用户名: 密码: 验证码:
风沙流中沙粒的三维起跳初速度分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙粒起跳初速度分布是对风沙流进行宏观理论预测时所必须的物理量,本学位论文针对风沙流中沙粒起跳初速度分布进行了研究。首先,通过PIV技术在风洞中对混合粒径沙粒的起跳和入射速度进行了实验测量,给出了考虑风速和沙粒粒径影响的沙粒起跳初速度概率密度分布函数;其次,建立了球形粒子三维(3D)随机粒-床碰撞理论模型,在此基础上分析了沙粒经粒-床碰撞过程后的起跳特征;然后,结合球形粒子3D随机粒-床碰撞模型给出了沙粒起跳初速度概率密度分布和旋转角速度概率密度分布的理论预测;最后,沿风场方向的不同位置,对风沙流进行观测,给出了风沙流中沙粒起跳初速度分布以及输沙率的沿程变化规律。主要工作如下:
     1.在风洞中用粒子图像测速仪(PIV),通过改进粒子跟踪测速(PTV)算法,实现了天然混合沙丘沙形成的(粒径40-800μm)风沙流在距沙床床面0.5mm以上跃移沙粒的空间位置、运动速度和粒径的同步测量;研究了入射(起跳)沙粒水平速度、垂向速度、侧向速度和风向角的概率分布随风速、沙粒粒径以及高度的变化规律,并给出了跃移沙粒入射、起跳初速度密度分布随风速和粒径变化的经验公式。
     2.根据经典碰撞理论,考虑了入射沙粒的速度及其方向,床面沙粒及其速度,以及沙粒间碰撞位置,同时考虑床面沙粒对被碰沙粒的作用,对粒-床碰撞这一极短时间内完成的力学过程进行建模,建立了一个3D随机粒-床碰撞理论模型,得到入射沙粒和被碰沙粒起跳后水平速度、垂向速度、侧向速度、滚旋角速度、侧旋角速度以及上旋角速度的解析表达,而且理论预测结果与实验结果吻合较好,这说明该模型是合理的。基于该模型进一步分析了粒-床碰撞后随机变量对沙粒起跳速度的影响,给出了沙粒的反弹、溅射特性,包括反弹速度、溅射速度与入射速度的比值,反弹角,溅射角以及入射沙粒的反弹概率。
     3.基于3D随机粒-床碰撞模型,利用多维随机变量函数理论,给出了沙粒三维起跳初速度的概率密度分布函数,包括反弹、溅射沙粒的水平起跳初速度、垂向起跳初速度、侧向起跳初速度、滚旋角速度、侧旋角速度以及上旋角速度分布的概率密度函数;基于这些概率密度函数,预测了稳定风沙流中沙粒三维起跳初速度及起跳角速度概率密度分布,通过与实验结果的比较,证实了该研究方法的可靠性;最后分析了随机因素对沙粒起跳初速度概率密度分布的影响,发现风速和沙粒粒径不影响跃移沙粒起跳初速度概率密度分布形式,但影响其概率密度值。
     4.开展了风沙流沿程变化规律的风洞实验研究。观测了风沙流中跃移沙粒起跳速度的沿程变化规律,结果表明:风沙流中沙粒起跳初速度在沿程方向存在明显差别,其均值和标准差均随着距沙床前缘距离的增大而先增大后减小概率分布的最大值出现的位置到沙床前缘的距离随着风速的增大而减小。通过集沙仪测量了水平输沙率沿程变化规律,认为水平输沙率在发展过程中先增大,再减小并最终达到饱和,其饱和长度和摩阻风速有关,随着摩阻风速的增大而减小;给出了不同摩阻风速条件下,可以真实反映风沙流中水平输沙率沿程变化规律的经验公式。
It is obvious that the probability distribution of lift-off velocities is the important parameter for the prediction of wind sand flux. The subject of investigated in this thesis focuses on the probability distribution of lift-off velocities of sand particles in windblown sand flows. Firstly experimental measurements were conducted in a wind tunnel with the Particle Image Velocimeter (PIV) which gave the probability distribution function (PDF) of the lift-off velocities of sand particles regarding wind velocities and sand diameters. Then a3D stochastic particle/bed collision model was established to analysis the dynamical characteristic of the particle/bed collision process in saltation layer. Further an empirical formula concerning the mass flux varying with height can be obtained through the measured data. Finally, a prediction of the PDF of lift-off velocities and angular velocities of sand particles was made combing with the3D stochastic model. The context includes the following sections:
     1. Employing the PIV combing an improved algorithm of the Particles Tracing Velocimeter (PTV), this study realized synchronous measurements on the spatial positions, velocities and sizes of saltating sand particles in windblown sand flows on a size-mixed sand bed generated in a wind tunnel. The PDFs as well as their variations of the horizontal, vertical and lateral velocities of incident and lift-off sand particles were investigated considering the influence of wind velocities, particles sizes and heights. Empirical formulas describing the PDFs of incident and lift-off velocities in the saltating layer were put forward.
