用户名: 密码: 验证码:
龙钢转炉造渣制度及工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造渣的目的是去除钢水中磷硫、减少喷溅、保护炉衬。造渣制度及工艺优化是转炉炼钢生产达到高效、节能、取得最大效益的重要途径。造渣过程的合理化牵扯到原料性能、原料加入量和时间、枪位控制、炉渣成分设计、耐火材料类别和质量等各个方面。为了改善技术经济指标,降低转炉炼钢生产成本,稳定入炉原材料质量,优化转炉造渣制度及工艺操作,是钢铁企业节能降耗增效的发展方向。
     本课题结合龙钢转炉生产实际,利用炼钢工艺分析软件对龙钢炼钢的原材料(铁水、废钢、石灰等)和炼钢操作过程中造渣过程(石灰加入量和加入时间、炉渣成分等)进行了统计分析、物料平衡及热平衡计算,并运用单因素回归分析方法,对工艺参数进行了优化,提出了溅渣护炉技术、造渣制度和工艺操作优化的具体措施,并在实际生产中推广应用,取得了显著的效果,各项经济技术指标明显提高。通过优化研究,得到以下主要结论:
     1、龙钢炼钢原料中,石灰质量较差,铁水硅、硫、磷含量均处于相对较低的水平,且较稳定,炼钢过程脱硫和脱磷的任务比较容易完成,但随着冶炼周期不断缩短,吹氧时间缩短,应降低石灰粒度或提高石灰活性度。
     2、过程的热平衡(以终点钢水温度为特征变量)影响由高到低主要是铁水加入量、矿石加入量和铁水硅含量波动,对过程渣量和碱度的影响比较大的依次是石灰成分、铁水硅含量、石灰加入量和铁水加入量。石灰加入量、铁水加入量和矿石加入量应在操作过程加以控制。
     3、在龙钢现有转炉生产条件下,终渣碱度在2.6~3.4,(FeO)15%左右,温度控制在1650℃左右较好,并采用污泥球、活性石灰,尽快化好渣,适应炼钢节奏快的要求。
     4、通过稳定原料成分,减少石灰加入量,控制终渣碱度,提高渣中MgO含量,规范操作等一系列措施,钢铁料消耗降低了10kg/t,石灰消耗降低了6.29kg/t。溅渣护炉技术的熟练应用,降低了炉衬消耗,最高炉龄达到了21129炉。
The purpose of slagging is to remove sulfur and phosphorus in molten steel, reduce to the splash and protect lining. Slagging regime and process optimization is the important way of achieving high efficiency and energy saving about converter production. Slagging process is related to the raw materials, addition amount and the time of raw materials, slag component design, the type and quality of lining materials, and various other aspects. To improve the ecnomical results and reduce the cost, process optimization should be the main research aspectfor.
     According to results of LongSteel production, steel-making process analysis software were used to analyse the data which came from the raw materials (such as molten iron, scrap steel, lime, etc.) and steel-making operations in converter slagging process (the amount of lime addition, slag components, etc.). The material balance and the thermal balance were carried out. single-factor-regress analysis was used to optimize the technologiccal parameters. Based on these, the related measures are suggested and put into practice. Good results are obtained. The major conclusions are as following:
     1、Among the steel-making raw materials of LongSteel, lime is in poorer quality. The silicon ,sulfur, phosphorus are at relatively low level and stable. So the task of desulfurization and dephosphorization is easy to be completed. The granularity or active of lime should be improved because the production cycle and the time of Oxygen blowing is being shorten.
     2、The thermal balance of process is affected mainly by amount of molten iron , iron ore and silica content in hot metal. The main factors to effect to amount of slag and alkalinity are lime component, silicon content of the molten iron, amount of lime and iron. Shese should be controlled carefully.
     3、In the conditions of LongSteel, it is foound that alkalinity of the ending-slag at 2.6~3.0, FeO content at 15%, temperature at about 1650℃, and with the use of sludge ball and the active lime, slaging is quick and stable, and production speed can be meet well.
     4、With the optimization, the final results is improved obviously. Metallic material and lime are reduced by 10kg/t and 6.29 kg/t relatively. Slag splashing is put into use successfully and the highest lifespan of converter lining achieved 21129.
引文
[1]金铁城,于阳.转炉炼钢新工艺、新技术与质量控制实用手册,第一册.当代中国音像出版社,3-5
    [2]冯捷,张红文.转炉炼钢生产.北京,冶金工业出版社,2006,1-3
    [3]赵俊学,李小明,黄俊等.钢铁工业可持续发展探讨.陕西冶金,2005(3),1-4
    [4]刘浏.中国转炉炼钢技术的进步.钢铁,2005,40(2):1-5
    [5]李世俊.钢铁工业可持续发展支撑技术,第1册,中国钢铁工业协会,2004,2-1-2-8
    [6]杜挺,邓开文等.钢铁冶炼新工艺.北京:北京大学出版社,1993,171-179
    [7]李永如,宝钢300T转炉负能炼钢实绩剖析.钢铁(增刊),1997,36-38
    [8]李世龙,孟祥燕.转炉负能炼钢与煤气回收技术,钢铁(增刊),1997,63-67
    [9]W.Recknagel.Hater.Ironmaking and Steelmaking,1982,(2):81-84
    [10]刘浏,余志祥,萧忠敏编著.”转炉炼钢技术的发展与展望”第十一届全国炼钢学术会议论文集1-7.北京,2000.
