用户名: 密码: 验证码:
SAR及MODIS数据海面溢油监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋溢油发生后,准确及时的监测溢油对于海洋环境保护具有重要意义。随着卫星遥感技术的高速发展,遥感已经成为监测溢油的最重要和最有效手段之一。本论文以海面溢油为研究对象,讨论了利用SAR和MODIS监测海面溢油的方法,重点在SAR图像中溢油现象识别、MODIS监测海面油膜厚度、基于GIS的遥感溢油监测系统和中国海溢油分布等方面进行研究。本文的主要研究结果归纳如下:
     1.系统介绍了SAR图像中识别溢油现象和疑似现象的全过程,主要包括图像预处理(辐射校正和斑点噪声滤除)、图像分割、特征提取、特征筛选和神经网络识别。
     在SAR图像预处理方面,比较了10种滤波方法,最后选择了窗口为3×3的增强Lee滤波对SAR图像进行滤除斑点噪声的处理。在SAR图像中油膜区域分割方面,将水平集方法与多尺度小波方法相结合,提高了计算效率,降低了算法的复杂度,同时对SAR图像中油膜区域的模糊边缘进行了有效监测。
     在识别溢油和疑似溢油方面,除灰度特征量外,引入图像纹理特征参量,并利用方差分析从计算的31个特征参量筛选出16个作为神经网络的输入,建立了区别溢油现象和疑似溢油现象的神经网络模型。研究结果表明,该模型识别精度达到83%,可以较好地识别溢油现象;纹理特征作为特征参量提高了溢油现象的识别精度;基于方差分析的特征参量筛选不仅简化了神经网络结构,而且提高了模型的识别精度。
     2.将模糊聚类方法FCM与图像纹理分析相结合用于对250m分辨率的MODIS图像中的溢油区域分割;将这种方法应用到2005年4月3日发生在大连海域“阿提哥”事件的MODIS图像中,较好的区分了溢油区域,并在此基础上,利用多时相的MODIS数据计算了油膜的漂移,结果与风场和潮汐数据一致。
     建立了一个简单的海面油膜的光学模型,并在此基础上对海面油膜的可见光波段的光学性质进行了定性分析:油膜与海水的反差主要依赖于油膜对海水向上辐亮度的吸收,离水辐亮度差异在海水光谱反射峰的波段油水反差最大,随着油膜厚度的增加,油膜的离水辐亮度减少。在传感器接收的大气顶辐亮度的图像中,油膜与海水的反差依赖于镜面反射和下表面向上辐亮度传输的平衡:当镜面反射的差异大于下表面向上辐亮度的差异时,油膜海水反差为正,反之为负。基于此,根据两次溢油事故的MODIS数据定性给出了油膜厚度的分布。
     3.设计了基于WebGIS和卫星数据的海面油污染监测系统,该系统是一个融合了Apache web服务器、Oracle数据库管理系统、Mapserver、PHP和卫星遥感数据处理系统的网络地理信息系统(WebGIS),主要包括环境信息收集模块、溢油信息提取模块和油膜扩散预测模块。基于这个系统和2002~2005年的SAR数据对东中国海的溢油事件进行了统计分析,污染比较严重的四个海区包括:黄海中部,纬度范围在32°~37°N;渤海海峡东部;长江口周围海域;纬度范围在28°~32°N的东海海域及台湾海峡。溢油主要是由船舶非法排污引起的,分布在主要航线的海区,另外还包括渔船作业产生的油膜、河口排放的工业污染形成的油膜。
     4.将WebGIS系统与FCM方法相结合建立了一个帮助农民用户产生定量施肥图的专家系统。基于此系统,进一步研究利用陆地卫星Landsat数据制定定量施肥图的可能性;系统输出结果通过产量或现场土壤属性的测量进行评价,研究表明可以利用作物生长茂盛时期(NDVI均值最高)的卫星NIR波段数据产生变量施肥图。
Oil spill detection has important significance for the oceanic environmental protection. With the rapid development of the satellite remote sensing, remote sensing technique has become one of the important and effective tools in oil spill detection. This dissertation discussed the methods of the sea surface oil spill detection using Synthetic Aperture Radar (SAR) and MODIS data sets. The main researches focus on the oil spill phenomena recognition in the SAR images, oil film thickness estimation with MODIS data, oil spill detection system based on satellite data and GIS and oil spill distribution in the China Sea. The main results and conclusions of this dissertation are summarized as follows:
     1. The procedures are introduced to distinguish oil spill from the look-like phenomena in the SAR images, which include image preprocessing (radiation correction and speckle noise filtering), image segmentation, feature extraction, feature filtering and oil spill recognition based on Artificial Neural Network (ANN).