     2. Based on the classic collision theory, this study established a3D stochastic particle/bed collision model on the collision process between an incident particle and bed particles with respect to the incident velocity and angle, contact positions, creeping velocities as well as the counterforce acted on the incident particle from bed particles. With the model, the horizontal, vertical and lateral velocities, rolling and side-spinning angular velocities of the incident particle and bed particles were given in terms of analytical solutions. The model is proved plausible compared with experimental results which can reveal the characteristics of rebound and ejection of sand particles after collisions and the influence of above random variables to the sand particles'lift-off in quantity, including rebound velocities, the ratio of ejection velocities and incident velocities, rebound and ejection angles and the rebound probability of incident particles.
     3. Based on the3D stochastic particle/bed collision model and the probability theory of multiple random variables, the PDFs of lift-off quantities of sand particles were presented including the horizontal, vertical and lateral components of rebound and ejected sand particles, rolling and top-and side-spinning angular velocities. With these PDFs, the PDFs of3D lift-off velocities and angular velocities can be obtained. The predicted results have good agreement with the experimental data which proved the reliability of the method used in this study. Eventually, the influence of above random variables to the PDF of lift-off velocities of sand particles in the saltating layer.
     4. The variation law of windblown sand flux and lift-off velocities along with distance was investigated through wind-tunnel experiments. The changing law of the horizontal component of sand transport rate was revealed by sand traps, which demonstrates a trend of first increasing, then decreasing and finally reaching saturation. The measured saturation length was found decrease with the increasing friction wind speed which was expressed by an empirical formula. Further, an empirical relation between the horizontal sand transport rate and height was for the first time put forward to reflect the profile of windblown sand flows.
引文
1 The Executive Secretary of the United Nations Convention to Combat Desertification.1994, International Convention to Combat Desertification in those Countries Experiencing Serious Drought and/Or Desertification, Particularly in Africa [R]. Bonn.
    2 Zheng X J.2009, Mechanics of Wind-Blown Sand Movements [M] (Environmental Science and Engineering Series). Springer, Berlin.
    3张国藩.1942,我国北部沙漠之南移问题[J].工程,15(6):13-20.
    4 Bagnold R A.1941, The Physics of Blown Sand and Desert Dunes[M]. William Morrow & Company, New York.
    5 Chepil W S, Woodruff N P.1963, The Physics of Wind Erosion and its Control [J]. Advances in Agronomy,15:211-302.
    6 Zingg A W.1949, A Study of the Movement of Surface Wind[J]. Agricultural Engineering, 30(1):11-13.
    7 Zingg A W, Chepil W S.1950, Aerodynamics of Wind Erosion[J]. Agricultural Engineering, 31(5):279-282.
    8贺大良,刘大有.1989,跃移沙粒起跳的受力机制[J].中国沙漠,9(2):14-22.
