用户名: 密码: 验证码:
石菖蒲根茎提取物有效杀虫成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食仓储工作是我国粮食工作的重点,而如何有效地防治储粮害虫又是粮食仓储工作的关键。植物源农药属绿色无公害农药,对害虫不易产生抗药性,符合可持续农业发展的客观要求。玉米象、谷蠹、赤拟谷盗是我国的三种主要储粮害虫,其中玉米象已被国内粮食部门列为储粮头号害虫,谷蠹则为南方储藏谷物的重要害虫,在我国已对磷化氢等化学杀虫剂产生了严重的抗药性。至此,本研究得到了国家十五科技重点攻关项目“植物杀虫剂在储粮害虫防治中的应用与示范”(2004BA523803-2)的有力资助。
     1石菖蒲根茎提取物有效杀虫成分的分离与鉴定
     1.1石菖蒲根茎提取物有效杀虫成分的分离
     采用甲醇冷浸法和有机溶剂萃取法,对石菖蒲新鲜根茎干粉进行了提取和初步分离。结果表明:甲醇对石菖蒲根茎干粉具有较高的提取率,浓缩后提取物得率为19.2%。石油醚萃取物浓缩后得率为23.5%。
     采用硅胶柱层析法,以碘蒸气为显色剂,对石油醚萃取物有效杀虫成分逐步进行初分和细分,浓缩后得到三种活性组分。选取活性最好的两种组分用硅胶柱层析法进行纯化,得到两种浅黄色油状活性单体。
     1.2石菖蒲根茎提取物各分离组分对试虫的初步毒效
     采用药膜法,以玉米象、谷蠹、赤拟谷盗为试虫,研究了石菖蒲根茎提取物各分离组分对试虫的初步毒效,结果表明:
     石菖蒲根茎提取物四种溶剂萃取物以石油醚萃取层的生物活性最高。药膜法314.40μg/cm~2密闭处理72h后,石油醚萃取物对玉米象、谷蠹和赤拟谷盗的校正死亡率均为100.00%。水萃取物也具有一定的毒杀活性,对谷蠹和赤拟谷盗以314.40μg/cm~2密闭处理72 h后的校正死亡率分别为88.51%和56.98%。
     将初分馏分用157.20μg/cm~2剂量进行生物测定,结果表明活性馏分为极性较低的化合物。8种洗脱馏分以61~72号洗脱馏分的毒杀活性最高,处理72h后对三种试虫的校正死亡率均高于80.00%,显著高于其余7种洗脱馏分。将细分馏分用157.20μg/cm~2剂量进行活性测定,结果表明组分Ⅱ、Ⅳ和Ⅵ对试虫具有较高的毒杀活性,处理72h后对玉米象的校正死亡率依次为81.11%、97.78%、100.00%,对谷蠹的校正死亡率分别为57.78%、97.78%、97.78%。组分Ⅲ、Ⅵ用157.20μg/cm~2剂量处理72h后对赤拟谷盗的校正死亡率均为100.00%。
     采用药膜法对三种优选组分进一步进行初步毒效测定,结果表明组分Ⅲ、Ⅵ对试虫具有较好的毒杀效果。组分Ⅲ对试虫的毒杀效果比较缓慢,其毒效与处理时间关系密切。组分Ⅲ对谷蠹和赤拟谷盗具有较好的生物活性,用39.30μg/cm~2剂量处理72h后的校正死亡率分别为64.44%和90.00%。组分Ⅵ对玉米象和谷蠹具有较高的毒效,19.65μg/cm~2剂量处理72h后的校正死亡率分别为54.44%和87.78%。1.3石菖蒲根茎提取优选组分有效成分初步分析
     采用气相色谱-质谱联用法(GC-MS),对石菖蒲根茎提取三种优选活性组分的有效成分进行了初步分析。
     在组分Ⅱ中,化合物1~2的分子量均约为205,且互为同分异构体。化合物3~5的分子量均约为220,也互为同分异构体。初步推断组分Ⅱ主要由5种倍半萜类化合物组成。在组分Ⅲ中,化合物7为主要活性成分,分子量为218。在组分Ⅵ中,初步推断化合物8为榄香素(1,2,3-trimethoxy-5-(2-propenyl)benzene),化合物9为β-细辛醚(cis-1,2,4-trimethoxy-5-(1-propenyl)benzene),化合物9为组分Ⅵ的主要活性成分。
     1.4石菖蒲根茎提取活性单体结构鉴定
     1.4.1化合物7结构鉴定
     质谱鉴定结果表明:单体7为愈创烷型倍半萜,分子量为218,可能含有CH_3-,>CHCH_2-,>C=O片段。紫外吸收光谱鉴定结果表明:单体7中含有共轭双键(-C=C-C=C-)或类似键结构。红外吸收光谱鉴定结果表明,单体7中含有>C=O和不饱和的共轭酰基碳结构(-C=C-C=O)。~1HNMR鉴定结果表明单体7中含有2个CH_3-CH<片段,2个烯甲基(CH_3-C=C),2个烯丙基结构(-C=C-CH_2-C=C-),且存在-CH_2-CO-片段,不含-CH=CH-结构。~(13)CNMR鉴定结果显示单体7中含有1个>C=O,2个>C=C<。
     综合分析各光谱特征,确定单体7为一种已知的倍半萜类化合物菖蒲烯酮(3,8-二甲基-5-(1-甲基乙叉基)-1,2,3,4,5,6,7,8-八氢奠-6-酮)。
