用户名: 密码: 验证码:
SnO_2、SnS_2、ITO微纳结构设计合成与发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要讲述了SnO_2、SnS_2、ITO三种物质的微纳结构的设计合成、表征和发光性能的研究。在合成方面,我们分别利用两步升温和一步升温气相热蒸发法制备了三维空间上相互分立的准一维SnO_2纳米团簇系和表面多孔的SnO_2微球;利用混合热溶剂法,在多种合成参数(包括溶剂配方选择、初始填充度、保温时间、保温温度和Sn:S原子比)下研究了SnS_2的形貌变化,得出了能够制备出六方结构SnS_2纳米片的合成参数值;在本文最后我们利用了一步升温双前驱体共蒸发法制备出了正十四面体和正八面体ITO颗粒。在表征方面,我们综合利用多种测试手段,包括场发射扫描电镜(FESEM)、电子透镜(TEM)、高分辨电子透镜(HRTEM)、能量色散谱(EDS)、X射线衍射谱(XRD)、X光电子能谱(XPS)、电子自旋共振(ESR)、拉曼(Raman)光谱、光致发光(PL)、阴极射线致发光(CL)、紫外-可见光-近红外(UV-VIS-NR)光分度计等,详细表征了产物的形貌、晶体结构、成分、缺陷情况、发光性能等,并根据表征结果分析了产物的发光机理,并在不同热处理条件(第三章)或外界环境静置下(第四章)比较研究了发光性能的变化,为材料在光学器件的运用上提供基础性研究结果;在发光性能研究发面,除根据表征结果外,我们还结合结构表征的分析结果,利用Chem3D软件构建相应的晶体模型,计算了模型的空间能(包括各种形变项和分子作用力项),从理论上解释了产物可能的缺陷对其发光性能的影响。在第五章,我们利用Chem3D软件还分析了六方SnS_2纳米片的生长机理与分子动力学生长研究,从理论上解释了合成配方中的乙二醇(EG)和合成温度对六方形貌产生的关键作用。全文主要的工作如下:
     1.分立SnO_2纳米线团簇的制备与退火热处理对其光致发光性能的影响。在第三章,通过两步热蒸发法制备了空间上相互分立的SnO_2纳米线团簇,通过在氩氧中700℃下退火处理,获得了退火30min和退火60min两种不同的样品,通过退火前和两种退火后样品的XPS能谱比较我们发现:退火后样品表面的氧含量空位数量增加,引起了PL上绿光发射峰的发光相对强度增强。我们根据选区电子眼射花样(SAED)的标定结果,利用Chem3D软件建立了在[10-1]方向生长的SnO_2纳米线段模型,计算了水分子对SnO_2纳米线段表面氧空位含量的影响,最后我们排除了氩氧中混入空气中水分子参与制约团簇表面XPS能谱中O1s谱峰的O1、O2两个分峰表征的氧离子与氧空位的相对含量的可能性,认为退火前后表面氧的吸附和脱附平衡主导着PL发光相对强度减弱。1小时内退火时间越长绿光峰越强的绿光峰增强效应。根据退火时间不同,我们可以获得不同强度的率发射峰,以期在发光器件的靶材上获得运用。
     2.表面多孔SnO_2微球的制备与环境气氛对其光致发光特性的影响。在第四章,我们区别于第三章的两步升温法,直接利用一步升温热蒸发法制备了表面多孔的SnO_2微球。根据表面多孔的特征,我们设计了一套实验:分别在蒸馏水汽和乙醇气氛环境下静置1天、3天和7天的实验。测试了一些列不同环境下静置不同天数的样品PL发光谱。经过发光谱的详细比对分析,我们认为:较之水分子,表面多孔SnO_2微球的PL发光强度对乙醇更为敏感。从水汽环境静置下样品的XPS能谱中分析,我们认为:由于存在着较为复杂的表面O1、O2、O3三种氧的化合态牵制着表面氧空位含量的情况,同时考虑到PL测试紫外激发导致的额外的表面氧空位的变化,多孔SnO_2微球PL发光强度对水分子的敏感性是不明显的;而乙醇分子容易挥发,基本取决于其在微球表面自发的吸附和脱附平衡而控制表面的空位含量,因而PL发光强度对其较为敏感。为了进一步揭示水分子在微球表面对氧空位的影响机理,最后我们研究了700℃下Ar气中退火30min后和水汽环境下静置样品的Raman光谱研究。发现微球表面无序度“S”是表面氧含量的减函数,控制表面的无序度成为制约PL发光强度的关键。
     3. SnS_2六方纳米片的混合溶剂热制备、生长机制与发光性能研究。在第五章,我们尝试利用溶剂热法制备SnS_2纳米结构,综合研究了溶剂配比、溶剂初始填充度、保温时间、保温温度和原子百分比Sn:S对产物的形貌的影响。最后发现乙二醇(EG)对六方SnS_2纳米结构的形成具有关键的作用。根据SAED花样的标定结果,我们利用Chem3D软件建立了六方SnS_2片层分子模型,研究了EG和SnS_2片层分子与SnS_2片层分子之间相互作用。研究结果表明:EG分子对SnS_2片层分子在[0001]方向的生长具有抑制作用,因而最终产物是片状的纳米结构。在发光性能上,六方SnS_2纳米结构在761nm处存在红色的发光峰,根据XPS能谱和Raman光谱分析,我们认为硫空位引起了红色发光峰。根据SnS_2的吸收谱结果,计算得到六方SnS_2纳米结构具有3.52eV宽禁带,这在染敏太阳能电池上具有潜在运用。为此我们还专门做了N719染料在六方SnS_2纳米结构表面的吸附性研究,结果N719在表面的确具有一定的吸附效果。因此,利用含EG的溶剂,通过溶剂热法制备六方SnS_2纳米结构作为染敏太阳能电池的光阳极结构是可行的。
     4.多面体氧化铟锡微粒的制备和发光性能研究。在第六章,我们利用一步升温双前驱体共蒸发法制备出了八面体和正十四面体ITO颗粒。通过表征,我们得知正十四面体的ITO颗粒比正八面体多出{001}六个等同外表晶面。根据归一化PL分析结果我们发现在432nm处正八面体颗粒样品都具有较强强度的紫外发射光,经ESR研究发现,这是由于正八面体表面具有较正十四面体更多的氧空位导致的,因而在CL谱上则表现为正八面体具有均一的亮斑而正十四面体则出现暗区。根据PL谱的高斯拟合结果,在可见光区,发现两种颗粒位于570nm的发光峰实际上都具有三个分峰,分别位于511nm、564nm、622nm三个位置附近。我们认为多面体ITO颗粒在可见光区的发光来源于单电子氧空位、铟离子间隙、氧替位铟三种缺陷,而并非前人认为的单一的氧空位。
In this thesis, we report three sorts of metal oxide miro&nano structures such asdepressive SnO_2nanowires clusters, porous SnO_2mirospheres, hexagonal SnS_2nanoplates, and polyhedral ITO particles. The synthesis, characterization, andluminescence properties of these structures were carefully investigated. The SnO_2andITO structures were synthesized via a methods of directly thermal evaporation ofmetal oxide, while the hexagonal SnS_2nanoplates were obtained by a solvothermalmethod using a mixture of ethylene glycol (EG) and distilled water as solvent. Themorphologies of all the as-prepared products were characterized by a field emissionscanning electron microscope (FESEM, JEOL-JSM-6700F) equipped with an energydispersive spectrometer (EDS, Link ISIS, Oxford). The crystal phases of products wereidentified by x-ray diffraction (XRD, D/MAX2500VL/PC) with CuKα (λ=1.54)radiation, transmission electron microscopy (TEM, HITACHI H-800) and highresolution electron microscopy (HRTEM, JEOL JSM-2010). X-ray photoelectronspectroscopy (XPS) and Raman spectra are obtained from Laser Confocal RamanMicroscope (LABRAM-RH, JY. co., France) and XPS spectrometer (ESCALAB250,Thermo-VG Scientific), respectively. Photoluminescence (PL) spectrum of the SnO_2and SnS_2products were obtained on a fluorescence spectrophotometer (HITACHIF-4500) using a Xe lamp with an excitation wavelength of325nm at room temperature,while the PL spectrum of ITO samples were measured on a steady-statespectrofluorometer (FLUOROLOG-3-TAU) at room temperature using a He–Cd laseras the excitation source. Cathodoluminescence (CL) spectroscopy of ITO samples wereperformed at room temperature by means of a Gatan MonoCL system attached to ascanning electron microscope. The electron spin resonance (ESR) spectra of ITOsamples were recorded on an Electron Spin Resonance Spectrometer (JES-FA200) at amodulation frequency of100kHz with modulation amplitude of0.1mT and a sweepwidth of30mT. The main results are summarized as follows:
     1. Study on the annealing-dependent photoluminescence properties of SnO_2nanowires clusters. In chapter three, SnO_2cluster-system structures were synthesizedvia a two step temperature-rising thermal evaporation method with short oxidation time.Field emission scanning electron microscopy, X-ray diffraction and transmissionelectron microscopy were used to characterize the morphological and structural feature of the product with nanowire cluster and nanoparticle cluster. The photoluminescencespectra exhibit that, as annealing time longing in air, the intensity of the newly foundstrong ultra-violet emission decreases while the green emission enhances. Ramanspectrum and X-ray photoelectron spectroscopy investigations reveal that the relativelydecreasing intensity was dominated by the increasing oxygen vacancy. Furthercalculation based on the SnO_2crystal lattices with H2O molecules at different steps inevaporation process was performed with Chem3D software. It confirms that, instead ofthe influence of H2O molecules from air, the decreasing intensity is the result of thecombined action of the formation of oxygen vacancy and the energetic oxygencompensation in annealing treatment. According to the different annealing time in air,we can synthesize different intensities of green emission of the optical target which willbe applied on luminescence devices.