     After analyzing 10 different noise filtering methods, we chose the enhanced Lee filter with the window of size 3×3 pixels to reduce speckle noise. Oil spill region is segmented effectively by combining the Level Set and multi-level wavelet method, and the new segmented method improves the computation efficiency and decreases the computation complexity.
     To distinguish oil spills from the look-like phenomena, texture features of SAR images were extracted, in addition to the grey features, to be used as the inputs of ANN. The analysis of variance (ANOVA) was used to evaluate the importance of the features in distinguishing oil spills from the look-likes phenomena. The selected 16 features were used as the input of ANN. We found that 83% of the total test data were classified correctly, and it seems that the second-order statistic features based on co-occurrence matrix and features filtering with ANOVA improve the result of oil spills identification compared with the other methods.
     2. The fuzzy C-means (FCM) cluster algorithm with a texture feature analysis was developed to detect oil spill using.MODIS images in 250m resolution. Use of entropy based on the GLCM improved the efficacity of classification significantly, and the oil spills in the coastal region of Dalian port was clearly identified. The movement of oil spill estimated from two consecutive MODIS images was consistent with the ocean current estimated from the prevailing wind field and tidal data. Then we proposed a simple radiative transfer model of surface oil spill and analyzed the corresponding optical property in the visible band. The contrast between surface oil and background water depends on the absorption of upwelling radiance within the oil film. The upwelling radiance contrast owns a greatest value near the sea water reflectance peak and decreases as the oil film thickness increase. For the radiance received at the top of atmosphere (TOA) by the satellite sensor, the contrast between oil film and surrounding water depends on the balance between specular reflectance and the sub-surface upwelling radiance. The contrast of TOA radiance is positive when the contrast of specular reflectance is higher. Based on the above result and the MODIS data, the film thickness distribution of two oil spill accidents was analyzed qualitatively.
     3. An oil spill detection system is constructed by integrating Apache web server, Oracle database management system, Mapserver, PHP and satellite remote sensing data into the Web Geographic Information System(WebGIS). The system included the environmental information collecting model, oil spill information extracting model and oil spill drift forecasting model. Based on collecting SAR images from 2002 to 2005 and the WebGIS as a reference system, the oil spill distribution map for the East China Sea is presented. Four heavily polluted areas in the region have been delineated; they include the central part of the East China Sea, the eastern area of Bohai Strait, the marine area in the vicinity of the mouth of the Yangtze River and surrounding waters, and the southern part of the East China Sea including Taiwan Strait. A main source of oil pollution in the China Seas is the illegal discharges from passing ships, which are roughly distributed along main regional/international ship routes. Other sources include fish & oil waste caused by fishing operations and surface active materials with river runoff produced by onshore industrial enterprises.
     4. Combining the above WebGIS framework and FCM method, a system is constructed to help farmers to create management zones for variable rate applications of fertilizer. Based on the system, the further research is to examine how to use routine satellites data, such as Landsat,to create management zones. By comparing results with the management zones created with yield maps or soil survey, we will determine the optimal satellite images both temporally and spectrally that can be used to delineate appropriate management zones. NIR data from Landsat of the vegetation canopy flourishing season present the promising potential to replace yield data as the input of model to create the zone map of nitrogen fertilizer application.
引文
[1]http://www.cedre.fr/uk/spill
    [2]http://www.evostc.state.ak.us/
    [3]中国溢油防治网,http://www.osp.cn/
    [4]国家环境保护总局,《中国保护海洋环境免受陆源污染国家报告》,2006。
    [5]InterOcean systems,inc.Http://www.interoceansystems.com/oil_ossb.htm.
    [6]K.G.Dean,W.J.Stringer,J.E.Groves,K.Ahlinas and T.C.Royer,1990,The EXXON VALDEZ Oil Spill:Satellite Analyses,in Oil Spills:Management and Legislative Implications,M.L.Spaulding and M.Reed,Ed.American Society of Civil Engineers,New York,pp.492-502.