     1.4.2化合物9结构鉴定
     质谱鉴定结果表明,单体9与β-asarone有很大的匹配度,含有CH_3-和CH_3CH=片段,分子量为208。紫外吸收光谱鉴定结果表明,单体9与标准品β-asarone均含有1个双键与苯环共轭。红外吸收光谱鉴定结果表明,单体9含有-CH=CH-,CH_3O-及苯环。~1HNMR鉴定结果显示单体9含有1个CH_3-CH=结构,3个CH_3O-,CH_3CH=CH-基团,-CH=CH-C=基团且苯环上共有2个H。~(13)CNMR鉴定结果表明单体9苯环上有3个H被甲氧基所取代,且含有CH_3-与-CH=CH-相连。
     综合分析各光谱特征,确定化合物9为一种已知的苯丙素类化合物β-细辛醚(1,2,4-三甲氧基-5-(1-Z-丙烯基)苯)。
     2石菖蒲根茎浸膏石油醚萃取物,β-细辛醚和菖蒲烯酮对试虫的生物活性
     2.1石菖蒲根茎浸膏石油醚萃取物对试虫的生物活性
     药膜法测定结果表明:石油醚萃取物对谷蠹和玉米象具有较高的触杀活性。用39.30μg/cm~2剂量处理72h后对谷蠹的校正死亡率为88.37%。石油醚萃取物对谷蠹、玉米象、赤拟谷盗的LD_(50)(72h)依次为8.85、40.04、64.88μg/cm~2。三角瓶药纸熏蒸试验结果表明:石油醚萃取物对谷蠹具有较高的熏蒸活性,随着处理时间的延长,对谷蠹的熏杀效果显著加强,25μL/L与100μL/L熏蒸处理120h后对谷蠹的校正死亡率无显著差异。石油醚萃取物对玉米象具有一定的熏蒸活性,100μL/L熏蒸处理120h后对玉米象的校正死亡率为83.30%。滤纸药膜选择法测试结果表明:石油醚萃取物对赤拟谷盗具有很高的驱避效应,各剂量处理72h三次调查的平均驱避率均为Ⅴ级水平。石油醚萃取物对玉米象和谷蠹具有一定的驱避活性,用157.20μg/cm~2剂量处理72h的平均驱避率均为Ⅳ级水平。
     粮食拌药法试验结果表明:石油醚萃取物对谷蠹和玉米象具有较好的种群抑制活性和防治效果,对谷蠹兼具较高的毒杀作用。用250mg/Kg剂量处理3d后对谷蠹的毒杀率为97.73%,显著高于5mg/Kg马拉硫磷处理,对小麦的防效达100.00%,与5mg/Kg马拉硫磷处理相当;125mg/Kg剂量处理对谷蠹子代种群的抑制率为96.47%,与5mg/Kg马拉硫磷处理没有显著差异。
     2.2石菖蒲根茎提取β-细辛醚对试虫的生物活性
     β-细辛醚对玉米象和谷蠹具有较高的触杀活性,药膜法处理72h后的LD_(50)分别为51.29μg/cm~2和30.27μg/cm~2。β-细辛醚对谷蠹具有很高的熏蒸活性,25μL/L熏蒸处理120h后的校正死亡率为97.93%,与100μL/L处理无显著差异。β-细辛醚对谷蠹的熏杀效果比较缓慢,延长熏蒸时间可显著提高熏杀效果。β-细辛醚对玉米象具有较高的熏蒸活性,25μL/L熏蒸处理120h后的校正死亡率为89.81%。β-细辛醚对赤拟谷盗具有很高的驱避活性,各剂量处理72h三次调查的平均驱避率均≥Ⅳ级水平。
     β-细辛醚对玉米象和谷蠹具有较好的毒杀活性、种群抑制作用和防治效果。200mg/Kg剂量处理3d后对谷蠹的毒杀率为99.00%,显著高于5mg/Kg马拉硫磷处理,100mg/Kg处理对谷蠹子代种群的抑制率为85.25%,对小麦的防效可达90.35%,与5mg/Kg马拉硫磷处理没有显著差异。250mg/Kg剂量处理后对玉米象子代种群的抑制率和小麦的防效分别为98.82%和88.08%,与5mg/Kg马拉硫磷处理效果相当。2.3石菖蒲根茎提取菖蒲烯酮对试虫的生物活性
     菖蒲烯酮对玉米象和谷蠹具有一定的触杀活性。药膜法处理72h时的LD_(50)分别为61.84μg/cm~2和71.34μg/cm~2。菖蒲烯酮对玉米象和谷蠹具有较好的熏蒸活性,166.67μL/浓度处理120h后的校正死亡率分别为72.52%和86.43%。菖蒲烯酮对谷蠹的熏蒸效果比较缓慢,随着熏蒸时间的延长,对谷蠹的熏杀作用显著加强。菖蒲烯酮对赤拟谷盗具有很高的驱避效应,19.65μg/cm~2剂量处理72h三次调查的平均驱避率为Ⅴ级水平。
     菖蒲烯酮对谷蠹具有较好的毒杀活性、种群抑制作用和防治效果。用500mg/Kg剂量处理3d后对谷蠹的毒杀率为94.47%,与10mg/Kg马拉硫磷处理无显著差异。250mg/Kg剂量处理后对谷蠹子代种群的抑制率为98.70%,与10mg/Kg马拉硫磷处理效果相当,125mg/Kg剂量处理后对小麦的防效为100.00%,与10mg/Kg马拉硫磷处理无显著差异。
     2.4β-细辛醚和菖蒲烯酮对试虫的联合毒力