    9 Anderson R S, Haff P K.1988, Simulation of Eolian Saltation. Science[J]. Science,241: 820-823.
    10 Mitha S, Tran M Q, Werner B T, Haff P K.1986, The Grain-Bed Impact Process in Aeolian Saltation [J]. Acta Mechanica,63:267-278.
    11 Willetts B B, Rice M A.1986, Collisions in Aeolian Saltation [J]. Acta Mechanica,63: 255-265.
    12 Anderson R S, Haff P K.1991, Wind Modification and Bed Response During Saltation of Sand in Air[J]. Acta Mechanica, [Suppl.] 1:21-51.
    13 Hunt J C R.1991, Industrial and Environmental Fluid Mechanics [J]. Annual Review of Fluid Mechanics,23:1-14.
    14 Rice M A, Willetts B B, McEwan I K.1996, Wind Erosion of Crusted Soil Sediments [J]. Earth Surface Processes and Landforms,21:279-293.
    15 Zheng X J, Bo T L, Zhu W.2009, A Scale-Coupled Method for Simulation of the Formation and Evolution of Aeolian Dune Field [J]. International Journal of Nonlinear Science and Numerical Simulation,10(3):387-395.
    16 Zhou Y H, Guo X, Zheng X J.2002, Experimental Measurement of Wind-Sand Flux and Sand Transport for Naturally Mixed Sands [J]. Physical Review E,66(2):21305-21309.
    17吴正.2003,风沙地貌与治沙工程学[M].科学出版社,北京.
    18 Shao Y P.2007, Physics and Modelling of Wind Erosion[M]. Springer, Berlin.
    19 McEwan I K, Willetts B B.1991, Numerical Model of the Saltation Cloud[J]. Acta Mechanica,[Supp(?)] 1:53-66.
    20 Bo T L, Xie L, Zheng X J.2007, Numerical Approach to Wind Ripple in Desert[J]. International Journal of Nonlinear Sciences and Numerical Simulation,8(2):223-228.
    21 Nalpanis P, Hunt J C R, Barrett C F.1993, Saltating Particles Over Flat Beds[J]. Journal of fluid mechanics,251:661-685.
    22 Werner B T.1987, A Physical Model of Wind-Blown Sand Transport[D]. For PH.D Thesis, California Institute of Technology.
    23 Werner B T.1990, A Steady-State Model of Wind-Blown Sand Transport[J]. The Journal of Geology,98(1):1-17.
    24 Owen P R.1964, Saltation of Uniform Grains in Air[J]. Journal of fluid mechanics,20: 225-242.
    25 Anderson R S, Hallet B.1986, Sediment Transport by Wind:Toward a General Model[J]. Bulletin of Geological Society of America,97:523-535.
    26 Werner B T, Haff P K, Livi R P, Anderson R S.1986, Measurement of Eolian Ripple Cross-Sectional Shapes[J]. Geology,14:743-745.
    27 Werner B T, Haff P K.1988, The Impact Process in Aeolian Saltation:Two-Dimensional Simulations[J]. Sedimentology,35:189-196.
    28 Willetts B B, McEwan I K, Rice M A.1991, Initiation of Mation of Quartz Sand Grain[J]. Acta Mechanica,[Suppl.] 1:123-134.
    29 Shao Y P.1992, The Overshot and Equilibration of Saltation[J]. Journal of Geophysical Research, D18:20559-20564.
    30 McEwan I K, Jefcoate B J, Willetts B B.1999, The Grain-Fluid Interaction as a Self-Stabilizing Mechanism in Fluvial Bed Load Transport[J]. Sedimentology,46:407-416.
    31 Doorschot J J J, Lehning M.2002, Equilibrium Saltation:Mass Fluxs, Aerodynamic Entrainment, and Dependence On Grain Properties[J]. Boundary-Layer Meteorology,104(1): 111-130.