     2. Porous SnO_2microspheres: The effect of surrounding atmospheres on the PL property.In chapter four, one step thermal evaporation method was utilized to synthesize porousSnO_2microspheres. A set of experiments of different storage periods in water and ethanolsurrounding atmospheres were carried out. The PL results pointed out that the intensities of PLpeak exhibited a more sensitivity of stored samples in water surrounding atmospheres than theircounterpart in ethanol surrounding atmospheres. The comparison of PL property and theanalysis of XPS results indicated that since there are three kinds of oxidation states on thesurface of stored samples in water surrounding atmospheres, the interaction of the three statesand the effect of ultraviolet excitation light in the PL measurement can change the oxidevacancy on the surface of spheres. The sensitivity of PL spectrum was lower than that fromsample stored in surrounding atmospheres of ethanol which is easy to evaporate. The surfaceabsorption balance-controlled oxide vacancy content leads to the more sensitive PL property.The annealing test in Ar gas in700℃was also performed on sample. The comparison of thePL spectra to that from the water atmosphere-stored sample leads to the surface disorder as adeceasing function of surface oxygen content, which means that tuning the surface disorder isthe key to the changes of PL intensities.
     3. Hexagonal SnS_2nanoplates: synthesis, groth mechanism, and luminescenceproperty.In chapter five, hexagonal SnS_2particles were synthesized via a solvothermal methodusing a mixture of ethylene glycol (EG) and distilled water as solvent. Comprehensive synthesisparameters were considered to obtain the products including the solution formulation, the initialcharge ratio, the holding temperature, the keeping time of the holding temperature, and theproportion of atoms Sn:S. According to the calibrated SAED, a model of mono hexagonal SnS_2 molecule was established with Chem3D software. Based on the model, the interactions betweenEG and the hexagonal SnS_2molecule and between hexagonal SnS_2molecules were studied. Theresults indicated that The EG has an effect of on the growth of hexagonal SnS_2nanoplates in[001]. The hexagonal SnS_2nanoplates exhibited a red emission at761nm, which is attributed tothe sulfur vacancy based on the analysis of XPS and Raman spectra. A large band gap of3.52eV of the hexagonal SnS_2nanoplates was calculated by the light absorption measurement invisible region. The large band gap meets the acquirement of dye-sensitized solar cells (DSSC).An experiment of dye N719absorption on the surface of hexagonal SnS_2nanoplates was alsocarried out. The results indicated that the hexagonal SnS_2nanoplates have, somehow, anabsorbency of N719. Therefore, the hexagonal SnS_2nanoplates synthesized via solvothermalmethod can be applied in the photoanode material in DSSCs.
     4. Polyhedral ITO particles: Synthesis, characterization and origins of luminous emissionin wide visible range.In chapter six, a bi-precursors thermal co-evaporation was developed tosynthesized polyhedral ITO particles. Structural characterization results demonstrated that thetetrakaidecahedronal ITO particles had additional six {001} crystal surfaces compared with theoctahedronal ones. A more enhanced intensity of normalized PL emission at432nm was foundin octahedronal ITO particles than in the tetrakaidecahedronal ones. According to the ESRinvestigation, it was attributed to the more oxygen vacany in octahedronal ITO, which alsoleads to the uniform light area in CL spectrum, however, dark area was discovered intetrakaidecahedronal ITO particles. The luminous properties of both samples were characterizedby photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. A broad visibleluminous emission around570nm was observed. Studies revealed that the emission consistedof three peaks of511nm,564nm, and622nm which were attributed to radioactiverecombination centers such as single ionized oxygen vacancy, indium interstitial, and antisiteoxygen, respectively.
引文
[1] R. Birringer, H. Gleiter, H. P. Klein, et al., Phys. Lett. A,102,(1984),365.
    [2] S. Iijima, Nature,354,(1991),56.
    [3]汪信,刘孝恒,纳米材料学简明教程,化学工业出版社,2010.
    [4] X. Y. Kong, Z. L. Wang, Nano Lett.,3,(2003),1625.
    [5] X. Y. Kong, Z. L. Wang, Appl. Phys. Lett.,84,(2004),975.
    [6] X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Science,303,(2004),1348.
    [7] P. M. Gao, Y. Ding, W. J. Mai,W. L. Hughes, C. S. Lao, Z. L. Wang, Science,309,(2005),1700.
    [8] Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett.,91,(2003),185502.
    [9] Yan H, He R, Johnson, J, Law M, Saykally R J, Yang P, J. Am. Chem. Soc.,125,(2003),4728.
    [10] X. Y. Kong, Y. Ding, Z. L. Wang, J. Phys. Chem. B,108,,(2004),570.
    [11] K. W. Chang, J. J. wu, J. Phys. Chem. B,109,(2005),13572.
    [12] P. X. Gao, Z. L. Wang, J. Phys. Chem. B,106,(2002),12653.
    [13] Y. B. Seung, W.S. Hee, C. C. Hyun, P. Jeunghee, P. Jucheol, J. Phys. Chem. B,108,(2004),12318.
    [14]孙玉绣,张大伟,金政伟,纳米材料的制备方法及其应用,中国纺织出版社,2010.
    [15] F. Wang, Z. Ye, D. Ma, L. Zhu, F. Zhuge, J. Cryst. Growth,274,(2005),447.
    [16] D. Zhao, C. Andreazza, P. Andreazza, J. Ma, Y. Liu, D. Shen, Chem. Phys. Lett.,399,(2004),522.
    [17] N. U. Alvi, S. Hussain, J. Jensen, O. Nur, M. Willander, Nanoscale Res. Lett.,6,(2011),628.