    [7]C.M.Hu,F.E.Muller-Karger,C.Taylor,D.Myhre,B.Murch,A.L.Odriozola and G.Godoy,2003,MODIS detects oil spills in Lake Maracaibo,Venezuela,EOS,Transactions,American Geophysical Union,vol.84,no.33,pp.313.
    [8]Salem,F.Kafatos,M.,El-Ghazawi,T.,Gomez.T,and Yang,R.2003,Mapping Oil spill Thickness on Sea Water.The International Colloquium Series on land use/Cover change Science and Applications.In 13-16 Aug.,Antalya,Turkey.
    [9]Bonn Agreement Counter Pollution Manual,Http://www.bonnagreement.org/
    [10]Taylor,S.,1992,0.45 to 1.1μm Spectra of Prudhoe Crude Oil and of Beach Materials in Prince William Sound,Alaska,CRREL Special Report No.92-5,Cold Regions Research and Engineering Laboratory,Hanover,New Hampshire,pp:14.
    [11]Mervin F.Fingas,Carle E.Brown,1997.Review of Oil Spill Remote Sensing.Spill Science & Technology Bulletin,Vol.4,No.4,pp.199-208.
    [12]Mervin F.Fingas,1995,A Literature Review of the Physics and Predictive Modeling of Oil Spill Evaporation.Journal of Hazardous Materials,(42):157-175.
    [13]Y.W.Tseng and L.S.Chiu,1994,AVHRR observations of Persian Gulf oil spills,Int.Geoscience and Remote Sensing Symp.(IGARSS),Pasadena,USA,vol.2,pp.779-782.
    [14]Fingas,M.F.,C.E.Brown and J.V.Mullin,1998,The Visibility Limits of Oil on Water and Remote Sensing Thickness Detection Limits.Proceedings of the Fifth Thematic Conference on Remote Sensing for Marine and Coastal Environments, Environmental Research Institute of Michigan, Ann Arbor, Michigan: 411-418.
    [15] Bolus, R.L., 1996, An Airborne Testing of a Suite of Remote Sensors for Oil Spill Detecting on Water. Proceedings of the Second Thematic International Airborne Remote Sensing Conference and Exhibition, Environmental Research Institute of Michigan, Ann Arbor, Michigan: III 743-752.
    [16] Fantasia, J. F., T. M. Hard, and H. C. Ingrao, 1971, An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills, Report No. DOT-TSC-USCG-71-7, Transportation Systems Center, Dept. of Transportation, Cambridge, Mass.
    [17] Measures. R. M. and M. Bristow, 1971, The Development of a Laser Fluorosensor for Remote Environmental Probing, Joint Conference on Sensing of Environmental Pollutants, Palo Alto, Nov. 1971, AIAAA Paper 71-112; Can. Aeron. Space J., 17,421-422.
    [18] Fantasia, J. F., and H. C. Ingrao, 1974. Development of Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills, Proc. of the 9th Intern. Symp. on Remote Sensing of the Environment, 15-19 April 1974, Paper 10700-1-X, 1711-1745.
    [19] Marc Lennon, Sergey Babichenko, Nicolas Thomas, Vincent Mariette, Gregoire Mercier and Aleksei Lisin, 2006. DETECTION AND MAPPING OF OIL SLICKS IN THE SEA BY COMBINED USE OF HYPERSPECTRAL IMAGERY AND LASER INDUCED FLUORESCENCE. EARSeL eProceedings 5, issue/2006.
    [20] Lennon M, S Babichenko, N Thomas, V Mariette & G Mercier, 2005. Oil slick detection and characterization by satellite and airborne sensors: experimental results with SAR, Hyperspectral and Lidar data. In: IEEE IGARSS' 2005, Seoul, Korea, 25-29 July.
    [21] Skou, N., Sorensen, B.M. and Poulson, A. , 1994. A New Airborne Dual Frequency Microwave Radiometer for Mapping and Quantifying Mineral Oil on the Sea Surface. Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, ERIM Conferences, Ann Arbor, Michigan, 11-559-565
    [22] Mussetto, M.S., Yujiri, L., Dixon, D.P., Hauss, B.I. and Eberhard, C.D., 1994. Passive Millimeter Wave Radiometric Sensing of Oil Spills. Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments: Needs, Solutions and Applications, ERIM Conferences, Ann Arbor, Michigan, 1-35-46.