    32 Anderson R S, Sorensen M, Willetts B B.1991, A Review of Recent Progress in Our Understanding of Aeolian Sediment Transport [J]. Acta Mechanica,[Suppl.] 1:1-19.
    33 Gillette D A, Stockton P H.1986, Mass Momentum and Kinetic Energy Fluxes of Saltating Particles[J]. Acta Mechanica,62:35-56.
    34 Zheng X J, He L H, Wu J J.2004, Vertical Profiles of Mass Flux for Windblown Sand Movement at Steady State[J]. Journal of Geophysical Research,109:B1106.
    35 Wang Z T, Zheng X J.2004, Theoretical Prediction of Creep Flux in Aeolian Sand Transport [J]. Powder Technology,139:123-128.
    36 Yue G W, Zheng X J.2006, Electric Field in Wind-Blown Sand Flux with Thermal Diffusion [J]. Journal of Geophysical Research,111:D16106.
    37 Huang N, Zheng X J, Zhou Y H.2006, Simulation of Wind-Blown Sand Movement and Probability Density Function of Lift-Off Velocities of Sand Particles [J]. Journal of Geophysical Research,111:D20201.
    38 Huang N, Ren S, Zheng X J.2008, Effects of the Mid-Air Collision On Sand Saltation[J]. Science in China (Series G),51(9):1416-1426.
    39 Wang P, Zheng X J, Hu W W.2008, Saltation and Suspension of Wind-Blown Particle Movement[J]. Science in China (Series G),51(10):1586-1596.
    40 Ma G S, Zheng X J.2011, The Fluctuation Property of Blown Sand Particles and the Wind-Sand Flow Evolution Studied by Numerical Method[J]. The European Physical Journal E,34:11-54.
    41 White B R, Schulz J C.1977, Magnus Effect in Saltation[J].Journal of fluid mechanics,81: 497-512.
    42 Zou X Y, Cheng H, Zhang C L, Zhao Y Z.2007, Effects of the Magnus and Saffman Forces On the Saltation Trajectories of Sand Grain[J]. Geomorphology,90:11-22.
    43 White B R.1982, Two-Phase Movement of Saltating Turbulent Boundary Layer Flow [J]. International Journal of Multiphase Flow,8:459-473.
    44 Kang L Q, Zou X Y.2011, Vertical Distribution of Wind-Sand Interaction Forces in Aeolian Sand Transport [J]. Geomorphology,125:361-373.
    45 Schmidt D S, Schmidt R A, Dent J D.1998, Electrostatic Force On Saltating Sand[J]. Journal of Geophysical Research,103(D8):8997-9001.
    46 Zhou Y H, He Q S, Zheng X J.2005, Attenuation of Electromagnetic Wave Propagating in Sandstorms with Consideration of Charged Sands[J]. The European Physical Journal E,17: 181-187.
    47 Zheng X J, Huang N, Zhou Y H.2003, Laboratory Measurement of Electrification of Wind-Blown Sands and Simulation of its Effect On Sand Saltation Movement[J]. Journal of Geophysical Research,108(D10):4322.
    48 He Q S, Zhou Y H, Zheng X J.2006, Effects of Charged Sand On Electromagnetic Wave Propagation and its Scattering Field [J]. Science in China (Series G),49(1):77-87.
    49 Zheng X J, He L H, Zhou Y H.2004, Theoretical Model of the Electric Field Produced by Charged Particles in Windblown Sand Flux[J]. Journal of Geophysical Research,109: 15208.
    50 Zheng X J, Huang N, Zhou Y H.2006, The Effect of Electrostatic Force On the Evolution of Sand Saltation Cloud [J]. The European Physical Journal E,19:129-138.
    51 Shinbrot T, Herrmann H J.2008, Grunlar Matter:Static in Motion[J]. Nature,451(14): 773-774.
    52 McEwan I K, Willetts B B.1993, Sand Transport by Wind:A Review of the Current Conceptual Model [J]. Geological Society, London, Special Publications,72:7-16.