     药膜法测试结果表明:β-细辛醚和菖蒲烯酮混用对玉米象和谷蠹成虫具有一定的增效作用。随着β-细辛醚含量的增加,对谷蠹的增效作用逐步增强。当β-细辛醚和菖蒲烯酮按4:1(W/W)混用时,对谷蠹的共毒系数为127.53(>120),表现为显著的增效作用。β-细辛醚和菖蒲烯酮按1:1(W/W)混用时,对玉米象表现为显著的拮抗作用,其共毒系数为69.42(<80),当β-细辛醚和菖蒲烯酮按2:1(W/W)混用时,其共毒系数为142.33,对玉米象具有显著的增效作用。
     3β-细辛醚对玉米象和谷蠹的杀虫机理
     3.1对玉米象成虫的杀虫机理
     用β-细辛醚LD_(50)(485.00mg/Kg)剂量拌粮处理试虫后,对乙酰胆碱酯酶、谷胱甘肽S-转移酶的活性整体表现为抑制作用,并且在处理24h时的酶活力最低。随着处理时间的延长,β-细辛醚对羧酸酯酶的诱导作用有所加强。β-细辛醚不同处理时间对试虫的酯酶同工酶具有一定的影响,处理12h时酯酶E4、E5的表达量有所降低,36h后酯酶E1、E2、E3的表达量则有所增加。
     用不同剂量的β-细辛醚处理试虫,结果表明低剂量(≤250.00mg/Kg)的β-细辛醚处理对乙酰胆碱酯酶具有诱导作用,高剂量(≥500.00 mg/Kg)处理对乙酰胆碱酯酶则表现为抑制作用。β-细辛醚对谷胱甘肽S-转移酶具有抑制作用,但抑制效果与处理剂量关系并不密切。随着β-细辛醚处理剂量的增高,羧酸酯酶的活力显著升高。提高β-细辛醚的处理剂量对酯酶E5的抑制作用有所增强。3.2β-细辛醚对谷蠹成虫的杀虫机理
     用β-细辛醚LD_(50)(94.49mg/Kg)剂量处理试虫,12h时乙酰胆碱酯酶活性被诱导,24h后主要表现为抑制作用。β-细辛醚对谷胱甘肽S-转移酶的时间效应并不明显,对酯酶同工酶具有一定的诱导作用,诱导效果与处理时间有一定的关系,处理12h后酯酶E4被明显诱导。
     低剂量(67.5mg/Kg)的β-细辛醚对乙酰胆碱酯酶具有显著的诱导作用,随着处理剂量的升高,对乙酰胆碱酯酶的活力多数表现为抑制作用。低剂量(≤100.0mg/Kg)的β-细辛醚对谷胱甘肽S-转移酶具有诱导作用,而高剂量(≥133.3mg/Kg)的β-细辛醚对谷胱甘肽S-转移酶具有抑制作用。β-细辛醚对羧酸酯酶的活性多数表现为诱导作用,提高β-细辛醚的处理剂量可提高羧酸酯酶的活力。不同剂量的β-细辛醚处理对谷蠹酯酶同工酶均具有显著的诱导作用,但诱导效果与处理剂量关系并不密切。
The storage work was the emphasis of foodstuff management in China, and how to effectively control the stored product pest was the key task for food storage. The botanical pesticide belongs to the bio-rational pesticide, and it is hard for pests to develop resistance to the botanical pesticide. As a result, the botanical pesticide answered for the impersonal demand of sustainable agriculture. The maize weevil Sitophilus zeamais Motsch., grain borer Rhizopertha dominica (Fab.) and red flur beetle Tribolium castaneum (Herbst) were the three key stored product pests in China, of which the maize weevil had been named as the first key stored product pest by national foodstuff department, and the grain borer was the primary pest of stored grain in south China. At present, the grain borer had developed serious resistance to some chemical pesticides, such as phosphine, etc. Thus, this research was effectively financed by the Chinese 15th key task project through the science and technology ministry of state (Application and Demonstration of Botanical Insecticide in Controlling Stored Product Pest, serial number: 2004BA523B03-2).