    [18] Y. Zhang, W. F. Zhang, H. W. Zheng, Scripta Mater.,57,(2007)313.
    [19] W. M. Kwok, A. B. Djuri i, Y. H. Leung, W. K. Chan, D. L. Phillips, H. Y. Chen, C. L. Wu, S.Gwo, M. H. Xie, Chem. Phys. Lett.,412,(2005),141.
    [20] A. B. Djuri i, Y. H. Leung, Small,2,(2006),944.
    [21] F. Wang, Z. Ye, D. Ma, L. Zhu, F. Zhuge, J. Cryst. Growth,274,(2005),447.
    [22] F. Wen, W. Li, J.-H. Moon, J.-H. Kim, Solid State Commun.,135,(2005),34.
    [23] W. Yu, X. Li, X. Gao, Cryst. Growth Des.,5,(2005),151.
    [24] Q. Kuang, Z. Y. Jiang, Z. X. Xie, S. C. Lin, Z. W. Lin, S. Y. Xie, R. B. Huang, L. S. Zheng, J.Am. Chem. Soc.,127,(2005),11777.
    [25] J. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, D. Golberg, Adv. Mater.,17,(2005),971.
    [26] J. M. Krans, J. M. van Rutenbeek, V. V. Fisum, I. K. Yanson, L. J. de jongh, Nature,375,(1995),767.
    [27] W. D. Yu, X. M. Li, X. D. Gao, Nanotechnology,16,(2005),2770.
    [28] L. W. Yin, M. S. Li, Y. Bando, D. Golberg, X. L. Yuan, T. Sekiguchi, Adv. Funct. Mater.,17,(2007),270.
    [29]王世敏等著.纳米材料制备技术[M].北京:化学工业出版社,2002,5:7-114.
    [30]白桂丽,甘国友,严继康等.纳米粉体的制备技术及应用前景[J].云南冶金,2004,4,(33):23-26.
    [31]张立德,牟定美.纳米材料和纳米结构[M].北京:科学出版社.2001,112.
    [32] R. S. Wanger, W. C. Ellis, Appl. Phys. Lett.,4,(1964),89.
    [33] G. A. Bootsma, H. J. Gassen, J. Crystal Growth,10,(1971),233.
    [34] E. I. Givargizov, J. Crystal Growth,20,(1973),217.
    [35] E. I. Givargizov, J. Crystal Growth,31,(1975),20.
    [36] E. I. Givargizov, Curr. Top. Mater. Sci.,1,(1978),79.
    [37] K. Hiruma, T. Katsuyama, K. Ogawa, G. P. Morgan, M. Koguchi, H. Kakibayashi, Appl. Phys.Lett.,59,(1991),431.
    [38] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi,Appl. Phys. Lett.,77,(1995),447.
    [39] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B,15,(1997),554.
    [40]杨邦朝,薄膜物理与技术,电子科技大学出版社,1994.
    [41] Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang, J. G. Hou, Chem. Phys.Lett.,369,(2003),16.
    [42] Y. Su, Z. Y. He, Y. Q. Chen, J. Jiang, D. Cai, L. Chen, Mater. Lett.,59,(2005),2990.
    [43] Y. Q. Chen, J. Jiang, Z. Y. He, Y. Su, D. Cai, L. Chen, Mater. Lett.,59,(2005),3280.
    [44] J. Jiang, Y. Q. Chen, Z. Y. He, Y. Su, R. L. Zhou, L. Chen, D. Cai, J. Naosic. Nanotechnol.,5,(2005),825.
    [45] Z. Y. He, Y. Su, Y. Q. Chen, D. Cai, J. Jiang, L. Chen, Mater. Res. Bull.,40,(2005),1308.
    [46] L. Xu, Y. Su, Y. Q. Chen, H. H. Xiao, L. A. Zhu, Q. T. Zhou, S. Li, J. Phys. Chem. B,110,(2006),6637.
    [47] H. F. Jiang, Y. Q. Chen, Q. T. Zhou, Y. Su, S. Y. Zhang, H. H. Xiao, Chin. J. Chem. Phys.,19,(2006),511.
    [48] L. Xu, Y. Su, D. Cai, Y. Q. Chen, Y. Feng, Mater. Lett.,60,(2006),1420.
    [49] Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang, Y. Feng,Nanotechnology,17,(2006)6007
    [50] Y. Q. Chen, Q. T. Zhou, H. F. Jiang, Y. Su, H. H. Xiao, L. A. Zhu, L. Xu, Nanotechnology,17,(2006)1022.
    [51] Y. Su, X. Meng, S. Li, Y. Q. Chen, L. Xu, Q. T. Zhou, S. Yin, B. Peng, X. M. Liang, Y. Feng, J.Naosic. Nanotechnol.,7,(2007),4365.
    [52] Y. Su, S. Li, Y. Q. Chen, L. Xu, Q. T. Zhou, B. Peng, S. Yin, Y. Feng, Mater. Lett.,61,(2007),3818.
    [53] S. Yin, Y. Q. Chen, Y. Su, Q. T. Zhou, Chin. J. Chem. Phys.,20,(2007),308.
    [54] L. Xu, Y. Su, Q. T. Zhou, S. Li, Y. Q. Chen, Y. Feng, Cryst. Growth&Des.,7,(2007),810.
    [55] W. H. Kong, Y. Q. Chen, Q. T. Zhou, Y. Su, B. Peng, C. Jia, S. Yin, S. Li, Mater. Lett.,61,(2007),5033.
    [56] L. Xu, Y. Su, S. Li, Y. Q. Chen, Q. T. Zhou, S. Yin, Y. Feng, J. Phys. Chem. B,111,(2007),760.
    [57] Q. T. Zhou, Y. Q. Chen, W. H. Kong, Y. Su, B. Peng, C. Jia, X. H. Zhang, S. Yin, S. Li, Appl.Phys. Lett.,90,(2007),203112.
    [58] Y. Su, X. Meng, Y. Q. Chen, S. Li, Q. T. Zhou, X. M. Liang, Y. Feng, Mater. Res. Bull.,43,(2008),1865.
    [59] Y. Q. Chen, Y. Su, C. Jia, B. Peng, S. Yin, S. Li, W. H. Kong, Mater. Res. Bull.,43,(2008),2207.
    [60] Y. Su, X. Meng, Y. Q. Chen, Q. T. Zhou, S. Li, X. M. Liang, Y. Feng, J. Naosic. Nanotechnol.,8,(2008),3483.
    [61] X. H. Zhang, Y. Q. Chen, C. Jia, Y. Su, Q. Li, L. Z. liu, T. B. Guo, M. Q. Wei, J. Phys. Chem.C,113,(2009),13689.
    [62] Y. Q. Chen, Q. T. Zhou, X. H. Zhang, Y. Su, C. Jia, Q. Li, W. H. Kong, Cryst. Growth&Des.,9,(2009),728.
    [63] Y. Q. Zhu, Y. Q. Chen, X. H. Zhang, Q. Chen, Y. Shao, Mater. Lett.,63,(2009),1242.
    [64] Y. Q. Chen, L. Z. liu, X. H. Zhang, T. B. Guo, C. Jia,Y. Su,Q. Li, M. Q. Wei, J. Cryst. Growth,312,(2010),2479.
    [65] Y. Q. Chen, L. Z. Liu, X. H.Zhang,T. B. Guo, Y. Su,C. Jia, Q. Li, M. Q. Wei, J. Cryst. Growth,312,(2010),3401.
    [66] Q. Li, Y. Q. Chen, X. H. Zhang, L. Z. Liu, T. B. Guo, M. Q. Wei, Y. Su, C. Jia, J. Naosic.Nanotechnol.,10,(2010),5265.
    [67] Y. Q. Zhu, Y. Q. Chen, C. Jia, X. H. Zhang, J. Naosic. Nanotechnol.,10,(2010),8204.