    53 Ungar J E, Haff P K.1987, Steady State Saltation in Air[J]. Sedimentology,34:289-299.
    54 McEwan I K, Willetts B B, Rice M A.1992, The Grain/Bed Collision in Sand Transport by Wind [J]. Sedimentology,39:971-981.
    55 Zheng X J.2006, Investigations On Several Mechanical Problems in Windblown Sand Movement[J]. Science Foundation in China,14(2):56-60.
    56 Forrest S B, Haff P K.1992, Mechanics of Wind Ripple Stratigraphy[J]. Science,225: 240-243.
    57 Anderson R S, Bounas K L.1993, Grain Size Segregation and Stratigraphy in Aeolian Ripple Modeled with a Cellular Automation[J]. Nature,365:740-743.
    58 Chepil W S.1945, Dynamics of Wind Erosion:I. Nature of Movement of Soil by Wind[J]. Soil Science,60(4):305-320.
    59 Chepil W S.1945, Dynamics of Wind Erosion:Ii. Initiation of Soil Movement[J]. Soil Science,60(5):397-404.
    60 Rumpel D A.1985, Successive Aeolian Saltation:Studies of Idealized Collisions[J]. Sedimentology,32:267-280.
    61 Francois R, Alexandre V, Daniel B.2000, Experimental Study of the Collision Process of a Grain On a Two-Dimensional Granular Bed[J]. Physical Review E,62(2):2450-2459.
    62 Beladjine D, Ammi M, Oger L, Valance A.2007, Collision Process Between an Incident Bead and a Three-Dimensional Granular Packing[J]. Physical Review E,75(6):61305.
    63 Ammi M, Oger L, Beladjine D, Valance A.2009, Three-Dimensional Analysis of the Collision Process of a Bead On a Granular Packing[J]. Physical Review E,79(2):21305.
    64 Rioual F, Valance A, Bideau D.2000, Experimental Study of the Collision Process of a Grain On a Two-Dimensional Granular Bed[J]. Physical Review E,62:2450-2459.
    65 Rioual F, Valance A, Bideau D.2003, Collision Process of a Bead On a Two-Dimensional Bead Packing:Importance of the Inter-Granular Contacts[J]. Europhysics Letters,61(2): 194-200.
    66 Willetts B B, Rice M A.1989, Collisions of Quartz Grains with a Sand Bed:The Influence of Incident Angle[J]. Earth Surface Processes and Landforms,14(8):719-730.
    67 Anderson R S.1989, Saltation of Sand:A Qualitative Review with Biological Analog[J]. Proceedings of Royal Society of Edinburgh,96B:743-745.
    68 Rice M A, Willetts B B, McEwan I K.1995, An Experimental Study of Multiple Grain-Size Ejecta Produced by Collisions of Saltating Grains with a Flat Bed[J]. Sedimentology,42: 695-706.
    69 Rice M A, Willetts B B, McEwan I K.1996, Observations of Collisions of Saltating Grains with a Granular Bed From High-Speed Cine-Film[J]. Sedimentology,43:21-31.
    70 Greeley R, Blumberg D G, Williams S H.1996, Field Measurements of the Flux and Speed of Wind-Blown Sand[J]. Sedimentology,43:41-52.
    71 Schmidt R A.1977, A System that Measures Blowing Snow[J]. Usda Forest Service Research, RM-94:80.
    72 Wang D W, Wang Y, Yang B, Zhang W.2008, Statistical Analysis of Sand Grain/Bed Collision Process Recorded by High-Speed Digital Camera[J]. Sedimentology,55:461-470.
    73王大伟,王元,杨斌,张玮.2009,沙粒跃移冲函数的高速数字摄像研究[J].西安交通大学学报,43(7):125-128.
    74 Wang Z T, Zhang Q H, Dong Z B.2011, A Wind Tunnel Investigation On the Transverse Motion of Aeolian Sand[J]. Sciences in Cold and Arid Regions,3(1):13-16.
