用户名: 密码: 验证码:
上海市大气降水化学组成特征及物源解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海市作为我国的经济、金融、贸易和航运中心,随着城市化进程的加快、人口规模的扩大以及汽车保有量的持续增加,酸雨污染问题日益严峻,为避免酸雨污染问题给城市生态、人口和经济发展带来更大的危害,有关上海市大气降水中有毒有害物质含量变化的监测以及来源解析的研究工作亟待加强和深入。基于此,本文从监测上海市大气降水化学成分含量的季节变化入手,研究上海市大气降水酸化污染的成因及现状,重金属污染特征,可溶性有机碳和总氮含量及湿沉降的季节变化特征,以及降水中7Be和210Pb含量和湿沉降通量的季节变化特征,同时利用相关性分析、主成分分析、海盐示踪法、气团后向轨迹模型以及天然放射性核素7Be和210Pb等方法来示踪上海市大气降水中主要阴、阳离子的来源。
     通过以上研究,得出以下几点结论:1.上海市大气降水的pH值具有明显的季节变化特征,冬、春季节低,夏、秋季节高,整体pH值偏低,全年pH平均值仅为4.35,低于酸雨发生的标准(pH<5.6),酸雨污染问题日趋严重。
     2.雨水中可溶性离子浓度的大小顺序为SO42-> NH4+> Ca2+> N03-> Cl-> Na+>Mg2+>K+>F-; SO42-、N03-、Cl离子年均浓度分别为109.46、44.76和36.23μeq/L, NH4+、Ca2+和Na+离子浓度分别为90.02、87.84和25.71μeq/L;2009年~2010年上海市年均降水中SO42-/NO3-的当量比值为2.45,这说明上海市的酸雨为硫酸和硝酸复合型;1999-2009年上海市降水中SO42-/NO3当量比一直保持下降的趋势,其比值已经从1999年的6.44下降到2009年的2.45,这说明近年来上海市大气NOx污染相对于SO2污染越来越严重;1999-2009年上海市降水中(Ca2++NH4+)/(SO42-+NO3-)当量比值呈现出了先上升后下降的变化趋势,这说明最近几年上海市大气降水酸性污染加剧与城市空气中碱性颗粒物的减少有一定的关系。
     3.上海市大气降水重金属元素中Al、Zn、Fe、Mn、Pb和Cu的浓度较高,体积加权平均值(VWM)分别为69.75、58.16、38.38、11.57、11.10和4.28μg.L-1,上海市大气降水中Pb和Zn的含量超过了地表Ⅰ类水对重金属含量的限制标准,其他重金属元素均未超标,上海市大气降水中Pb和Zn污染比较严重。
     4.上海市大气降雨样品中可溶性有机碳(DOC)的含量范围为1.36-12.52mg/L,年平均含量为2.80 mg/L,可溶性总氮的年均含量为3.31 mg/L,硝态氮的年均含量为0.56 mg/L,铵态氮的年均含量为1.07 mg/L,有机氮的年均含量为1.68mg/L,上海市大气降水总氮的年均含量为3.31 mg/L,明显高于地表V类水中对总氮含量规定的水质标准,这说明上海市大气降水中总氮含量严重超标,对上海市饮用水源地的地表水污染作用较大。
     5.上海市大气降水中7Be浓度的变化范围为0.47-5.99 Bq/L,年体积加权平均浓度为1.46 Bq/L; 210Pb浓度的变化范围为0.06-0.90Bq/L,年体积加权平均浓度为0.26 Bq/L;上海市大气降水中7Be和210Pb的浓度具有相同的季节变化特征:冬季和春季的浓度高,夏季的浓度最低,秋季的浓度介于中间;大气降水中7Be年湿沉降通量为1834.24 Bq-m-2·yr-1;大气降水中210Pb年湿沉降通量为295.98Bq·m-2·yr-1;上海市大气降水中7Be和210Pb湿沉降通量分别占大气总沉降通量的89%和62%,而干沉降仅占总沉降通量的11%和38%,7Be主要是通过湿沉降向地表沉降的,210Pb既通过湿沉降向地表沉降,又通过干沉降向地表沉降,湿沉降的贡献大于干沉降;上海市大气降水中7Be和210Pb浓度的比值7Be/210Pb变化范围为2.61-25.77,年平均值为6.72,春季降水中7Be/210Pb的平均比值明显高于另外3个季节,由此可以推断上海市也存在着在春季高层大气向近地表输送富含7Be气团的“春季泄漏”现象。
     6.上海市大气降水中的Mn、Zn、Sr、Cu、Cd、Ni可能主要来源于土壤尘;Fe、Al和Pb可能主要来自于工业活动的直接排放或者燃煤排放;S042-、NO3-、Ca2+主要为人为源贡献,Mg2+、K+主要为地壳源贡献,Na+、Cl主要为海洋源贡献;西北方向气团来源的降水中N03-、SO42-、NH4+的平均浓度最大,来源于海洋方向的降水气团带来的降水中各种离子浓度明显整体低于大陆来源的降水气团带来的降水中离子的浓度,这说明上海市大气降水中的化学成分不仅受到局地污染源的影响,还受到其西北方向和西南方向大陆上空远距离污染物传输的影响。
     7.7Be与N03-、SO42和NH4+的相关性比较好,210Pb与S042-和NH4+的相关性比较好,由于7Be和210Pb浓度在冬春季节的浓度最高,这说明远距离陆地来源大气污染物的传输是造成上海市大气降水酸性污染的重要原因之一;7Be和210Pb与SO42-的相关性系数分别明显大于7Be和210Pb与NO3-的相关性系数,说明远距离陆地来源大气污染物的传输对上海市大气降水中SO42-浓度的贡献作用大于对NO3-浓度的贡献作用;7Be/210Pb与F的相关性较强,而与其他常量阴阳离子的相关性较差,说明高层大气的垂直输送和地表自然源向上排放的物质对上海市大气降水中的离子来源贡献不大,而远距离陆地来源大气污染物的传输和局地人为源的排放作用较大。