    [68] Y. Q. Chen, Q. T. Zhou, X. H. Zhang, Y. Su, C. Jia, Q. Li, W. H. Kong, M. Q. Wei, Naosic.Nanotechnol.,10,(2010),8375.
    [69] Y. Q. Chen, Y. Shao, X. H. Zhang, C. Jia, Y. Su, Q. Li, L. Z. liu, T. B. Guo, J. Naosic.Nanotechnol.,11,(2011),1205.
    [70] L. Z. liu, Y. Q. Chen, L. L. Guo, T. B. Guo, Y. Q. Zhu, Y. Su, C. Jia, M. Q. Wei, Y. F, Cheng,
    [71] Y. Q. Zhu, Y. Q. Chen, J. Solid State Chem.186,(2012),182.
    [72] L. Vayssieres, Adv. Mater.,15,(2003),464.
    [73] D. Keyson, D. P. Volanti, L. S. Cavalcante, A. Z. Sim es, J. A. Varela, E. Longo, Mater. Res.Bull.,43,(2008),771.
    [74] L.Y. Bai, F. L. Yuan, P. Hu, S. K. Yan, X. Wang, S. H. Li, Mater. Lett.61,(2007),1698.
    [75] W. W. Zhao, Y. Liu, H. L. Li, X. G. Zhang, Mater. Lett.62,(2008),772.
    [76] C. Jia, X. H. Zhang, Y. Q. Chen, Y. Su, Q. T. Zhou, M. J. Xin, Y. S. Lv, W. H. Kong, Appl.Surf. Sci.,254,(2008),2331.
    [77] J. H. Jiang, R. L. Yu, R. Yi, W. Q. Qin, G. Z. Qiu, X. H. Liu, J. Alloys Compd.,493,(2010),529.
    [78] L. L. Wang, Y. C. Zhu, H. B. Li, Q. W. Li, Y. T. Qian, J. Solid State Chem.,183,(2010),223.
    [79] M. Salavati-Niasari, F. Davar, H. Emadi, Chalcogenide Lett.,7,(2010),647.
    [80] C. J. Tang, C. H. Zang, J. F. Su, D. M. Zhang, G. H. Li, Y. S. Zhang, K. Yu, Appl. Srf. Sci.,257,(2010),3388.
    [81] Y. D. Zhang, C. C. Pan, Y. G. Zhang, W. W. He, Cryst. Res. Techenol.,46,(2011),718.
    [81] Y. Zhang, X. H. Zeng, X. D. Meng, Electron. Compon. Mater.,30,(2011),30.
    [83] L. Y. Liu, L. Yang, Y. T. Pu, D. Q. Xiao, J. G. Zhu, Mater, Lett.,66,(2012),121.
    [84] S. L. Xiong, B. J. Xi, Y. T. Qian, J. Phy. Chem. C,114,(2010),14029.
    [85] S.R. Aghdaee, V. Soleimanian, J. Cryst. Growth,341,(2011),66.
    [86] W. Q. Wu, Y. M. He, Y. Wu, T. H. Wu, J. Alloys Compd.,509,(2011),9356.
    [87] X. M. Liu, W. L. Gao, J. Zhang, J. Phys. Chem. Solids,72,(2011),1472.
    [88] J. B. Lian, Y. Liang, F. L. Kwong, Z. M. Ding, D. H. L. Ng, Mater. Lett.,66,(2012),318.
    [89] S. Ghosh, K. Das, K. Chakrabarti, S. K. De, Crystengcomm,14,(2012),929.
    [90] H. Shi, K. Yu, F. Sun, Z. Q. Zhu, Crystengcomm,14,(2012),278.
    [91] B. S. Kwak, B. H. Choi, M. J. Ji, S. M. Park, M. Kang, J. Ind. Eng. Chem.,18,(2012),11.
    [92] S. Q. Shang, X. L. Jiao, D. R. Chen, ACS Appl. Mater. Interf.,4,(2012),860.
    [93] L. P. Zhu, N. C. Bing, L. L.Wang, H. Y. Jin, G. H. Liao, L. J. Wang, Dalton T.,41,(2012),2959.
    [94] L. Y. Zhu, Y. Xie, X. W. Zheng, X. Liu, G. E. Zhou, J. Cryst. Growth,260,(2004),494
    [95] H. M. Hu, B. J. Yang, J. H Zeng, Y. T. Qian, Mater. Chem. Phys.,86,(2004),233.
    [96] X. H. Zhang, Y. Q. Chen, C. Jia, Q. T. Zhou,Y. Su, B. Peng, S. Yin, M. J. Xin, Mater. Lett.62,(2008),125.
    [97] Y. Q. Chen, X. H. Zhang,C. Jia, Y. Su, Q. Li, J. Phys. Chem. C,113,(2009),2263.
    [98] X. Z. Liu, J. H. Cui, L. P. Zhang, W. C. Yu, F. Guo, Y. T. Qian, Nanotechnology,16,(2005),1771.
    [99] X. P. Shen, J. Q. Sun, G. X. Wang, J. S. Park. K. M. Chen, Mater. Res. Bull.,45,(2010),766.
    [100] B. X. Yuan, W. L. Luan, S. T. Tu, Dalton T.,41,(2012),772.
    [101] P. G. Harrison, M. J. Willett, Nature,332,(1988),337.
    [102] C. Tatsuyama, S. Ichimura, Jpn. J. Appl. Phys.,15,(1976),843.
    [103] W. Dazhi, W. Shulin, C. Jun, Z. Suyuan, L. Fangqing, Phys. Rev. B,49,(1994),14282.
    [104] Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt, J. S. Swinnea, J. Mater. Res.,8,(1993),3131.
    [105] S. Semancik and T. B. Fryberger, Sensor. Actuat. B,1,(1990),97.
    [106] E. Ramasamy, J. W. Lee, J. Phys. Chem. C,114,(2010),22032.
    [107] Y. L. Wang, M. Guo, M. Zhang, X. D. Wang, Cryst. Eng. Comm.,12,(2010),4024.
    [108] J. Y. Liu, T. Luo, S. Mouli T, F. L. Meng, B. Sun, M. Q. Lia, J. H. Liu, Chem. Commun.,46,(2010),472.
    [109] B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater.,11,(1999),795.
    [110] R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, G. A. Ozin, Adv. Mater.,13,(2001),1468.
    [111] C. Y. Kuo, K. H. Huang, S. Y. Lu, Electrochem. Commun.,9,(2007),2867
    [112] T. Wang, Z. Ma, F. Xu, Z. Jiang, Electrochem. Comm.,5,(2003),599.
    [113] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang, J. Phys. Chem. B106,(2002),1274.
    [114] X. S. Peng, L. D. Zhang, G. W. Meng, Y. T. Tian, Y. Lin, B. Y. Geng, S. H. Sun, J. Appl.Phys.,93,(2003),1760.
    [115] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu, Appl. Phys. A76,(2003),291.
    [116] S. H. Sun, G. W. Meng, M. G. Zhang, X. H. An, G. S. Wu, L. D. Zhang, J. Phys. D: Appl.Phys.37,(2004),409.
    [117] S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D.Zhang, App. Phys. A: Mater. Sci. Process.,76,(2003),287.
    [118] E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Appl. Phys. Lett.81,(2002),1869.
    [119] D. S. Torkhov, A. A. Burukhin, B. R. Churagulov, M. N. Rumyantseva, V. D. Maksimov,Inorg. Mater.,39,(2003),1158.
    [120] F. R. Tan, S. C. Qu, J. Wu, K. Liu, S. Y. Zhou, Z. G. Wang, Nanoscale Res. Lett.,6,(2011),298.
    [121] C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, C. M. S. Torres,Nat. Nanotechnol.,4,(2009),239.