    [23] Skoelv, A. and Wahl, T.,1993. Oil spill detection using satellite based SAR. Phase 1B competition report. Tech. rep., Norwegian Defence Research Establishment.
    [24] Vachon, P. W., Thomas, S.J., Cranton, J.A., Barjenbruch, C, Dobson, F.W., & Olsen, R.B., 1998. Monitoring the coastal zone with the RADARSAT satellite. Oceanology International 98'. UK, March 10-13, 10 pages.
    [25] Manore, M. I, Vachon, P. W., Bjerkelund, C, Edel, H. R., & Ramsay, B. 1998. Operational use of RADARSAT SAR in the coastal zone: The Canadian experience. 27th International Symposium on Remote Sensing of the Environment, Tromsa, Norway, June 8 — 12(pp. 115-118).
    [26] Barni, M., Beiti, M., and Mecocci, A., 1995, A fuzzy approach to oil spill detection on SAR images. Proc. IGARSS'95, vol.1, pp. 157-159.
    [27] Change, L. Y., Chen, K., Chen, C, & Chen, A. 1996. A multiplayer multiresolution approach to detection of oil slicks using ERS SAR image. Proc. ACRS 1996—17th Asian Conference of Remote Sensing,Sri Lanka.
    [28] Chen, C.F., Chen, K.S., Chang, L.Y., Chen, A. J. 1997.The use of satellite imagery for monitoring coastal environment in Taiwan Geoscience and Remote Sensing, 1997. IGARSS '97. 'Remote Sensing - A Scientific Vision for Sustainable Development'., 1997 IEEE International Volume 3, 3-8 Aug. 1997 Page(s):1424 - 1426 vol.3.
    [29] Liu, A. K., Peng, C. Y., & Chang, S. Y. -S. 1997. Wavelet analysis of satellite images for coastal watch. IEEE Journal of Oceanic Engineering, 22(1), 9-17.
    [30] Wu, S. Y, & Liu, A. K. 2003. Towards an automated ocean feature detection, extraction and classification scheme for SAR imagery. International Journal of Remote Sensing, 24(5), 935-951.
    [31] Solberg, A. H. S., Storvik, G, Solberg, R., & Volden, E. 1999. Automatic detection of oil spills in ERS SAR images. IEEE Transactions on Geoscience and Remote Sensing, 37(4), 1916-1924.
    [32] Solberg, A. H. S., Dokken, S. T., Solberg, R. 2003. Automatic detectionof oil spills in Envisat, Radarsat and ERS SAR images. Proc.IGARSS'03, vol. 4 (pp. 2747-2749).
    
    [33] Kanaa, T.F.N., Tonye, E. Mercier, G. Onana, V.P., Ngono, J.M., Frison, P.L., Rudant, J.P., Garello, R.. Geoscience and Remote Sensing Symposium, 2003 Detection of oil slick signatures in SAR images by fusion of hysteresis thresholding responses. IGARSS '03. Proc.: 2003, vol.4, 2750 - 2752.
    [34] Mercier, G, Derrode, S., Pieczynski, W., Caillec, J. -M. L., & Garello, R. 2003. Multiscale oil slick segmentation with Markov Chain Model. Proc. IGARSS'03, vol. 6 (pp. 3501- 3503).
    [35] Indregard, M., Solberg, A., Clayton, P. 2004. D2-report on benchmarking oil spill recognition approaches and best practice. Tech. rep., Oceanides project, European Commission, Archive No. 04-10225-A-Doc, Contract No: EVK2-CT-2003-00177.
    [36] Gasull, A., Fabregas, X., Jimenez, J., Marques, F., Moreno, V., & Herrero, M. 2002, September. Oil spills detection in SAR images using mathematical morphology. Proc. EUSIPCO'2002, Toulouse, France, vol. 1 (pp. 25-28).
    [37] B., Huang, H. LI, X., Huang, 2005. A level set method for oil slick segmentation in SAR images. International Journal of Remote Sensing, 26(6), 1145-1156.
    [38] Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., & Trivero, P. 2000. Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18), 3561-3566.
    [39] Frate, F. D., Petrocchi, A., Lichtenegger, J., & Calabresi, G. 2000. Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2282-2287.
