用户名: 密码: 验证码:
城市生活垃圾典型组分的燃烧特性和排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,城市生活垃圾的焚烧处理在我国发展迅速。然而,我国城市生活垃圾焚烧特性的研究起步较晚,相对落后,有待于进一步深入。为此,本文研究了生活垃圾典型组分的燃烧及排放特性,为进一步的研究奠定了基础,同时也为焚烧炉的设计提供了一定的实验依据。
     第一部分:通过热天平研究了典型城市生活垃圾组分的燃烧动力学特性,得到了七种典型垃圾组分的特征值,以及燃烧动力学参数值;并探讨了判别垃圾组分着火温度的几种方法和混合垃圾组分是否存在交互影响;本文采用了一种新的方法,克服了分段燃烧动力学模型带来的方程在整体上不连续的弱点,从而建立了连续的燃烧动力学反应模型,结果表明:理论模型与试验结果拟合的非常好。
     第二部分:通过流化床试验台研究了典型垃圾组分的挥发份和焦碳的燃烧特性。其中主要研究了影响挥发份燃烧时间和焦碳燃烧时间的各种因素,并通过理论分析计算了挥发份的燃烧时间,与实际结果比较符合。
     第三部分:研究了水分含量增加对生活垃圾燃烧排放特性的影响,结果表明当水分有所增加,挥发份和焦碳的燃烧时间缩短,CO的浓度有较大降低,而NO浓度有一定的升高。
     第四部分:着重研究了城市生活垃圾典型组分常规气体(CO、NO、SO_2)的排放特性。结果表明:当过量空气系数小于1.5的时候,一氧化碳的排放浓度很高,在焚烧生活垃圾时,必须保持较大的过量空气系数;燃料氮向一氧化氮的转化率一般不高于40~60%;生活垃圾在焚烧过程中SO_2排放浓度和转化率都很低。混合组分排放特性较复杂,不能等同于单种组分简单的叠加。
     城市生活垃圾复杂多变,难以定量地描述其物理特性和其他特征参数,因此本文选取主要的典型生活垃圾组分,研究单组分垃圾的燃烧特性和排放特性,并且在此基础上研究混合组分的燃烧特性和排放特性,并分析单组分垃圾燃烧排放特性与混合组分垃圾燃烧排放特性之间的关系,与常规的研究城市生活垃圾方法相比,本试验研究方法上有一定的独到之处。
With the rapid development of economy, disposing MSW with incineration in our country develops quickly. But the research of MSW is insufficient and should be carried out in further steps. So this paper mainly researches on the characteristics of incineration and emission of MSW, which establishes a solid foundation for the following researches and also provides experimental data for the design of incinerator.
    The first part of this paper gets some eigenvalue and kinetic parameters after studying several typical MSW constituents with TGA technology. It also discusses several methods to determine ignition temperature of typical MSW constituents and the interactional effects of mixed MSW constituents. To overcome the disadvantage of discontinuity of combustion kinetic equations during the whole temperature interval, a new method is adopted and with which continuous combustion kinetic equations are built. The result shows that these equations fit well with experimental data.
    By studying the volatile and the carbon of several typical MSW constituents through fluidized bed, part two mainly analyzes various factors which affect the combustion time of volatile and carbon. And then the combustion time of volatile is calculated by theory, which matches the experimental result well.
    The effect of increased water on the combustion characteristics and emission characteristics of MSW constituents are studied in the third part of this paper, The result shows that, when water is increased to some degree, the combustion time of volatile and carbon becomes shorter, and the emission concentration of carbon decreases, while at the same time the emission concentration of nitrogen monoxide increases.
    The emission characteristics of convention gases of typical MSW constituents are discussed in the last part of this paper, and the results are listed as below. When excessive air coefficient is less than 1.5, the emission concentration of carbon monoxide is very high, so when MSW is incinerated, excessive air coefficient should be kept fairly high. The transform ratio of fuel-nitrogen to nitrogen monoxide is no more than 40-60%. The transform ratio and the emission concentration of sulfur dioxide is fairly low. The emission characteristics of mixed constituents are also studied, and the result shows that the emission characteristics of mixed constituents are more complicated than the overlap of that of single constituents.