    [122] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, Nature,430,(2004),61.
    [123] J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, T.Wu, Nanotechnology,22,(2011),195706.
    [124] S. I. Choi, K. M. Nam, B. K. Park, W. S. Seo, J. T. Park, Chem. Mater.20,(2008),2609.
    [125] T. Sasaki, Y. Endo, M. Nakaya, K. Kanie, A. Nagatomi, K. Tanoue, R. Nakamura, A.Muramatsu, J. Mater. Chem.,20,(2010),8153.
    [126] S. R. Ramanan, Thin Solid Films,389,(2001),207.
    [127] Y. Itoh, M. Abdullah, K. Okuyama, J. Mater. Res.,19,(2004),1077.
    [128] H. Sung-Jei, K. Yong-Hoon, H. Jeong-In, IEEE Trans. Nanotechnol.,7,(2008),172.
    [1]朱永法,纳米材料的表征与测试技术,化学工业出版社,2006.
    [1] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B,107,(2003),659-663.
    [2] E. J. Boyd, S. A. Brown, Nanotechnology,20,(2009),425201,(7pp.).
    [3] S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B,101,(1997),4490-4493.
    [4] C. Tatsuyama, S. Ichimura, Jpn. J. Appl. Phys.,15,(1976),843-847.
    [5] H. W. Seo, C. S. Han, S. O. Hwang, J. Park, Nanotechnology,17,(2006),3388-3393.
    [6] S. H. Luo, et al., Nanotechnology,17,(2006),1695-1699.
    [7] Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, Mater. Lett.,59,(2005),1670-1672.
    [8] J. Q. Sun, J. S. Wang, X. C. Wu, G. S. Zhang, J. Y. Wei, S. Q. Zhang, H. Li, D. R. Chen,Cryst. Growth Des.,6,(2006),1584-1587.
    [9] D. M. Qu, P. X. Yan, J. B. Chang, D. Yan, J. Z. Liu, G. H. Yue, R. F. Zhuo, H. T. Feng,Mater. Lett.,61,(2007),2255-2258.
    [10] Z. Y. Huang, C. F. Chai, Mater. Lett.,61,(2007),5113-5116.
    [11] J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. D. Yang, J. Phys.Chem. B,105,(2001),11387-11390.
    [12] H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am. Chem. Soc.,125,(2003),4728-4729.
    [13] J. Johnson, K. P. Knutsen, H. Yan, M. Law, P. Yang, R. Saykally, Nano Lett.,4,(2004),197-204.
    [14] J. C. Johnson, H.-J. Choi1, K. P. Knutsen, R. D. Schaller, P. D. Yang, R. J. Saykally, Nat.Mater.,1,(2002),106-110.
    [15] H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. Mc Kinney, J. Pham, R. J.Saykally, P. D. Yang, Adv. Mater.,15,(2003),1907-1911.
    [16] Y. Tang, D. X. Zhao, D. Z. Shen, J. Y. Zhang, X. H. Wang, Nanotechnology,20,(2009),495601,(6pp.).
    [17] T. Gao, T. H. Wang, Mater. Res. Bull.,43,(2008),836-842.
    [18] P. G. Li, M.Lei, W. H. Tang, X. Guo, X. J. Wang, Alloy. Compd.,477,(2009),515-518.
    [19] Y. Q. Zhu, Y. Q. Chen, X. H. Zhang, Q. Chen, Y. Shao, Mater. Lett.,63,(2009),1242-1244.
    [20] Y. Q. Zhu, Y. Q. Chen, C. Jia, X. H. Zhang, J. Nanosci. Nanotechnol.,10,(2010),8204-8209.
    [21] T. W. Kim, D. U. Lee, Y. S. Yoon, J. Appl. Phys.,88,(2000),3759-3761.
    [22] S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng, L. D. Zhang, Zuo, J. Chem.Phys. Lett.,376,(2003),103-107.
    [23] F. Gu, S. F. Wang, C. F. Song, M. K. Lu, Y. X. Qi, G. J. Zhou, D. Xu, D. R. Yuan, Chem.Phys. Lett.,372,(2003),451-454.
    [24] K. C. Mishra, K. H. Johnson, P. C. Schmidt, Phys. Rev. B,51,(1995),13972.
    [25] J. D. Prades, et al., Sens. Actuators B,126,(2007),6-12.
    [26] Y. Mizokawa, S. Nakamura, Jpn. J. Appl. Phys.,14,(1975),779-788.
    [27] J. X. Zhou, M. S. Zhang, J. M. Hong, Z. Yin, Solid State Commun.,138,(2006),242-246.
    [28] S. W ang, Solìd State Electronics,1st edition, McGraw-Hill Book Co.,1966.
    [29] J. Jung, S. P. Choi, C. Chang, Solid State Commun.,127,(2003),595-597.
    [30] L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. J. Roumyantseva,Solid State Chem.,135,(1998),78-85.
    [31] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. J. Qian, Appl. Phys.,75,(1994),1835-1836.
    [32] A. Diéguez, A. Romano-Rodríguez, A. Vilà, J. R. Morante, J. Appl. Phys.,90,(2001),1550-1557.
    [33] Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, G. H. Wang, Adv. Mater.,13,(2001),1883-1887.
    [34] K. Mcguire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menéndez, A. M. Rao, J. Nanosci.Nanotech.,2,(2002),499-502.
    [35] X. S. Peng, L. D. Zhang, G. W. Meng, et al, Vacuum,93,(2003),1760-l763.
    [36] V. Swamy, B. C. Muddle, Q. Dai, Appl. Phys. Lett.,89,(2006),163118/1-163118/3.
    [37] Y. Liu, M. Liu, Adv. Funct. Mater.,15,(2005),57-62.
    [38] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song,L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie, Solid State Commun.,130,(2004),89-94.
    [39] G. Mark, Curr. Opin. Solid State Mater. Sci.,6,(2002),355-363.
    [40] W. Chen, J.-O. Bovin, A. G. Joly, S. P. Wang, F. H. Su, G. H. Li, J. Phys. Chem. B,108,(2004),11927-11934.
    [41] B. Matthias, D. Ulrike Prog. Surf. Sci.,79,(2005),47-154.
    [42] J. D. Ye, et al., Appl. Phys. A,81,(2005),809-812.
    [43] K. Ogata, T. Komuro, K. Hama, K. Koike, S. Sasa, M. Inoue, M. Yano, Phys. Status SolidiB,241,(2004),616-619.
    [44] B. Coppa, R. F. Davis, R. J. Nemanich, Appl. Phys. Lett.,82,(2003),400-402.
    [45] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Surf. Sci.86,(1979),335.
    [46] D. E. Williams,1987Solid State Gas Sensors, vol71, ed P T Moseley and B C Tofield,(Bristol: Hilger IOP Publishing) chapter5.1.
    [47] N. Barsan, R. Ionescu, Sens. Actuators B,12,(1993),71.
    [48] S. H. Hahn, N. Barsan, U. Weimar, S. G. Ejakov, J. H. Visser, R. E. oltis, Thin Solid Films,436,(2003),17.
    [49] S. Li, X. Z. Zhang, B. Yan, T. Yu, Nanotechnology,20,(2009),495604,(9pp.).
    [50]. Cox, D. F., Fryberger, T. B., Semancik, S. Phys. Rev. B,38,(1988),2072-2083.
    [51]. Cox, D. F., Fryberger, T. B., Semancik, S. Surf. Sci.,227,(1990), L105-L108.
    [1] E. Traversa, M. L. D. Vona, S. Licoccia, M. Sacerdoti, M. C. Carotta, L. Crema, G. J. Martinelli,Sol-Gel Sci. Technol.,22(2001),167.
    [2] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, et al., Science,291,(2000),622-625.
