聚异戊二烯的合成新技术及其在高速节能轮胎中的应用[A].中日橡胶技术交流会论文集[C].青岛,中国橡胶工业协会,2003:32-41.
    [4]刘付永,杜爱华,宋红梅,赵志超,黄宝琛. TPI用量和炭黑分布对TPI/SBR并用胶性能的影响[J].橡胶工业.2008,55(12):716-721.
    [5]刘付永,杜爱华,赵志超,黄宝琛.充油对反式-1,4-聚异戊二烯及其与丁苯橡胶并用胶性能的影响[J].合成橡胶工业.2009,32(2):135-138.
    [6] Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I[J].Journal of Applied Polymer Science.1962,6(19):57-63.
    [7]涂学忠.硅烷偶联剂在高填充白炭黑轮胎胶料中的应用[J].轮胎工业.2001,21(6):357-360.
    [8]张志广,张俊平,杜爱华. TPI结晶性对CV体系硫化SBR/TPI并用胶性能的影响[J].弹性体.2011,21(3):1-5.
    [9]付丙秀,周丽玲,李晨蔚,张芬芬. TPI用量对TPI/NR并用胶微观结构的影响[J].橡胶工业.2009,56(12):716-721.
    [10] Wang M J. Effect of polymer-filler and filler-filler interactions on dynamic properties of filledvulcanizates[J]. Rubber Chemistry and Technology.1998,71(3):520-589.
    [11] B hm G G A, Nguyen M N. Flocculation of carbon black in filled rubber compounds. I.Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures[J].Journal of Applied Polymer Science.1995,55(7):1041-1050.
    [12]马建华,吴友平.炭黑与白炭黑补强溶聚丁苯橡胶和乳聚丁苯橡胶胎面胶性能的对比研究[J].橡胶工业.2012,52(2):84-90.
    [13]彭旭东,郭孔辉,丁玉华,单国玲,侯汝成.轮胎磨耗机理及炭黑对磨耗的影响[J].合成橡胶工业.2003,26(3):136-140.
    [14] Ma J H, Wang Y X, Zhang L Q, Wu Y P. Improvement of cutting and chipping resistance ofcarbon black-filled styrene butadiene rubber by addition of nanodispersed clay[J]. Journal ofApplied Polymer Science.2012,125(5):3484-3489.
    [1] Wu Y P, Zhao W, Zhang L Q. Improvement of flex-fatigue life of carbon black filled StyreneButadiene Rubber by addition of nanodispersed clay[J]. Macromolecular Materials andEngineering,2006,291(8),944-949.
    [2] He S J, Wang Y Q, Wu Y P, Wu X H, Lu Y L, Zhang L Q. Preparation, structure, performance,industrialisation and application of advanced rubber/clay nanocomposites based on latexcompounding method[J]. Plastics, Rubber and Composites.2010,39(1),33-42.
    [3] Sugata C, Saptarshi K, Saikat D, Rabindra M, Samar B, Mangala J, Suresh C A. Effect oftreatment of Bis(3-triethoxysilyl propyl)tetrasulfane on physical property of in situ sodiumactivated and organomodified bentonite clay SBR rubber nanocomposite[J]. Journal of AppliedPolymer Science,2010,116(3),1660-1670.
    [4] David L S, Donald W A. Reviewing C&C testing of OTR tread compounds[J]. Rubber World,2003,228(5):28-34.
    [5]郭瑞堂.橡胶疲劳破坏机理与多次冲击抗力理论在橡胶性能测试中的应用[J].合成橡胶工业,1983,6(1):6-9.
    [1] Gent A N, Nah C. Abrasion of rubber by a blade abrader: effect of blade sharpness and testtemperature for selected compounds[J]. Rubber Chemistry and Technology,1996,69(5):819-833.
    [2] Schallamach A. Abrasion of rubber by a needle[J]. Journal of Polymer Science,1952,9(5):385-404.
    [3] Pulford C T R. Antioxidant effects during blade abrasion of natural rubber[J]. Journal of AppliedPolymer Science,1983,28(2):709-713.