     1 Isolation and identification of effective insecticidal ingredients in Acorus gramineus Soland rhizome extract
     1.1 Isolation of effective insecticidal ingredients in A. gramineus rhizome extract
     The dry powder of A. gramineus rhizome was firstly soaked using methanol in cool condition, and then the extract was pretreated by extraction method using organic solvent correspondingly. The results indicated that the methanol had better extraction effect to dry powder of A. gramineus rhizome as 19.2% extract yield after concentration, and the yield of petroleum ether fraction was up to 23.5% after concentration.
     Adopting the silica gel Column Chromatography (CC), the effective insecticidal ingredients of petroleum ether extract were separated as I_2 vapor acted as display reagent step by step. Three active ingredients were obtained after concentration, and two ingredients with better activity were selected for purification in silica gel CC. At last, two active monomers were obtained, and the monomers were kind of yellowish oily liquid.
     1.2 Primary insecticidal effects of ingredients isolated from A. gramineus rhizome extract
     The primary toxicities of insecticidal ingredients isolated from A. gramineus rhizome extract to S. zeamais, R. dominica and T. castaneum adults were tested using drug-film method. The results were listed as follows:
     As for four solvents extracts of A. gramineus rhizome extract, the petroleum ether extract had highest bioactivities to tested pests. At 314.40μg/cm~2 dosage, the corrected mortalities of petroleum ether extract against three tested pests were 100.00% at 72h post-treatment. Furthermore, the water extract had some toxicities to R. dominica and T. castaneum adults with 88.51% and 56.98% corrected mortalities accordingly at 72h post-treatment.