    75 Dong Z B, Wang H T, Liu X P, Li F, Zhao A G.2002, Velocity Profile of a Sand Cloud Blowing Over a Gravel Surface[J]. Geomorphology,45:277-289.
    76 Dong Z B, Liu X P, Li F, Wang H T, Zhao A G.2002, Impact-Entrainment Relationship in a Saltating Cloud [J]. Earth Surface Processes and Landforms,27:641-658.
    77 Dong Z B, Wang H T, Liu X P, Wang X M.2004, A Wind Tunnel Investigation of the Influences of Fetch Length On the Flux Profile of a Sand Cloud Blowing Over a Gravel Surface[J]. Earth Surface Processes and Landforms,29:1613-1626.
    78 Dong Z B, Wang H T.2004, Height Profile of Particle Concentration in an Aeolian Saltating Cloud:A Wind Tunnel Investigation by Piv Msd [J]. Geophysical Research Letters,30(19): L17915.
    79 Yang P, Dong Z B, Qian G Q, Luo W Y, Wang H T.2007, Height Profile of the Mean Velocity of an Aeolian Saltating Cloud:Wind Tunnel Measurements by Particle Image Velocimetry[J]. Geomorphology,89:320-334.
    80 Kang L Q, Guo L J, Gu Z M, Liu D Y.2008, Wind Tunnel Experimental Investigation of Sand Velocity in Aeolian Sand Transport [J]. Geomorphology,97(3-4):438-450.
    81 Zhang W, Wang Y, Lee S J.2008, Simultaneous Piv and Ptv Measurements of Wind and Sand Particle Velocities [J]. Experiments in Fluids
    82 Tananka S, Kakinuma S.1960, Soil Motion by the Wind [J]. Agriculture Meteorology,16(2): 77-79.
    83 Ewannouve I P.1972, Physics of Soil Erosion in Desert[M]. Bulletin:Elaem, Ashgabat (In Russian).
    84刘贤万.1995,实验风沙物理与风沙工程学[M].科学出版社,北京.
    85 Xie L, Ling Y Q, Zheng X J.2006, Laboratory Measurement of Saltating Sand Particles' Angular Velocities and Simulation of its Effect On Saltation Trajectory[J]. Journal of Geophysical Research,112:D12116-D12119.
    86 Zheng X J, Xie L, Zhou Y H.2005, Exploration of Probability Distribution of Velocities of Saltating Sand Particles Based On the Stochastic Particle-Bed Collisions [J]. Physics Letters A,341:107-118.
    87谢莉.2005,风沙流中基于粒-床碰撞的沙粒起跃初速度分布及其激溅过程的理论研究[D].兰州大学博士学位论文.
    88 Zheng X J, Xie L, Zou X Y.2006, Theoretical Prediction of Liftoff Angular Velocity Distributions of Sand Particles in Wind-Blown Sand Flux[J]. Journal of Geophysical Research,11:D11109.
    89 Xie L, Zheng X J.2007, Probability of Rebound and Eject of Sand Particle in Wind-Blown Sand Movement [J]. Acta Mechanica Sinica,23(5):471-475.
    90 Cundall P A, Strack O D L.1979, A Discrete Numerical Model for Granular Assemblies[J]. Geotechnique,29(1):47-65.
    91刘凯欣,高凌天.2003,离散元法研究的评述[J].力学进展,33:483-490.
    92 Zhou Y H, Li W Q, Zheng X J.2006. Pdm Simulations of Stochastic Collisions of Sandy Grain-Bed with Mixed Size in Aeoliau Saltation[J]. Journal of Geophysical Research,111: D15108.
    93 Andersen K H.2001, A Particle Model of Rolling Grain Ripples Under Waves[J]. Physics of Fluids,13(1):58-64.
    94 Foerster S F, Louge M Y, Chang H, Allia K.1994, Measurements of the Collision Properties of Small Spheres [J]. Physics of Fluids,6(3):1108-1117.