The city of Shanghai, as China's economic and financial trade and shipping center, with the accelerated process of urbanization, population expansion and the continued increase in car ownership, was faced with the increasingly serious problem of acid rain pollution. The precipitation changes in concentrations of toxic and hazardous substances monitoring and source apportionment of research should be strengthened and deepened, in order to avoiding acid rain pollution causing the urban ecology, population and economic development more damage. In this study we report the severe acid rain over Shanghai, based on the continuing sampling the precipitation samples throughout the whole year and the chemical composition of atmospheric precipitation in Shanghai to study the cause of acidification of precipitation in Shanghai, heavy metal pollution, organic carbon and nitrogen content and the seasonal variations of wet deposition, and Be and Pb concentrations in precipitation and wet deposition fluxes of seasonal variation, and using correlation analysis, principal component analysis, sea salt tracer, air mass back trajectory model and the natural radionuclide tracers 7Be and 210Pb to judge the source of major ions in precipitation of Shanghai.
     Through the above study, draw the following conclusions:
     1. The pH value of precipitation in Shanghai has significant seasonal variations, with winter and spring low, summer and autumn high and the overall low pH value. The annual average pH of precipitation only was 4.35, well below the standard acid rain value of pH<5.6, indicating acid rain pollution is particularly serious.
     2. The concentrations of major soluble ions were in the order of SO42->NH4+> Ca2+>NO3->Cl->Na+>Mg2+>K+>F-.The annual average ion concentrations of SO42-,NO3-, Cl- were 109.46,44.76, and 36.23μeq/L in rainwater, respectively; The annual average ion concentrations of NH4+, Ca2+ and Na+ were 90.02,87.84 and 25.71μeq/L in rainwater, respectively. During 2009 to 2010 the average annual precipitation in Shanghai, the equivalence ratio of SO42-/NO3- was 2.45, indicating that Shanghai acid rain was sulfuric acid and nitric acid compound; from 1999 to 2009, the ratio of SO42-/NO3- in precipitation of Shanghai has been a downward trend, and the ratio has declined from 6.44 in 1999 to 2.45 in 2009, indicating that in recent years atmospheric NOx pollution in relation to SO2 pollution was more serious in Shanghai; 1999~2009 the equivalent ratio of (Ca2++NH4+)/(SO42-+NO3-) in precipitation of Shanghai first increased and then showed a downward trend, indicating that in recent years, the severe acid precipitation was closely related to the reduction of alkaline substances in the urban atmosphere of Shanghai.