    [11]唐山木,蒋叶舟等.溅渣护炉技术在转炉上的应用.冶金丛刊,2005:159(5)
    [12]王冰民等.溅渣护炉在炼钢生产中的应用.冶金丛刊,2004:151(3)
    [13]C.J.Messina.Slag splashing in the BOF worldwide status:Practices and results[J].Iron&Steel Engineer.1996,17(3):13-16
    [14]Lorenzo,Greco,et al.Installation and start-up of slag splashing at Algoma Steel Inc[C].Steelmaking conference proceedings.1997,97(2):43-46
    [15]袁守谦,张西峰.转炉炼钢厂节能降耗新措施.陕西冶金,2007(2):20-24
    [16]徐文派主编.转炉炼钢学.北京:冶金工业出版社,1988:5
    [17]周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2002:879
    [18]冯捷,张红文.转炉炼钢生产.北京,冶金工业出版社,2006:5
    [19]刘三计,王利军.铁水含硅量对铁钢系统的影响.山西冶金,2001,84(4):29-30
    [20]刘琦.论中小型高炉低硅冶炼.炼铁,2005,24(1):19-23
    [21]周龙义.宝钢1号高炉炉前脱硅系统的设计与生产.钢铁,1999,34(5):6-8
    [22]陈凌云,张红旗,畅步云.氧气顶吹转炉高硅铁水采用双渣操作浅析.山西冶金,2001,84(4):26-28
    [23]朱红波,普靖中.昆钢高炉铁水成分对转炉炼钢工序的影响.云南冶金,2001,169(4):20-21
    [24]赵俊学,张丹力,马杰等《冶金原理》西安.西北工业大学出版社,2002
    [25]苑学礼.铁水[Si]含量对炼钢操作的影响.天津冶金,2001,99(1),37-39
    [26]戴云阁等.现代转炉炼钢.沈阳:东北大学出版社,1998
    [27]冯捷,张红文.转炉炼钢生产.北京:冶金工业出版社,2006,6-11
    [28][苏]E.B.特列恰柯夫等著.氧气转炉造渣制度.北京:冶金工业出版社,1985.1-10
    [29]文永才,杨素波,汤天宇等.对攀钢实现少渣炼钢的探讨.钢铁钒钛,1999,20(1):65-70
    [30]蒋晓放,陈兆平.宝钢转炉少渣炼钢的实践.宝钢技术,2003,1:5-8
    [31]谭振宇.优化工艺配置 实现转炉少渣量吹炼.湖南冶金,2005,33(2):12-14
    [32]杜挺,邓开文等.钢铁冶炼新工艺.北京:北京大学出版社,1993.231-245
    [33]A jay,K Garg,et al.Physical Modeling of BOF Slag Splashing[C].Steelmaking conference proceedings,1997,87
    [34]冯捷,张红文.转炉炼钢生产.北京:冶金工业出版社,2006,80-82
    [35]徐文派主编.转炉炼钢学.北京:冶金工业出版社,1988:152-167
    [36]将仲乐主编,炼钢工艺及设备学,冶金工业出版社,1986,第二次印刷
    [37]余志祥.现代转炉炼钢技术(一)[J].炼钢,2001,17(1):13-19
    [38]中国钢铁协会.冶金信息标准研究院.2004年中国钢铁统计[M].2004
    [39]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,1990
    [40]陈家祥.钢铁冶金学(炼钢部分)[M].北京:冶金工业出版社,1990
    [41]王筱留.钢铁冶金学(炼钢部分).北京:冶金工业出版社,1991
    [42]李文超.冶金热力学.北京:冶金工业出版社.1995
    [43]梁连科.冶金热力学和动力学.沈阳.东北大学.院出版社,1996
    [44]张鉴.冶金熔体的计算热力学.北京.冶金工业出版社.1990
    [45]刘浏.溅渣护炉技术在我国的推广与发展[J].中国冶金,1998,(5):5-10
    [46]苏天森,刘浏,王维兴编著,转炉溅渣护炉技术.北京,冶金工业出版社,1999
    [47]L.Condrier等者,王希珍等译.冶金过程理论基础.重庆大学印刷,1980
    [48]张鉴.冶金熔体的计算热力学..北京:冶金工业出版社.1990
    [49]曲英主编.炼钢学原理.北京:冶金工业出版社,1983,第二次印刷

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700