    95 Sondergaard R, Chaney K, Brennen C E.1990, Measurements of Solid Spheres Bouncing Off Flat Plates[J]. Journal of Applied Mechanics,112(3):694-699.
    96 Nikolai V B, Spahn F, Hertzsch J M, Poschel T.1996, Model for Collisions in Granular Gases[J]. Physical Review E,53(5):5382-5392.
    97 Zhou T, Kadanoff L P.1996, Inelastic Collapse of Three Particles[J]. Physical Review E, 54(1):623-628.
    98 Shinbrot T.1997, Competition Between Randomizing Impacts and Inelastic Collisions in Granular Pattern Formation[J]. Nature,289:574-576.
    99邹学勇,朱久江,董光荣.1992,风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报,23:2175-2177.
    100 S(?)rensen M.1993, Stochastic Models of Sand Transport by Wind and Two Related Estimation Problems[J]. International Statistical Review,61:245-255.
    101黄宁.2002,风沙带电及风沙电场对风沙跃移运影响的研究[D].兰州大学博士学位论文.
    102 Mao X, Jin G L.2004, A Modified Probability Distribution of Ejection State of Sand Grains in Equilibrium Aeolian Sand Transport [J]. Physics Letters A,332(5-6):389-397.
    103 Namikas S L.2003, Field Measurement and Numerical Modelling of Aeolian Mass Flux Distributions On a Sandy Beach[J]. Sedimentology,50:303-326.
    104 Becker R A.1955, Introduction to Theoretical Mechanics[M]. Mcgraw-Hill Publishing Company Ltd, New York.
    105 Raymond M B.1998, Formulation of Rigid Body Impact Problems Using Generalized Coefficients[J]. International Journal of Engineering Science,36(1):61-71.
    106 Namikas S L.2006, A Conceptual Model of Energy Partitioning in the Collision of Saltating Grains with an Unconsolidated Sediment Bed[J]. Journal of Coastal Research,22(5): 1250-1259.
    107 Nino Y, Garcia M, Ayala L.1994, Gavel Saltation I. Experiments[J]. Water Resources Research,30(6):1907-1914.
    108 Haff P K, Anderson R S.1993, Grain Scale Simulations of Loose Sedimentary Beds the Example of Grain-Bed Impacts in Aeolian Saltation[J]. Sedimentology,40:175-198.
    109高惠璇.1995,统计计算[M].北京大学出版社,北京.
    110 Simonoff J S.1996, Smoothing Methods in Statistics[M]. Springer, New York.
    111 Morsi S A, Alexander A J.1972, An Investigation of Particle Trajectories in Twophase Flow Systems[J]. Journal of fluid mechanics(55):193-208.
    112 Adrian R J.1991, Particle-Imaging Techniques for Experimental Fluid Mechanics[J]. Annual Review of Fluid Mechanics,23:261-304.
    113 Dong Z B, Wang X M, Zhao A G, Liu L Y, Liu X W.2001, Aerodynamic Roughness of Fixed Sandy Beds[J]. Journal of Geophysical Research,106(B6):11001-11011.
    114 Prandtl L.1952, Essentials of Fluid Dynamics:With Applications to Hydraulics Aeronautics, Meteorology, and Other Subjects [M]. BlackieHafner Publishing Company, New York.
    115 Draper N R, Smith H.1998, Applied Regression Analysis[M]. John Wiley & Sons, New York.
    116 Fincham A, Delerce G.2000, Advanced Optimization of Correlation Imaging Velocimetry Algorithms [J]. Experiments in Fluids,29(7):13-22.
    117 Scarano F, Riethmuller M L.2000, Advances in Iterative Multigrid Piv Image Processing[J]. Experiments in Fluids, Suppl:S51-S60.