    [40] Topouzelis, K., Karathanassi, V., Pavlakis, P., Rokos, D., 2004. Oil Spill Detection Using RBF Neural Networks and SAR Data. XX. ISPRS Congress, Istanbul, 12-23 July. 6 p. (on CDROM).
    [41] Espedal, H. A., & Wahl, T. 1999. Satellite SAR oil spill detection using wind history information. International Journal of Remote Sensing, 20(1), 49-65.
    [42] Pavlakis, P., Sieber, A. and Alexandry, S., 1996, Monitoring oil spill pollution in the Mediterranean with ERS SAR. Earth Observation Quarterly, 52, 13-16.
    [43] Gade, M. and Alperse, W., 1999, Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters. The Science of the Total Environment, 237/238,441-448.
    [44] Lu, J., Lim, H., Liew, S.C., Bao, M. and Kwoh, L.K., 1999, Oil pollution statistics in Southeast Asian waters compiled from ERS SAR imagery. Earth Observation Quarterly, 61, 13-17.
    [45]Ivanoff,A.Yu.and Zatyagalova,V.V.,2007,A GIS Approach to Mapping Oil Spills in the Marine Environment.International Journal of Remote Sensing(submitted).
    [46]Miranda,F.P.D.,Marmol,A.M.Q.,Pedroso,E.C.,Beisl,C.H.,Welgan,P.and Morales,L.M.,2004,Analysis of Radarsat-1 data for offshore monitoring activities in the Cantarella Complex,Gulf of Mexico using the unsupervised semivariogram textural classifier(USTC).Canadian Journal of Remote Sensing,30,424-436.
    [47]Zatyagalova,V.V.,Ivanoff,A.YU.,and Golubov,B.N.,2007,Application of Envisat SAR imagery for the mapping and estimation of natural oil seeps in the South Caspian Sea.In:Proceedings of the Envisat Symposium-2007,23-27 April 2007,Montreux,Switzerland (ESA SP-6620).
    [48]李四海,海上溢油遥感监测技术及其应用进展,遥感信息.2004年2月.
    [49]李栖筠.卫星遥感技术在老铁山水道溢油监测中的应用.中国航海.总第34期,28-32,1994
    [50]徐恒振,尚龙生,李宗品,周传光.Fuzzy相似优先比鉴别海面溢油.环境科学,1994年,第16卷,第3期:23-27
    [51]徐恒振,尚龙生,周传光,刘彤.Euclid贴近度聚类分析鉴别海面溢油.海洋与湖沼,1995年11月,第26卷,第6期:625-631
    [52]曹守镜.海面溢油红外鉴别法的微机检索研究.厦门大学学报,1994年6月,第33卷,增刊:91-96
    [53]王丽,何鹰,王颜萍等.近红外光谱技术结合主成分聚类分析判别海面溢油种类.海洋环境科学,2004年5月,第23卷,第2期:58-60
    [54]严志宇,殷佩海.溢油风化过程研究进展.海洋环境科学,2000年2月,第19卷,第1期:75-80
    [55]薛浩洁,种劲松,基于反对称二进小波的SAR图像海洋表面油膜检测方法。电子与信息学报,2005,27(4),574-576。
    [56]黄晓霞,李红旮,朱振海,基于不变矩的SAR图象海面油膜形态分类。中国图象图形学报,1999,4(2),166-171。
    [57]Konsberg Satellite Services,http://www.ksat.no/.
    [58]加拿大Satlantic公司,http://www.satlantic.com/.
    [59]法国BOOST Technologies公司,www.boost-technologies.com/.
    [60]俄罗斯RACURS公司,http://www.racurs.ru/.
    [61]国家海洋卫星应用中心,http://www.nsoas.gov.cn/yj/channel/default.asp.
    [62]杨劲松,合成孔径雷达海面风场海浪和内波遥感技术,青岛海洋大学博士论文,11。
    [63]Wright J.W.,1968,A new model for sea clutter,IEEE Transactions on Antennas and Propagation,AP-16(2):217-223.