    Because MSW is too complicated and too changeful, it is very hard to quantificationally describe the physical properties and other properties, this paper selects the mainly typical MSW constituents and deals with the combustion and the emission of single MSW constituents, then this paper researches on the combustion characteristics and the emission characteristics of mixed MSW constituents, and analyzes the relationship between single constituents and mixed constituents. Compared with conventional methods, this experimental method is initiative in some degree.
引文
[1] 聂永丰主编.三废处理工程技术手册·固体废物卷.北京:化学工业出版社,2000.
    [2] 建设部.国家环境保护总局.科技部.城市生活垃圾处理及污染防治技术政策.环境保护.2000.9,10—12.
    [3] 藏文超.我国城市生活垃圾现状与管理问题.环境保护.1998.5,41—43.
    [4] 胡秀仁.城市生活垃圾的源头分类收集.环境保护.2000.5,38—40.
    [5] 郝国镛,华山平.城市垃圾能源化初探.环境保护科学.1997,第23期,22—24
    [6] 薛大明,赵雅芝.香港城市固体废物系统管理.环境科学进展.1998,11(3):37—40.
    [7] 施阳.北京市垃圾问题的现状及对策.环境科学研究.1998,11(3):41—43.
    [8] 张颖,张小丹.固体废物的资源化和综合利用技术.环境科学研究.1998,11(3):38—41.
    [9] 张衍国,吕俊复.国内外城市垃圾能源化焚烧技术发展现状及前景.环境保护.1998.7,38—41.
    [10] 国家统计局.中国统计年鉴(1998年).北京:中国统计出版社,1999.
    [11] 杜友.垃圾焚烧处理技术进展.新能源.2000,22(1):24—29.
    [12] 周炳炎.废塑料的处理处置技术.工程与技术.环境保护.2000.8,20—23.
    
    
    [13] Charles,R.R.The effects on waste reduction and recycling rates when different components of the waste stream are counted. Resources conservation and recycling..1998, Vol 24(3):349—361.
    [14] 冯亚斌,陈全.关于我国垃圾填埋场目前存在问题的探讨.环境保护.2000.10,14—17.
    [15] Berenyi, E. B. The status of municipal waste combustion in the United States. Journal of Hazardous Material. 1998 ,Vol 11(47):1-17.
    [16] Hartenstein,H.U. and Horvay, M. Overview of municipal waste incineration industry in west Europe (base on the German experience). Journal of Hazardous Material.1996,47,19-30.
    [17] Hunsicker, M.D., Crockett,T.R.and Labode,B.M.A.An overview of the municipal waste incineration industry in Asia and the former Soviet Union. Journal of Hazardous Material.1996, 47, 31-42.
    [18] 国家环境保护总局污染控制司.城市固体废物管理与处理处置技术.北京:中国石化出版社,2000.
    [19] Wheeler, P. A., Patel, N. M. and Painter, A. Fluidized Bed Combustion of Municipal Solid Waste. Proc. 13th Fluidized Bed Combustion. 1995, Vol 1:597-607.
    [20] 荏原制作所.荏原旋回流型流动床焚化设施说明资料.
    [21] 黄先玉,刘沛然等.我国城市垃圾资源化初探.2000.1,23—24.
    [22] 李建国.城市垃圾处理与处置.中国环境科学出版社.
    [23] Desroches-Ducarne, E., Marty, E., Martin, G. and Delfosse, L. Co-combustion of coal and municipal solid waste in a circulating fluidized bed. Fuel. 1998, Vol 77:1311-1315.
    [24] 李晓东,陆胜勇,徐旭,严建华,池涌.中国部分城市生活垃圾热值的初步分析.中国环境科学.2001,21(2):156-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700