     3. The volume-weighted average (VWM) concentrations of heavy metals in atmospheric precipitation in Shanghai, Al, Zn, Fe, Mn, Pb and Cu were 69.75, 58.16,38.38,11.57,11.10 and 4.28μg/L, respectively. The concentrations of Pb and Zn in precipitation were over the standard of Class I surface water limits for heavy metals and other heavy metals were not exceeded, indicating in Shanghai Pb and Zn pollution in precipitation were relatively serious.
     4. The concentration range of dissolved organic carbon (DOC) in rainwater samples were 1.36~12.52 mg/L, with the annual average concentration of 2.80mg/ L. The average content of total soluble nitrogen 3.31 mg/L; the average content of nitric nitrogen were 0.56 mg/L; the annual average concentration of ammonium nitrogen were 1.07 mg/L; the annual average content of organic nitrogen were 1.68 mg/L.The annual average content in precipitation of total nitrogen were 3.31 mg/L significantly higher than the surface water of the total nitrogen content of V class quality standards required, indicating that total nitrogen content in atmospheric precipitation of Shanghai were seriously overweight and became an pollution source of the surface drinking water in Shanghai.
     5. The concentration of 'Be in Shanghai precipitation was in the range of 0.47~5.99 Bq/L, and the volume-weighted annual average concentration was 1.46 Bq/L; the concentration of 210Pb in Shanghai precipitation was in the range of 0.06~0.90 Bq/L, and the volume-weighted annual average concentration was 0.26 Bq/L. The concentrations of 7Be and 210Pb in Shanghai precipitation had the same seasonal variation:with higher concentrations in winter and spring, with the lowest concentrations in summer, and between the concentration of the middle in autumn. The annual wet deposition flux of 7Be was 1834.24 Bq·m-2·yr-1; the annual wet deposition flux of 210Pb was 295.98 Bq·m-2·yr-1. The wet deposition flux of 7Be and 210Pb accounted for the total atmospheric deposition flux 89% and 62%, while dry deposition accounted for only 11% and 38% of the total deposition flux, indicating 7Be mainly through wet deposition landed to the ground surface,210Pb not only through wet deposition to the surface, but also by dry deposition to the surface deposition, and wet deposition is greater than the contribution of dry deposition. The concentrations ratio value of 7Be/210Pb ranged from 2.61 to 25.77, with the annual average value of 6.72, and the ratio value of 7Be/210Pb in spring precipitation were significantly higher than the other three seasons. It can be concluded in the spring of Shanghai, there were the transport of rich 'Be air mass from the upper atmosphere to near-surface called "Spring leakage" phenomenon.
     6. The source identification with several different methods indicated that Mn, Zn, Sr, Cu, Cd, Ni mainly derived from soil dust; Fe, Al, and Pb mainly derived from industrial activities or the direct emissions of coal-fired emissions; SO42-, NO3-, Ca2+ were mainly anthropogenic contribution, Mg2+, K+ were mainly crustal source contributions, Na+, Cl- were mainly marine source contribution. The concentrations of NO3-, SO42-, NH4+ in northwest air mass sources of precipitation were highest during all the directions of air mass sources of precipitation; the ion concentrations in precipitation with the air masses from ocean origin were overall lower than that in precipitation with the continental air mass origin, indicating that the chemistry of precipitation in Shanghai, was under the influence of not only local pollution sources, but also the long-and moderate-range transport of pollutants from northwest and southwest direction over the continent.
     7. The correlations between 7Be and NO3-, SO42-, NH4+ is higher, and the correlations between 210Pb and SO42-,NH4+ is relatively high. The highest concentration of 7Be and 210Pb concentrations in the winter, indicating that one importation reason of severe acid precipitation in Shanghai was caused by long-range land-based sources of air pollution material transfer. The correlation coefficients of SO42-with 7Be and 210Pb were significantly greater than that of NO3-, indicating the long-range land-based transfer had greater influence of SO42-, compared with the influence of NO3-. The ratio of 7Be/210Pb had stronger correlation with the F-, but with other ions poor correlation, indicating that high-level the vertical transport of atmospheric and surface emissions of substances from natural sources upward contributed little to the ion source in precipitation of Shanghai, while the long-range land-based sources of atmospheric pollutant transport and the local anthropogenic emissions had more contribution.