    [4] Busfield J J C, Tsunoda K, Davies C K L, Thomas A G. Contributions of time dependent andcyclic crack growth to the crack growth behavior of non strain-crystallizing elastomers[J]. RubberChemistry and Technology,2002,75(4):643-656.
    [5] Zhang S W, Yang Z. Energy theory of rubber abrasion by a line contact[J]. TribologyInternational,1997,30(12):839-843.
    [6] Thomas A G. Factors influencing the strength of rubbers[J]. Journal of Polymer Science: PolymerSymposia,1974,48(1):145-157.
    [7] Gent A N, Pulford C T R. Mechanisms of rubber abrasion[J]. Journal of Applied PolymerScience,1983,28(3):943-960.
    [8] Hong C K, Kim H, Ryu C,Nah C, Huh Y, Kaang S. Effects of particle size and structure of carbonblacks on the abrasion of filled elastomer compounds[J]. Journal of Materials Science,2007,42(20):8391-8399.
    [9] Bunn C W. Molecular structure and rubber-like elasticity. III. Molecular movements inrubber-like polymers[J]. Proceedings of the Royal Society of London. Series A. Mathematical andPhysical Sciences.1942,180(980):82-99.
    [10] Hamed G R. Molecular aspects of the fatigue and fracture of rubber[J]. Rubber Chemistry andTechnology,1994,67(3):529-536.
    [11] Zhao J, Ghebremeskel G N. A review of some of the factors affecting fracture and fatigue in SBRand BR vulcanizates[J]. Rubber Chemistry and Technology,2001,74(3):409-427.
    [12] Kienle R N, Dizon E S, Brett T J, Eckert C F. Tread Wear and Wet Skid Resistance ofButadiene-Styrene Elastomers and Blends[J]. Rubber Chemistry and Technology,1971,44(4):996-1014.
    [13] Halasa A F, Gross B B, Hsu W L. Multiple Glass Transition Terpolymers of Isoprene, Butadiene,and Styrene[J]. Rubber Chemistry and Technology,2010,83(4):380-390.
    [14] Gent A N, Zhang L Q. Strain-induced crystallization and strength of rubber[J]. Rubber Chemistryand Technology,2002,75(5):923-934.
    [15] Gent A N, Zhang L Q. Strain-induced crystallization and strength of elastomers. I.cis-1,4-polybutadiene[J]. Journal of Polymer Science Part B: Polymer Physics,2001,39(7):811-817.
    [16] Liu X, Zhao S H, Yang Y, Zhang X Y, Wu Y P. Structure and properties of star-shapedsolution-polymerized styrene-butadiene rubber and its co-coagulated rubber filled withsilica/carbon black-I: morphological structure and mechanical properties[J]. Polymers forAdvanced Technologies,2009,20(11):818-825.
    [17] Gent A N, Kawahara S, Zhao J. Crystallization and Strength of Natural Rubber and Syntheticcis-1,4-polyisoprene[J]. Rubber Chemistry and Technology,1998,71(4):668-678.
    [18] Petitet G, Loubet J L, Zahouani H, Mazuyer D. A cntribution to the understanding of elementarywear mechanizsim of rubber filled compounds[J]. Rubber Chemistry and Technology,2005,78(2):312-320.
    [19] Leblanc J L. A molecular explanation for the origin of bound rubber in carbon black filled rubbercompounds[J]. Journal of Applied Polymer Science,1997,66(12):2257-2268.
    [20] Leblanc J L. Elastomer–filler interactions and the rheology of filled rubber compounds[J]. Journalof Applied Polymer Science,2000,78(8):1541-1550.
    [21] Leblanc J L. Rubber--filler interactions and rheological properties in filled compounds[J].Progress in Polymer Science,2002,27(4):627-687.
    [22] Wolff S, Wang M J, Tan E H. Filler-elastomer interactions. Part VII. Study on bound rubber[J].Rubber Chemistry and Technology,1993,66(2):163-177.
    [23] Bruzzone M, Sorta E. Elastomer Structures and ‘Cold Crystallization’[J]. Rubber Chemistry andTechnology,1979,52(1):207-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700