    [64]Hasselmann K.,et al.,1985,Theory of Synthetic Aperture Radar Ocean Imaging:A MARSEN View,J.Geophys.Res.,Vol.90(C3),4659-4686
    [65]Hasselmann K.,Hasselmann S.,1991,On the Nonlinear Mapping of an Ocean Wave Spectrum into a SAR Image Spectrum and Its Inversion,J.Geophys.Res.,Vol.96,10713-10729
    [66]Alpers W.,Huhnerfuss H.,1988,Radar signatures of oil films floating on the sea surface and marangoni effect.Journal of Geophysical Research,93(C4):3642-3648.
    [67]Moreira A,Huang Y,1994,Airbome SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation,IEEE Transactions on Geoscience and Remote Sensing,32(5):1029-1040.
    [68]Lee J.S.,1983,A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images,IEEE Trans.Systems,Man and Cybernetics,Vol 13(1),86-89.
    [69]Frost V.S.,Stiles J.A.,1982,A Model for radar images and its application to adaptive digital filtering of multiplicative noise,IEEE Trans.Pattern Analysis and machine Intelligence,Vol.4(2),157-166.
    [70]Lopes,A.,Touzi,R.and Nezry,E.,1990,Adaptive speckle filters and scene heterogeneity.IEEE Transaction on Geoscience and Remote Sensing,28(6),992-1000.
    [71]R.M.Haralick,K.Shanmugam and I.Dinstein,1973,Textural Features for Image Classification,IEEE Transactions on Systems,Man,and Cybernetics,vol.SMC-3 no.6,pp.610-621.
    [72]Osher,S.,and Sethian,J.A.,Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations,Journal of Computational Physics,79,pp.12-49,1988.
    [73]http://groups.csail.mit.edu.
    [74]T.Chan and L.Vese,2001,Active contours without edges,IEEE Trans.Image Proc., 10:66-277.
    [75]模式识别:第二版,(希)Theodoridis,S.,等著;李晶皎等译。电子工业出版社,2004。
    [76]数学手册,《数学手册》编写组,高等教育出版社,2006。
    [77]神经网络理论与MATLAB7实现,飞思科技产品研发中心编著。电子工业出版社,2005
    [78]Konings,H.,1996.Oil pollution monitoring on the North Sea.Technical Note.Spill Science and Technology Bulletin 3,47-52.
    [79]http://www.ifm.uni-hamburg.de/~ers-sar/Sdata/oceanic/oilpol/yellowsea/index.html
    [80]H.A.Espedal,O.M.Johannessen,J.A.Johannessen,E.Dano,D.R.Lyzenga and J.C.Knulst,1998,COASTWATCH'95:ERS-1/2 SAR detection of natural film on the ocean surface,J.Geophys.Res.,vol.103,no.C11,pp.24969-24982.
    [81]M.Gade,W.Alpers,H.Huhnerfuss,H.Masuko and T.Kobayashi,1998,Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR,J.Geophys.Res.,vol.103,no.C9,pp.18851-18866.
    [82]L.A.Zadeh,"Fuzzy sets," Inf.Control,vol.8,pp.338-353,1965.
    [83]Bezdek,J.C.,Fuzzy mathematics in pattern classification.Ph.D.dissertation,Cornell Univ.,NY,1973.
    [84]Bezdek,J.C.A physical interpretation of fuzzy ISODATA.IEEE Trans.Syst.Man Cybem.,1976,SMC-6:387-390.
    [85]Z.Otremba and J.Piskozub,"Modeling of the opticalcontrast of an oil film on a sea surface,"Opt.Express,vol.9,no.8,pp.411-416,2001.
    [86]http://www.npagroup.com/oilandmineral/offshore/obs/index.htm(accessed 20 April 2006).
    [87]http://www.eastsea.gov.cn/Module/Show.aspx?id=2381
    [88]中国科学院中国遥感卫星地面站,http://www.rsgs.ac.cn/.
    [89]http://catalogues.eoportal.org/eoli.html
    [90]Nesterova,M.P.,1989,Problems of chemical pollution of the World Ocean,v.8.(Leningrad:Gidrometeoizdat)(in Russian).
    [91]Bonn Agreement Counter Pollution Manual.Available online at:www.bonnagreement.org/eng.html/counter-pollution_manual(accessed 12 January 2007).
    [92]山东省海事局,http://www.sdmsa.gov.cn/n435777/n436490/4482.html.
    [93]S.,Litovchenko,K.,Ivanov,A.and Ermakov,S.,1999,Detection of oil slicks parameters from ALMAZ-1 and ERS-1 SAR imagery. IEEE International Geoscience and Remote Sensing Symposium 1999, pp. 1484-1486.