引文
[1]Anatolaki C, Tsitouridou R. Relationship between acidity and ionic composition of wet precipitation a two years study at an urban site, Thessaloniki, Greece [J] Atmospheric Research,2009,92:100-113.
    [2]Ayers G P. Some practical aspects of acid deposition measurement [A]. Presentation to the Third Expert Meeting on Acid Deposition Monitoring Network in East Asia[C]. Japan:Niigata Prefecture,1995:1-20.
    [3]Baez A, Belmont R, Garcia R, et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico [J] Atmospheric Research,2007,86:61-75.
    [4]Das R, Das S N, Misra V N. Chemical composition of rainwater and dustfall at Bhubaneswar in the east coast of India. [J]. Atmospheric Environment,2005,39 (32):5908-5916.
    [5]Du J Z, Zhang J, Zhang J, et al. Deposition patterns of atmospheric 7Be and 210Pb in coast of East China Sea, Shanghai, China[J] Atmospheric Environment,2008,42:5101-5109.
    [6]Duenas C, Fernandez M C, Caeeetero, J. Deposition velocities and washout ratios on a coastal site(southeastern Spain) calculated from 7Be and 210Pb measurements[J] Atmospheric Environment,2005,39:6897-6908.
    [7]Feng Z, Huang Y, Feng Y, et al. Chemical composition of precipitation in Beijing area, northern China[J]. Water Air Soil Pollution,2001,125:345-356.
    [8]Fu Q Y, Zhuang G S, Wang J, et al. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China[J]Atmospheric Environment, 2008,42:2023-2036.
    [9]Fujita S, Talahashi A, Weng J H, et al. Precipitation chemistry in East Asia[J]. Atmospheric Environment,2000,34 (4):525-537.
    [10]Helene C J, Yves T, Marie-Dominique L P, et al. Rainwater chemistry at a Mediterranean inland station(Avignon,France):Local contribution versus long-rang supply[J]Atmospheric Research,2009,91:118-126.
    [11]Hu G P, Balasubramanian R, Wu C D. Chemical characterization of rainwater at Singapore[J]. Chemosphere,2003,51(8):747-755.
    [12]Huang K, Zhuang G, Xu C, et al. The chemistry of the severe acidic precipitation in Shanghai[J]. Atmospheric Research,2008,89:149-160.
    [13]Ito M, Mitchell M J, Driscoll C T. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York[J]. Atmospheric. Environment, 2002,36(6):1051-1062.
    [14]Kulshrestha U C, Sarkar A K, Srivastava S S, et al. Investigation into atmospheric deposition through precipitation studies at New Delhi(India) [J]. Atmospheric Environment,1996, 30 (24):4149-4154.
    [15]Larsse T, Carmichael G R. Acid rain and acidification in China:he importance of base cation deposition[J]. Environment Pollution,2000,110(1):89-102.
    [16]Lee B K, Hong S H, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula [J]. Atmospheric Environment,2000,34 (4):563-575.
    [17]Mallika P, Rattapon O.A four-year investigation on wet deposition in western Thailand[J]Journal of Environmental Sciences,2008,20:441-448.
    [18]Massei A M, Ollivon D, Tiphagne K, et al.Atmospheric bulk deposition of trace metals to the Seine River basin, France:concentrations, sources and evolution from 1988 to 2001 in Paris [J]Water, Air and Soil Pollution,2005,164:119-135.
    [19]Morselli L, Olivieri P, Brusori B, et al. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy [J]. Environmental Pollution,2003, 124 (3):457-469.
    [20]Mouli P, Mohan S V, Reddy, S J. Rainwater chemistry at a regional representative urban site:influence of terrestrial sources on ionic composition[J]. Atmospheric Environment, 2005,39:999-1008.
    [21]Norman M, Das S N, Pillai A G, et al. Influence of air mass trajectories on the chemical composition of precipitation in India[J] Atmospheric Environment,2001,35:4223-4235.