    [3] M. Huang, S. Mao, H. Feick,; H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science,292,(2001),1897.
    [4] A.R. Phani, S. Manorama, V.J. Rao, Appl. Phys. Lett.,66,(1995),3489-3491.
    [5] D. Manno, G. Micocci, A. Serra, A. Tepore, J. Appl. Phys.,83,(1998),3541-3546.
    [6] A. Maiti, J. A. Rodriguez, M. Law, P. Kung, J. R. McKinney, P. Yang, Nano Lett.,3,(2003),1025-1028.
    [7] M. Law, H. Kind, F. Kim, B. Messer, P. Yang, Angew. Chem., Int. Ed.,41,(2002),2405.
    [8] T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Sens. Actuators B,106,(2005),580-590.
    [9] A. Khanna, R. Kumar, S. S. Bhatti, Appl. Phys. Lett.,82,(2003),4388-4390.
    [10] A.R. Phani, Appl. Phys. Lett.71(1997)2358-2360.
    [11] M. A. Aronova, K. S. Chang, I. Takeuchi, H. Jabs, D. Westerheim, A. Gonzalez-Martin, J. Kim,B. Lewis, Appl. Phys. Lett.,83,(2003),1255-1257.
    [12] M.H. Xu, F. S. Cai, J. Yin, Z. H. Yuan, L. J. Bie, Sens. Actuators B,145,(2010),875.
    [13] Y. Zhang, J. P. Li, G. M. An, X. L. He, Sens. Actuators B,144,(2010),43.
    [14] R. C. Singh, M. P. Singh, O. Singh, P. S. Chandi, Sens. Actuators B,143,(2009),226.
    [15] S. Gnanam, V. Rajendran, J. Sol-Gel Sci. Technol.,53,(2010),555.
    [16] Z. X. Wang, L. Liu, Mater. Lett.,63,(2009),917.
    [17] A.M. Mazzone, V. Morandi, Sens. Actuators A,126,(2006),56-61.
    [18] C. H. Wang, X. F. Chu, M. M. Wu, Sens. Actuators B,120,(2007),508-513.
    [19] A. Maiti, J. A. Rodriguez, M. Law, P. Kung, J. R. McKinney, P. D. Yang, Nano Lett.,3,(2003),1025-1028.
    [20] Y. L.Wang, X. C. Jiang, Y. N. Xia, J.Am. Chem. Soc.,125,(2003),16176-16177.
    [21] A. Kolmakov, Y. X. Zhang, G.S. Cheng, M. Moskovits, Adv. Mater.,15,(2003),997-1000.
    [22] Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie, L. S., J.AmChem. Soc,129,(2007),6070-6071.
    [23] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Chem.Mater.,17,(2005),3513–3518.
    [24] Y. Liu, M. L. Liu, Adv. Funct. Mater.,15,(2005),57-62.
    [25] Y.Wang, J.Y. Lee, H. C. Zeng, Chem. Mater.,17,(2005),3899-3903.
    [26] J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang, Y. Du, J. Am. Chem. Soc.,127,(2005),6180-6181.
    [27] J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B,106,(2002),3823-3826.
    [28] M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang, Angew. Chem. Int. Ed.,41,(2002),2405-2408.
    [29] E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L.Wang, Appl. Phys. Lett.,81,(2002),1869–1871.
    [30] D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Adv. Mater.,15,(2003),1022-1025.
    [31] Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, G. H. Wang, Adv. Mater.,13,(2001),1883-1887.
    [32] B. Cheng, J. M. Rusell, W. S. Shi, L. Zhang, E. T. Smalski, J. Am. Chem. Soc.,126,(2004),5972-5973.
    [33] J. Q. Sun, J.S. Wang, X. C. Wu, G. S. Zhang, J. Y. Wei, S. Q. Zhang, H. Li, D. R. Chen, Cryst.Growth Des.,6,(2006),1584-1587.
    [34] L. M. Qi, J. M. Ma, H. M. Cheng, Z. G. Zhao, Langmuir,14,(1998),2579-2581.
    [35] F. L. Chen, M. L. Liu, Chem. Commun.,18,(1999),1829-1830.
    [36] T. Hyodo, N. Nishida, Y. Shimizu, Y. Egishara, Sens. Actuators B,83,(2002),209-215.
    [37] D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Langmuir,18,(2002),4160–4164.
    [38] T.Wagner, C. D. Kohl, M. Fr ba, M. Tiemann, Sensors,6,(2006),318-323.
    [39] C. J. Martinez, B. Hockey, C. B. Montgomery, S. Semancik, Langmuir,21,(2005),7937-7944.
    [40] Z. Y. Zhong, Y. D. Yin, B. Gates, Y. N. Xia, Adv. Mater.,12,(2000),206-209.
    [41] H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, Y. L. Cao, J. Phys. Chem. C,111,(2007),14067-14071.
    [42] X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Adv.Mater.,18,(2006),2325-2329.
    [43] X. M. Sun, X. L. Li, Y. D. Li, Chem. Eur. J.,12,(2006),2039-2047.
    [44]C. H. Wang, X. F. Chu, M. W. Wu, Sens. Actuators B,120,(2007),508-513.
    [45] M. Tiemann, Porous metal oxides as gas sensors, Chem. Eur. J.13,(2007),8376-8388.
    [46] J. Zhu, O. K. Tan, Y. C. Lee, T. S. Zhang, B. Y. Tay, J. Ma, Nanotechnology17,(2006),5960-5969.
    [47] X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, Q. H. Li, L. B. Chen, T. H. Wang,Nanotechnology,20,(2009),455530-455505.
    [48] N. Barsan, R. Ionescu, Sens. Actuators B,12,(1993),71-75.
    [49] S. H. Hahn, N. Barsan, U. Weimar, S. G. Ejakov, J. H. Visser, R. E. Soltis, Thin Solid Films,436,(2003),17-24.
    [50] H.W. Kim, S. H. Shim, Appl. Phys. A,88,(2007),769–773.
    [51] N. Barsan, U. J. Weimar, Phys.: Condens. Matter.,15,(2003),813.
    [52] A.W.C. Lin, N.R. Armstrong, T. Kuwana, Anal. Chem.49,(1977),1228.
    [53] J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu, X. Zhou, W. Liu, L. Q. Hu, R. Zhang, Y. Shi,Y. D. Zheng, Appl. Phys. A,81,(2005),759-762.
    [54] N. Martensson, P. A. Malmquist, S. Svensson, E. Basilier, J. J. Pireaux, U. Gelius, K. SiegbahnNouveau, J. Chim.1,(1977),191
    [55] R. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B,105,(2001),1984.
    [56] Lawless D.[J]., J Phys Chem,95,(1991),5166-5175.
    [1] L. Sharp, D. Soltz, B. A. Parkinson, Cryst Growth Des,6,(2006),1523-1527.
    [2] T. Momma, N. Shiraishi, A. Yoshizawa, T. Osaka, A. Gedanken, J. Zhu, J Power Sources,97-98,(2001),198-200.
    [3] H. Mukaibo, A. Yoshizawa, T. Momma, T. Osaka, J Power Sources,119-121,(2003),60-63.
    [4] T. J. Kim, Kim C., Son D., ChoiM, B. Park, J Power Sources.167,(2007),529-535.
    [5] I. A. Sokolov, Measurement2000,27,13-19.
    [6] P. W. Shen, J. T. Wang, Dictionary of Compounds. Shanghai: Shanghai LexicographicalPublishing House,(2002).
    [7] S. K. Arora, D. H. Patel, M. K. Agarwal, Mater. Chem. Phys.,45,(1996),63-65.
    [8] K. Kourtakis, J. DiCarlo, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem.,76,(1988),186-191.