     The results of bioassay for primary fractions at 157.20μg/cm~2 dosage indicated the active ingredients belonged to the compound with low polarity.The C (number 61~72) fraction of 8 eluted fractions had highest toxicities against three tested pests as the corrected mortalities at 72 h post-treatment were more than 80.00%, these mortalities were significantly higher than that of other 7 eluted fractions. The bioassay results for sub-separated fractions at 157.20μg/cm~2 dosage indicated ingredientsⅡ,ⅢandⅥhad better toxicities as the corrected mortalities to S. zeamais at 72 h post-treatment were 81.11%, 97.78% and 100.00% correspondingly, and the corrected mortalities to R. dominica at 72 h post-treatment were 57.78%, 97.78% and 97.78% correspondingly. At 157.20μg/cm~2 dosage, the corrected mortalities of ingredientⅢandⅥto T. castaneum at 72 h post-treatment were 100.00%.
     Further primary bioassay for three selected ingredients demonstrated the ingredientⅢandⅥhad better insecticidal effects against pests. The insecticidal effect of ingredientⅢwas slow relatively, and the toxicity effect had close relationship with exposure time. IngredientⅢhad better bioactivities to R. dominica and T. castaneum adults with 64.44% and 90.00% corrected mortalities (72 h) accordingly at 39.30μg/cm~2 dosage, and ingredientⅥhad better bioactivities to S. zeamais and R. dominica with 54.44% and 87.78% corrected mortalities (72 h) accordingly at 19.65μg/cm~2 dosage.
     1.3 Primary analysis of effective insecticidal components for selected ingredients isolated from A. gramineus rhizome
     Active components for three selected ingredients isolated from A. gramineus rhizome were primarily analyzed using Gas Chromatography-Mass Spectrometry (GC-MS).
     In ingredientⅡ, the molecular weight of compound 1~2 were 205, which were isomeric compounds. The molecular weight of compound 3~5 were 220, and were isomeric compounds as well. It was primarily concluded that ingredientⅡwas composed of 5 sesquiterpenoids. As for ingredientⅢ, compound 7 was the leading active component with 218 molecular weight. In ingredientⅥ, it was primarily concluded that compound 8 was elemine [1,2,3-trimethoxy-5-(2-propenyl) benzene], and compound 9 wasβ-asarone [cis-1,2,4-trimethoxy-5-(1-propenyl) benzene] acted as a leading active component in ingredientⅥ.
     1.4 Structure identification of active monomer isolated from A. gramineus rhizome
     1.4.1 Structure identification for compound 7
     Mass Spectrum (MS) data indicated the monomer 7 was a kind of guaiane-type sesquiterpene, and its molecular weight was 218. The monomer might contain methyl (CH_3~-), secondary carbon linked with tertiary carbon (>CHCH_2~-) and ketonic bond (-C=O). Ultraviolet Spectrum (UV) showed monomer 7 contained conjugated double bond (-C=C-C=C-) or similar bond. Infrared Spectrum (IR) indicated the monomer 7 contained ketonic bond and conjugated unsaturated carbonyl unit (-C=C-C=O). ~1H Nuclear Magnetic Resonance (~1HNMR) spectrum indicated monomer 7 contained two methyl linked with tertiary carbon (CH_3-CH<), two methyl linked with double bond (CH_3~-C=C), a doubly allylic methylene group appearing as a tylical AB doublet (-C=C-CH_2-C=C-), and a secondary carbon linked with ketonic bond (-CH_2-CO-), without hydrogen linked with unsaturated carbon (-CH=CH-). ~(13)C Nuclear Magnetic Resonance (~(13)CNMR) spectrum reconfirmed monomer 7 had one ketonic bond, and two double bonds without hydrogen (>C=C<).
     Integrated with above spectrum characters, this monomer could be confirmed as a known sequiterpenoid, calamusenone named as 3,8-dimethyl-5-(1-methylethylidene)-1,2,3,4,5,6,7,8-octahydro-6-azulenone.
     1.4.2 Structure identification for compound 9
     MS data indicated the monomer 9 has much matching degree withβ-asarone, and its molecular weight was 208. UV spectrum showed monomer 9 and standard sampleβ-asarone contained a double bond conjugated with benzene. IR spectrum indicated the monomer 9 contained hydrogen linked with unsaturated carbon (-CH=CH-), methoxyl (CH_3O-) and benzenoid form. ~1HNMR indicated monomer 9 contained one methyl linked with unsaturated carbon (CH_3CH=), three methoxyl groups, CH_3CH=CH-group,-CH=CH-C= group and two hydrogen located in benzenoid form. ~(13)CNMR reconfirmed monomer 9 had three methoxyl groups linked with benzenoid form as well as one methyl linked with unsaturated carbon.