    [94] Gade, M., Scholz, J. and Von Viebahn, C, 2000, On the detectability of marine oil pollution in European marginal waters by means of ERS SAR imagery. In IEEE International Geoscience and Remote Sensing Symposium 2000, pp. 2510-2512.
    [95] Pavlakis, P., Tarchi, D. and Sieber, A.J., 2001, On the monitoring of illicit vessel discharges using spaceborne SAR remote sensing - A reconnaissance study in the Mediterranean Sea. Annual Telecommunications, 56, 700-718.
    [96] Ivanov, A., He M.-X. and Fang, M., 2002, Oil spill detection with the RADARSAT SAR in the waters of the Yellow and East China Sea: A case study. In 23rd Asian Conference on Remote Sensing, 25-29 November 2002, Kathmandu, Nepal.
    [97] http://www.marine.csiro.au/~sakov/
    [98] J. J. Fridgen, N. R. Kitchen, K. A. Sudduth, S. T. Drummond, W. J. Wiebold and C. W. Fraisse, 2004, Management zone analyst (MZA): Software for subfield management zone delineation, Agron. J., 96, 100-108.
    [99] A. Brock, S. M. Brouder, G. Blumhoff and B. S. Hofmann, 2005, Defining yield-based management zones for corn-soybean rotafions, Agron. J., 97: 1115-1128.
    [100] Rehm, G., Schmitt, M., Munter, R., 1994, Fertilizer recommendations for agronomic crops in Minnesota, University of Minnesota, College of Agriculture.
    [101] Franzen, D.W., Hopkins, D.H., Sweeney, M.D., Ulmer, M.K. Halvorson, A.D., 2002, Evaluation of Soil Survey Scale for Zone Development of Site-Specific Nitrogen Management, Agron. J., 94:381-389.
    [102] Solie J.B., Raun, W.R., Whitney R.W., 1996, Optical sensor based field element size and sensing strategy for nitrogen application, Trans. ASA E, 39 (6): 1983-1992.
    [103] C. K. Johnson, D. A. Mortensen, B. J. Wienhold, J. F. Shanahan and J. W. Doran, 2003, Site-specific management zones based on soil electrical conductivity in a semiarid cropping system, Agron. J., 95, 303-315.
    [104] A. Brock, S. M. Brouder, G. Blumhoff and B. S. Hofmann, 2005, Defining yield-based management zones for corn-soybean rotations, Agron. J., 97: 1115-1128.
    
    [105] K. L. Fleming, D. G. Westfall, D. W. Wiens and M. C. Brodahl, 2000, Evaluating farmer defined management zone maps for variable rate fertilizer application, Precis. Agric, 2, 201-215.
    [106] K. L. Fleming, D. F. Heermann and D. G. Westfall, 2004, Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation, Agron.J., 96, 1581-1587.
    [107] M. S. Moran, Y. Inoue and E. M. Barnes, 1997, Opportunities and limitations for image-based remote sensing in precision crop management, Rem. Sens. Environ., 61, 319-346.
    [108] S. K. Seelan, S. Laguette, G. M. Casady and G. A. Seielstad, 2003, Remote sensing applications for precision agriculture: a learning community approach, Rem. Sens. Environ., 88, 157-169.
    [109] K. W. Daniel, N. K. Tripathi, K. Honda and E. Apisit, 2004, Analysis of VNIR (400-1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand, Int. J. Rem. Sens., 25, 643-652.
    [110] F Chen, D. E. Kissel, L. T. West and W. Adkins, 2003, Field-scale mapping of surface soil organic carbon using remotely sensed imagery, Soil Sci Soc Am J, 64, 746-753.
    [111] D. G. Sullivan, J. N. Shaw and D. Rickman, 2005, Ikonos imagery to estimate surface soil proerty variability in two alabama physiographies, Soil Sci Soc Am J, 69, 1789-1798.
    [112] A. U. Bhatti, D. J. Mulla and B. E. Frazier, 1991, Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images, Rem. Sens. Environ., 37, 181-191.
    [113] J. W. Salisbury and D. M. D'Aria, 1992, Infrared (8-14 μm) remote sensing of soil particle size, Rem. Sens. Environ., 42,157-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700