    [9] D. Chen, G. Shen, K. Tang, S. Lei, H. Zheng, Y. Qian, J. Cryst. Growth,260,(2004),469-474.
    [10] B. Hai, K. Tang, C. Wang, C. An, Q.Yang, Y. Qian, J. Cryst. Growth,225,(2001),92-95.
    [11] X. L. Gou, J. Chen, P. W. Shen, Mater. Chem. Phys.93,(2005),557-566.
    [12]Shuang Liu, Xiaoming Yin, Libao Chen, Qiuhong Li, Taihong Wang, Solid State Sci.,12,(2010),712-718.
    [13] C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater.,17,(2005),3297-3301.
    [14] Tae-Joon Kim, Chunjoong Kim, Dongyeon Son, Myungsuk Choi, Byungwoo Park, Journal ofPower Sources,167,(2007),529-535.
    [15] Jung-wook Seo, Jung-tak Jang, Seung-won Park, Chunjoong Kim, Byungwoo Park, JinwooCheon, Adv. Mater.,20,(2008),4269-4273.
    [16] S. Y. Hong, R. Popovitz-Biro, Y. Prior, Tenne R., J. Am. Chem. Soc.,2003,125,(34),10470-10474.
    [17] H. Zhu, X. Ji, D. Yang, J Mater. Sci.,41(11),(2006),3489-3492.
    [18] W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang, P. Wei, Nanotechnology,17,(2006),2918-2924.
    [19] Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, J. Phys. Chem. C,113(4),(2009),1280-1285.
    [20] D. Ma, H. Zhou, J. Zhang, Y. Qian, Mater. Chem. Phys.,111(2-3),(2008),391-395.
    [21] S. K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, S. Chaudhuri, Mater. Res. Bull..42,(2007),576.
    [22] Y. Ji, H. Zhang, X. Ma, J. Xu, D. Yang, J. Phys.: Condens. Matter,15(44),(2003),661-665
    [23] D. Ma, W. Zhang, Q. Tang, R. Zhang, W. Yu, Y. T. Qian, J. Nanosci. Nanotechnol.,5(5),(2005),806-809.
    [24] D. Chen, G. Z. Shen, K. B. Tang, Y. K. Liu, Y. T. Qian, Appl. Phys. A,77(6),(2003),747-749.
    [25] Y. T. Lin, J. B. Shi, Y. C. Chen, C. J. Chen, P. F. Wu, Nanoscale Res. Lett.,4,(2009),694–698.
    [26] A. Ghazali, Z. Zainal, M. Z. Hussein, A. Kassim, Sol. Energy Mater. Sol. Cells.,55,(1998),237.
    [27] K.W.Nnebesn y, G.E.Colloins, P.A.Lee, L.K.Chau, J.Danziger,E.Osb urn, N.R.Armstrong,Chem. Mater.,3,(1991),829.
    [28] B.Thangaraju, P.Kaliannan, Phys. D. Appl. Phys.,33,(2000),1054.
    [29] Aswani Yella, Enrico Mugnaioli, Martin Panth fer, Helen Annal Therese,Ute Kolb, WolfgangTremel, Angew. Chem. Int. Ed.,48,(2009),6426-6430.
    [30] L. H. Dong, Y. Chun, Y. P. Zhang, Mater Lett,61(23-24),(2007),4651.
    [31]王玲,戴金辉,刘西中,《材料导报》2011年第2期57-59页。
    [32] Li Y. D., Liao H. W., Ding Y. et al, Chem. Mater.,10(9),(1998),2301-2304.
    [33] Xu D., Liu Z. P., Liang J. B., et al, Phys. Chem. B,109,(2005),14344-14349.
    [34] Z. X. Deng, L. B. Li, Y. D. Li, Inorg. Chem.,42,(2003),2331-2341.
    [35] X. H. Zhang, Y. Q. Chen, C. Jia, Q.T. Zhou, Y. Su, B. Peng, S. Yin, M. J. Xin, Mater. Lett.,62(1),(2008),125-127.
    [36] G. Z. Shen, D. Chen, K. B. Tang, F. Q. Li, Y. T. Qian, Chem. Phys. Lett.,370,(2003),334-337.
    [37] G. J. Zhou, M. K. Lu, Z. L. Xiu, S. F. Wang, H. P. Zhang,Y. Y. Zhou, S. M. Wang, J. Phys.Chem. B,110,(2006),6543-6548.
    [38] C. R. Wang, K. B. Tang, Q. Yang, Y. T. Qian, C. Y. Xu, Chem. Lett.,30,(2001),1294-1295.
    [39] D. Chen, G. Z. Shen, K. B. Tang, S. J. Lei, H. G. Zheng, Y. T. Qian, J. Cryst. Growth,260,(2004),469-474.
    [40] Subhajit Biswas, Soumitra Kar, Tandra Ghoshal, and Subhadra Chaudhuri, J. Nanosci.Nanotech.7,(2007),4540-4545.
    [41] H. Xiao, Y. C. Zhang, Mater. Chem. Phys.,112,(2008),742-744.
    [42] H. X., Y. C. Zhang, H.X. Bai, Mater. Lett.,63,(2009),809-811.
    [43] A. R. Wang, H. Xiao, Mater. Lett.,63,(2009),1221-1223.
    [44] Y. C. Zhang, Z. N. Dua, S. Y. Li, M. Zhang, Appl. Catal. B: Environ.,95,(2010),153-159.
    [45] C. X. Zhai, N. Du, H. Zhang, D. R. Yang, Chem. Commun.,47,(2011),1270-1272.
    [46] F. R. Tan, S. C. Qu, X. B. Zeng, C. S. a Zhang, M. J. Shi, Z. J. Wang, L. Jin,Y. B., J. Cao, Z. G.Wang, Y. B. Hou, F. Teng, Z. H. Feng, Solid State Commun.,150,(2010),58-61.
    [47] B. B. Kale, J. O. Baeg, S. M. Lee, Hyunju Chang, S. J. Moon, C. W. Lee, Adv. Funct. Mater.,16,(2006),1349-1354.
    [48]郑林林,冯守爱,高峰,朱珍平,无机材料学报,2009,24(1),61-64。
    [49] B. Chen, M. Joette, E. T. Samulski et al, J. Am. Chem. Soc.,2004,126,5972-5973.
    [50] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem.92(1988)5196.
    [51]王艳,强碱液在水热反应釜中压强与填充度关系的热力学分析,南京工业大学,2006,40-41。
    [52] J. M. Pemba-Mabiala, M. Lenzi, J. Lenzi, A. Lebugle, Surf. Interface Anal.,15,(1990),663.
    [53] C. D. Wagner,Discuss. Faraday Soc.,60,(1975),291.
    [54] W. F. S. J. F. Moulder, P. E. Sobol, K. D. Bomben, ULVAC-PHI, Japan,(1995).
    [55] D. J. Shuttleworth, Phys. Chem.,84,(1980),1629.
    [56] F. Golestani-Fard, T. Hashemi, K. J. D. Mackenzie, C. A. Hogarth, J. Mater. Sci.,18,(1983),3679.
    [57] R. O. Ansell, T. Dickinson, A. F. Povey, P. M. A. Sherwood, J. Electron Spectrosc. Relat.Phenom.,11,(1977),301.
    [58] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-RayPhotoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, EdenPrairie, Minn.(1979),55344.
    [59] V. I. Nefedov, D. Gati, B. F. Dzhurinskii,, N. P. Sergushin, Y. V. Salyn, Zh. Neorg. Khimii,20,(1975),2307.
    [60] Taylor J.A., Lancaster G.M., Rabalais, J.W., J. Electron Spectrosc. Relat. Phenom.,13,(1978),435.
    [61] G. Zhou, M. Lv, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang, J. Phys. Chem. B,110,(2006),6543.