     Integrated with above spectrum characters, monomer 9 could be confirmed as a known phenylpropanoid named as cis-1,2,4-trimethoxy-5-(1-propenyl) benzene.
     2 Bioactivities of petroleum ether extract,β-asarone and calamusenone isolated from A. gramineus rhizome extract to tested pests
     2.1 Bioactivities of petroleum ether extract isolated from A. gramineus rhizome extract to tested pests
     The bioassay results of drug-film method showed petroleum ether extract had better contact activities against R. dominica and S. zeamais adults. The corrected mortality of petroleum ether extract at 39.30μg/cm~2 to R. dominica was 88.37% at 72 h post-treatment. LD_(50) (72 h) of petroleum ether extract to R. dominica, S. zeamais and T. castaneum were 8.85, 40.04, 64.88μg/cm~2 correspondingly. Drug-paper fumigant experiment showed the petroleum ether extract had better fumigant activities against R. dominica, and the effect increased markedly with increasing of exposure time. After 120 h treatment, the corrected mortality to R. dominica at 25μL/L concentration hadn't significant (P>0.05) difference to 100μL/L treatment. Petroleum ether extract had moderate fumigant activities against S. zeamais, and the corrected mortality at 100μL/L was 83.30% after 120 h treatment. The petroleum ether extract had excellent repellency action on T. castaneum by selection test on filter paper held with drug. As for three dosages, all the mean repellecy rates based on 24, 48, 72 h were V grade level. Petroleum ether extract had moderate repellency effect on R. dominica and 5. zeamais, and both of the mean repellency rates wereⅣlevel at 157.20μg/cm~2 dosage.
     The mixture experiment of foodstuff and drug showed that petroleum ether extract had better population inhibition activity and control effect against R. dominica and S. zeamais, and better poisonous effect against R. dominica as well. At 250 mg/Kg dosage, the mortality of this extract to R. dominica was 97.73% at 3 d post-treatment, which was markedly higher than that of malathion treatment at 5 mg/Kg dosage. At 250 mg/Kg dosage, the control effect of petroleum ether extract against R. dominica was up to 100.00%, which was similar to the malathion treatment at 5 mg/Kg dosage. When mixed with wheat at 125 mg/Kg dosage, the population inhibition rate of petroleum ether extract to R. dominica was 96.47%, and there hadn't markedly difference with malathion treatment at 5 mg/Kg dosage.
     2.2 Bioactivities ofβ-asarone isolated from A. gramineus rhizome extract to tested pests
     β-asarone had better contact activities against S. zeamais and R. dominica adults, and the LD_(50) (72 h) were 51.29μg/cm~2 and 30.27μg/cm~2 respectively.β-asarone had excellent fumigant activities against R. dominica. At 120 h post-treatment, the corrected mortality to R. dominica at 25μL/L concentration was 97.93%, which hadn't significant (P>0.05) difference to 100μL/L treatment. The fumigant effect ofβ-asarone was relatively slow, which increased markedly with prolonging of exposure time.β-asarone had better fumigant activities against S. zeamais, and the corrected mortality at 25μL/L concentration was 89.81% after 120 h treatment.β-asarone had excellent repellency action on T. castaneum, all the mean repellecy rates based on 24 h, 48 h and 72 h were no less thanⅣgrade level.
     Theβ-asarone had better poisonous activity, population inhibition action and control effect against R. dominica and S. zeamais. At 200 mg/Kg dosage, the mortality ofβ-asarone to R. dominica was 99.00% at 3 d post-treatment, which was markedly higher than that of malathion treatment at 5 mg/Kg dosage. At 100 mg/Kg dosage, the population inhibition rate and control effect ofβ-asarone against R. dominica was 85.25% and 90.35% accordingly, which was similar to the malathion treatment at 5 mg/Kg dosage. When mixed with wheat at 250 mg/Kg dosage, the population inhibition rate and control effect ofβ-asarone against 5. zeamais was 98.82% and 88.08% accordingly, which hadn't significant (P>0.05) difference to malathion treatment at 5 mg/Kg dosage.