    [22]Okuda T, Iwase T, Ueda H, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002 [J]. Science Total Environment,2005, 339(1-3):127-141.
    [23]Pan Y P, Wang Y S, Xin J Y, et al. Study on dissolved organic carbon in precipitation in Northern China [J] Atmospheric Environment,2010,44:2350-2357.
    [24]Robert J. K, Barrie P, Joan D, et al. Dissolved organic carbon and organic acids in coastal New Zealand rainwater[J]Atmospheric Environment,2002,36:3557-3563.
    [25]Saxena A, Kulshrestha U, Kumar K, et al. Characterization of precipitation at Agra.[J] Atmospheric Environment,1996,30:3405-3412.
    [26]Song F, Gao Y. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast[J] Atmospheric Environment,2009,43:4903-4913.
    [27]Tang A H, Zhuang G S, Wang Y, et al. The'chemistry of precipitation and its relation to aerosol in Beijing [J] Atmospheric Environment,2005,39:3397-3406.
    [28]Thomas J B, Gene L, Francoise M, et al. The relation between NOx emissions and precipitation NO3"in the eastern USA[J]. Atmospheric Environment,2003,37:2093-2104.
    [29]Tuipin B J, Lim H J. Species contribution to PM2.5 concentration:Revising Common Assumptions for Estimating Organic Mass[J]. Aerosol Sci. Technol.,2001,35:602-610.
    [30]Wang C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China.[J] Atmospheric Environment,2003,37:767-776.
    [31]Wang Y, Zhuang G S, Zhang X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai [J] Atmospheric Environment,2006,40:2935-2952.
    [32]Winiwarter W, Puxbaump H, Schoner W, et al. Concentration of ionic compounds in the wintertime deposition:results and trends from the Austrian Alps over 11 years (1983-1993). [J]. Atmospheric Environment,1998,32:4031-4040.
    [33]Ye S, Zhou W, Song J, et al. Toxicity and health effects of vehicle emissions in Shanghai[J]. Atmospheric Environment,2000,34:419-429.
    [34]Zhang M, Wang S, Wu F, et al. Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China[J]. Atmospheric Research,2007,84:311-322.
    [35]Zhao D, Wang A. Estimation of anthropogenic ammonia emissions in Asia [J]. Atmospheric
    Environment,1994,28:689-694.
    [36]Zheng M, Fang M, Wang F, et al. Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hongkong[J]. Atmospheric Environment,2000,34 (17): 2691-2702.
    [37]艾东升,郑祥民,周立旻,等.近2年上海市夏季大气降水地球化学特征[J]环境科学,2010,31(9):2002-2009.
    [38]邓焕广,陈振楼,姚春霞.上海酸雨变化及对策[J].云南地理环境究,2004,16(1):29-32.
    [39]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J]中国工程科学,2000,2(9):5-12.
    [40]国家环境保护局.地表水环境质量标准.G B 3838-2002.[S].
    [41]胡健,张国平,刘从强.贵阳市大气降水中的重金属特征[J]矿物学报,2005,25(3):257-262.
    [42]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学(B辑),2005,35(2):169-176.
    [43]黄银芝,张明旭,郑晓红,等.上海市近16年湿沉降化学特征分析[J].城市环境与城市生态,2008,21(6):1-3.
    [44]贾成霞,刘广山,杨伟锋,等.厦门地区7Be和210Pb的大气沉降通量[J]2003,42(3):352-357.
    [45]李宗省,何元庆,贾文雄,等.丽江市夏季降水化学组成分析[J].环境科学,2009,30(2):362-367.
    [46]刘君峰,宋之光,徐涛.广州地区雨水化学组成与雨水酸度主控因子研究[J].环境科学,2006,27(10):1998-2002.
    [47]龚香宜,祁士华,吕春玲,等.福建省兴化湾大气重金属的干湿沉降[J]环境科学研究,2006,19(6):31-34.
    [48]梅雪英,张修峰.上海地区氮素湿沉降及其对农业生态系统的影响[J]中国生态农业学报,2007,15(1):16-18.