    [62] H. M. Hu, B. J. Yang, X. Y. Liu, R. Zhang, Y. T. Qian, Inorg. Chem. Comm.,7,(2004),563.
    [63] G. B. Dubrovski ǐ, Phys. Solid State,40(9),(1998),1557-1562.
    [64] C. Wang, K. Tang, Q. Yang, Y. Qian, Chem. Phys. Lett.357(2002)371-375.
    [65] J. Morales, J. Santos, J.R. Ramos Barrado, J.P. Espinos, A.R. Gonzalez-Elipe, J. Solid StateChem.,150,(2000),391.
    [66] T. J. Minagawa, Phys. Soc. Jpn.,49,(1980),2317.
    [67] B. Palosz, B. Palosz, Salje, E. J. Appl. Crystallogr.,22,(1989),622.
    [68] B. Palosz, Steurer, W.; Schulz, H. Acta Crystallogr., B46,(1990),449.
    [69] B. Palosz, W. Palosz, S. Gierlotka, Acta Crystallogr., C42,(1986),653.
    [70] L, Z. Li, H. Li, J. Zhou, J. Lu, R. Qin, Z. X. Gao, W. N. Mei, J. Comput. Theor. Nanosci.,7(10),(2010),2100-2103.
    [71] M. K. I. Senevirathna, P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara, A.Konno, Sol. Energy Mater. Sol. Cells,9,(2007),544.
    [72] E. Lifshitz, Z. Cben, L. Bykov, J. Phys. Chem.,97,(1993),238.
    [73] G. Burns, Solid State Physics, Academic Press, Orlando,1985.
    [74] N. G. Deshpande, A. A. Sagade, Y. G. Gudage, C. D. Lokhande, J. Alloy Compd.,436,(2007),421-426.
    [75] S. K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, S. Chaudhuri, Mater. Res. Bull.,42,(2007),576-583.
    [76] E. C. Greyson, J. E. Barton, T. W. Odom, Small,2,(2006),368.
    [77] G. Lucovsky, J. C. Mikkelsen., Jr., W. Y. Liang, R. M. White, R. M. Martin, Phys. Rev. B,14,(1976),1633.
    [78] C. Julien, H. S. Mavi, K. P. Jain, M. Balkanski, Mater. Sci. Eng. B,23,(1994),98.
    [79] J. K. Jian, X. L. Chen, T. Xu, Y.P. Xu, L. Dai, M. He, Appl. Phys. A,75,(2002),695.
    [80] J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B,106,(2002),3823.
    [81] J. C. Paker, R.W. Siegel, Appl. Phys. Lett.,57,(1990),943.
    [82] B. Ghosh, M. Das, Banerjee P,S. Das, Semicond Sci Technol,23,(2008),125013.
    [83] S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, Chanchal Ghosh, R. Divakar,Mater. Lett.,65,(2011),1148.
    [1] C. Falcony, J.R. Kirtley, D. J. Dimaria, T.P. Ma, T.C. Chen, J. Appl. Phys.,58,(1985),3556.
    [2] Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, Appl. Phys. Lett.,76,(2000),2740.
    [3] M. Kamei, T. Yagami, S. Takaki, Y. Shigesato, Appl. Phys. Lett.,64,(1994),2712.
    [4] H. Kobayashi, T. Ishida, Y. Nakato, H.J. Tsubomura, Appl. Phys.,69,(1991),1736.
    [5] M. A. Martinez, J. Herrero, M. T. Gutierrez, Thin Solid Films,269,(1995),80.
    [6] C. Xu, L. Liu, S.E. Legenski, D. Ning, M.J. Taya, Mater. Res.,19,(2004),2072.
    [7] C.G. Granqvist, A. Hulta°ker, Thin Solid Films,411,(2002),1-5.
    [8] B.G. Lewis, D.C. Paine, MRS Bull.,25,(2000),22.
    [9] R.G. Gordon, MRS Bull.,25,(2000),52.
    [10] F.G. Li, D.P. Liu, P. Deng, Rare Met. Cemented Carbides,138,(1999),15.
    [11] R. Wang, C. C. Lee, Society of Vacuum Coaters42nd1999Annual Technical
    [12] M. Wei, D. Zhi, Driscoll, J. Nanotechnology,17,(2006),3523.
    [13] A. Qurashia, E. M. El-Maghrabyb, T. Yamazakia, T. J. Kikutaa, J. Alloys and Compounds,480,(2009), L9.
    [14] Y. B. Zhao, Z. J. Zhang, Z. S. Wu, H. X. Dang, Langmuir,20,(2004),27
    [15] P. Guha, S. Kar, S. Chaudhuri, Appl. Phys. Lett.,85,(2004),3851.
    [16] Conference Proceedings; Society of Vacuum Coaters; USA;1999, pp.246.
    [17] T. S. Ko, C. P. Chu, J. R. Chen, Y. A. Chang, T. C. Lua, H. C. Kuo, S. C. Wang, J. Vac. Sci.Technol. A,25,(2007),1038.
    [18] X. C. Duan, X. P. Yang, Rare Met. Cemented Carbides,138,(1999),58.
    [19] Y. F. Zhang, J. X. Zhang, J. Funct. Mater.,5,(2003),573.
    [20] M. S. Moreno, R. C. Mercader, A. G. Bibiloni, J. Phys. Condens. Matter,4,(1992),351.
    [21] M. Nagano, J. Cryst. Growth,66,(1984),377.
    [22] M. Mazzera, M. Z. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti,Nanotechnology,18,(2007),355707.
    [23] X. C. Wu, J. M. Hong, Z. J. Han, Y. R. Tao, Chem. Phys. Lett.,373,(2003),28.
    [24] M. J. Zheng, L. D. Z hang, G. H. Li, X. Y. Zhang, X. F. Wang, Appl. Phys. Lett.,79,(2001),839.
    [25] R. R.-G. Karla, Y. P. Sun, R.-G. Enrique, R. Daniel, J. Phys. Chem. C,113,(2009),12558.
    [26] M. Kumar, V. Singh, F. Singh, K.V. Lakshmi, B.R. Mehta, J. P. Singh, Appl. Phys. Lett.,92,,(2008),171907.
    [27] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys.,75,(1994),1835.
    [28] K. Mcguire, Z.W. Pan, Z. L. Wang, D. Milkie, J. Menéndez, A.M. Raoa, J. Nanosci. Nanotech.,2,(2002),499.
    [29] W.B. White, V.G. Keramidas, Spectrochim. Acta; Part A,28,(1972),501.
    [30] Y. Sun, T. Egawa, C. Shao, L. Zhang, X. J. Yao, Cryst. Growth,268,(2004),118.
    [31] E. Serwicka, Colloids Surf.,13,(1985),287.
    [32] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. J. Takeuchi, Mol. Catal. A,161,(2000),205.
    [33] J. Haber, E. Serwicka, Polyhedron,5,(1986),107.
    [34] Y. A. Cao, W. S. Yang, W. F. Zhang, G. Z. Liu, P. L. Yue, New J. Chem.,28,(2004),218.
    [35] J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Nanotechnology,22,(2011),195706.
    [36] M. Quaas, C. Eggs, H. Wulff, Thin Solid Films,332,(1998),277.
    [37] Z. Y. Sun, J. B. He, A. Kumbhar, J.Y. Fang, Langmuir,26[6],(2010),4246.
    [38] R. D. Shannon, Acta. Cryst. A,32,(1976),751.
    [39] J. D. Prades, J. Arbiol, A. Cirera, J. R. Morante, M. Avella, L. Zanotti, E. Comini, G. Faglia, G.Sberveglieri, Sensors Actuat. B,126,(2007),6.
    [40] Y. Mizokawa, S. Nakamura, Jpn. J. Appl. Phys.,14,(1975),779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700