    118 Scarano F.2002, Iterative Image Deformation Methods in Piv[J]. Measurement Science & Technology,13:R1-R19.
    119 Gonzalez R C, Wood R E.2002, Digital Image Processing [M],2nd Edition. Prentice Hall, Saddle River, NJ.
    120 Willert C, Raffel M, Kompenhans J, Stasicki B, Kahler C.1996, Recent Applications of Particle Image Velocimetry in Aerodynamic Research[J]. Flow Measurement and Instrumentation,7(3-4):247-256.
    121 Willert C E, Gharib M.1991, Digital Particle Image Velocimetry[J]. Experiments in Fluids, 10(4):1-15.
    122 Zou X Y, Wang Z L, Hao Q Z, Zhang C L, Liu Y Z, Dong G R.2001, The Distribution of Velocity and Energy of Saltatingsandgrains in a Wind Tunnel [J]. Geomorphology,36(3-4): 155-165.
    123 Xie L, Dong Z B, Zheng X J.2005, Experimental Analysis of Sand Particles' Lift-Off and Incident Velocities in Wind-Blown Sand Flux [J]. Acta Mechanica Sinica,21:564-573.
    124 S(?)rensen M, McEwan I K.1996, On the Effect of Mid-Air Collisions On Aeolian Saltation [J]. Sedimentology,43:65-76.
    125 Cheng H, Zou X Y, Zhang C L.2006, Probability Distribution Functions for the Initial Liftoff Velocities of Saltating Sand Grains in Air[J]. Journal of Geophysical Research,111: D22205.
    126 Zhang W, Kang J, Lee S.2007, Tracking of Saltating Sand Trajectories Over a Flat Surface Embedded in an Atmospheric Boundary Layer[J]. Geomorphology,86(3-4):320-331.
    127 Bickel P J, Doksum K A.2000, Mathematical Statistics:Basic Ideas and Selected Topics[M], 2nd Edition. Prentice Hall, San Francisco.
    128 Deng T, Bingley M S, Bradley M S A.2004, The Influence of Particle Rotation On the Solid Particle Erosion Rate of Metals[J],256:1037-1049.
    129 Shao Y H, Li A.1999, Numerical Modelling of Saltation in the Atmoshperic Surface Layer [J]. Boundary-Layer Meteorology,91:199-225.
    130 Zingg A W.1953, Wind Tunnel Studies of the Movement of Sedimentary Material[C]. Proceedings of the 5th Hydraulic Conference Bulletin, Iowa City.
    131 lversen J D, Greeley R, White B R, Pollack J B.1976, The Effect of Vertical Distortion in the Modeling of Sedimentation Phenomena:Martian Crater Wake Streaks[J]. Journal of Geophysical Research,81(26):4846.
    132 Kind R J.1970, Acriticalexamination of the Requirements for Model Simulation of Wind-Inducederosion/Deposition Phenomena such as Snowdrifting[J]. Atmospheric Environment,10(3):219-227.
    133 Sauermann G, Kroy K, Herrmann H J.2001, Continuum Saltation Model for Sand Dunes[J]. Physical Review E,64(3):31305-31310.
    134 Parteli E J R, Duran O.2007, Minimal Size of a Barchan Dune[J]. Physical Review E,75: 11301.
    135 Andreotti B.2004, A Two-Species Model of Aeolian Sand Transport[J]. Journal of Fluid Mechanics,510:47-70.
    136 Spies P, McEwan I K.2000, Equilibration of Saltation[J]. Earth Surface Processes and Landforms,25:437-453.
    137 Stout J E.1990, Wind Erosion within a Simple Field[J]. Transactions of the ASAE,33(5): 1597-1600.
    138 Andreottia B, Claudina P, Pouliquen O.2010, Measurements of the Aeolian Sand Transport Saturation Length[J]. Geomorphology,123(3-4):343-348.
    139 Fryrear D W, Saleh A.1996, Wind Erosion:Field Length[J]. Soil Science,161(6):398-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700