    [49]牛或文,顾骏强,俞向明,等.长三角区域背景地区降水化学特征[J]环境化学,2010,29(3):358-362.
    [50]沙晨燕,何文珊,童春富,等.上海近期酸雨变化特征及其化学组分分析[J].环境科学研究,2007,20(5):31-34.
    [51]石金辉,高会旺,张经.大气有机氮沉降及其对海洋生态系统的影响[J]地球科学进展,2006,21(7):721-729.
    [52]史贵涛.痕量有毒金属元素在农田土壤-作物系统中的生物地球化学循环[D]华东师范大学,2009,125-173.
    [53]宋玉芝,秦伯强,杨龙元,等.大气湿沉降向太湖水生生态系统输送氮的初步估算[J]湖泊科学,2005,17(3):226-230.
    [54]唐孝炎,张远航,邵敏,等.大气环境化学[M]高等教育出版社,2006,365-443.
    [55]万国江,Appleby.环境生态系统散落核素示踪研究新进展[J]地球科学进展,2000,15(2):172-177.
    [56]万国江,郑向东,Lee H N,等.瓦里关山与观风山近地面空气7Be浓度季节性变化对比[J]2006,35(3):221-226.
    [57]王茜,王雪梅,林文实,等.鼎湖山无机氮湿沉降来源研究[J]环境科学研究,2008,21(6):156-160.
    [58]王文兴,许鹏举.中国大气降水化学研究进展[J]化学进展,2009,21(2/3):266-281.
    [59]王文兴,丁国安.中国降水酸度和离子浓度的时空分布[J]环境科学研究,1997,10(2):1-7.
    [60]王文兴,王玮,张婉华,等.我国SO2和NOx排放强度地理分布和历史趋势[J]中国环 境科学,1996,16(3):161-167.
    [61]王艳,刘晓环,金玲仁等.泰山地区湿沉降中重金属的空间分布[J]环境科学,2007,28(11):2562-2568.
    [62]王艳,葛福玲,刘晓环,等.泰山降水的离子组成特征分析[J].中国环境科学,2006,26(4):422~426.
    [63]吴丹,王式功,尚可政.中国酸雨研究综述[J]干旱气象,2006,24(2):70-77.
    [64]夏立江.环境化学[M]中国环境科学出版社,2003,179-186.
    [65]徐刚,李心清,黄荣生,等.贵阳市区大气降水中有机酸的研究[J].地球与环境,2007,35(1):46-50.
    [66]许涛,宋之光,刘君峰,等.雨水中碳丰度季节性特征及对酸雨形成的贡献[J].环境科学,2008,29(2):322-326.
    [67]许世远,束炯,王铮,等.上海市自然地理图集[M].上海:中华地图学社,2004,2-18.
    [68]杨伟.黔中地区近地面空气中7Be和210Pb的环境地球化学特征[D]中科院地球化学研究所.2005.
    [69]易勇,白洁,刘广山,等.青岛市7Be,210Pb和210Po大气沉降通量的测定[J]海洋科学,2005,29(12):20-24.
    [70]张金良,于志刚,张经.大气的干湿沉降及其对海洋生态系统的影响[J]海洋环境科学,1999,18(1):70-76.
    [71]张龚,曾光明,蒋益明,等.湖南省大气湿沉降化学研究[J]中国环境监测,2003,19(5):7-11.
    [72]张苗云,王士杰,张迎,等.金华市大气降水的化学组成特征及来源解析[J].中国环境监测,2007,23(6):86-92.
    [73]张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响[J]应用生态学报,2006,17(6)1099-1102.
    [74]赵艳霞,侯青.1993-2006年中国区域酸雨变化特征及成因分析[J]气象学报,2008,66(6):1032-1042.
    [75]郑利霞,刘学军,张福锁.大气有机氮沉降研究进展[J]生态学报,2007,27(9):3828-3834.
    [76]郑向东,万国江,汤洁,等.瓦里关山近地面气溶胶中7Be和210Pb的观测及其对臭氧浓度变化的示踪[J]科学通报,2005,50(1):72-76.
    [77]周婕成,史贵涛,陈振楼,等.上海大气氮湿沉降的污染特征[J]环境污染与防治,2009,31(11):30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700