     2.3 Bioactivities of calamusenone isolated from A. gramineus rhizome extract to tested pests
     Calamusenone had moderate contact activities against S. zeamais and R. dominica adults, and the LD_(50) (72 h) were 61.84μg/cm~2 and 71.34μg/cm~2 respectively. Calamusenone had better fumigant activities against S. zeamais and R. dominica adults. At 120 h post-treatment, the corrected mortalities to S. zeamais and R. dominica at 166.67μL/L concentration were 72.52% and 86.43% correspondingly. The fumigant effect of calamusenone against R. dominica increased markedly with prolonging of exposure time. Furthermore, calamusenone had excellent repellency action on T. castaneum, the mean repellecy rate during 72 h at 19.65μg/cm~2 dosage wasⅤgrade level.
     The calamusenone had better poisonous activity, population inhibition action and control effect against R. dominica. At 500 mg/Kg dosage, the mortality of calamusenone to R. dominica was 94.47% at 3 d post-treatment. The population inhibition rate (250 mg/Kg) and control effect (125 mg/Kg) of calamusenone against R. dominica were 98.70% and 100.00% accordingly, which hadn't significant (P>0.05) difference to the malathion treatment at 10 mg/Kg dosage.
     2.4 Combined toxicities ofβ-asarone and calamusenone to tested pests
     Test of drug-film method showed mixted application forβ-asarone and calamusenone had moderate synergism to tested pests, and the synergism was gradually enhanced with increasing ofβ-asarone content. When the ratio (W/W) ofβ-asarone and calamusenone was 4:1, the co-toxicity coefficient (CTC) was 127.53 (>120), it denoted there had marked synergism to R. dominica. As for S. zeamais, there had marked antagonism (CTC=69.42<80) when the ratio (W/W) ofβ-asarone and calamusenone was 1:1, whereas marked synergism (CTC=142.33) was given when the ratio (W/W) was 2:1.
     3 Insecticidal mechanism ofβ-asarone to S. zeamais and R. dominica adults
     3.1 Insecticidal mechanism ofβ-asarone to S. zeamais adult
     When S. zeamais was treated withβ-asarone at LD_(50) (485.00 mg/Kg) by mixture test for foodstuff and drug, the activities of acetylcholinesterase (AChE) and glutathione S-transferase (GST) were restrained at most times, and their activities were at lowest level at 24 h post-treatment. With the prolonging of exposure time, the induced action ofβ-asarone on Carboxylesterases (CarE) intro-pest was strengthened accordingly. The exposure time ofβ-asarone had some effects on the activity of est isozyme. At 12 h post-treatment, expression of isozyme E4 and E5 were restrained in some extent, whereas expression of isozyme E1, E2 and E3 were enhanced somewhat at 36 h post-treatment.
     After treated in five dosages, theβ-asarone at low dosage (=250.00 mg/Kg) showed induced action to AChE of intro-pest, whereas theβ-asarone at high dosage (=500.00 mg/Kg) gave inhibiting action to AChE.β-asarone had some inhibiting action to GST, but the inhibiting effect hadn't close relationship with dosage. With the enhancing of dosage forβ-asarone, the activity of CarE was significantly promoted. On the contrary, activity of Est E5 was somewhat restrained as the dosage was enhanced.
     3.2 Insecticidal mechanism ofβ-asarone to R. dominica adult
     When treated withβ-asarone at LD_(50) (94.49 mg/Kg), the activity of AChE to R. dominica was induced at 12 h, yet it was mostly restrained at (after) 24 h post-treatment. The exposure time ofβ-asarone to R. dominica hadn't distinct effect on GST. Whereas, the inducement ofβ-asarone on est isozyme was somewhat related with exposure time, and the isozyme E4 was induced distinctly at 12 h post-treatment.
     Theβ-asarone at low dosage (67.5 mg/Kg) showed marked induced action to AChE of intro-pest. With the increasing of dosage, the activity ofβ-asarone on AChE intro-pest was mostly restrained.β-asarone showed induced action to GST at low dosage (=100.0 mg/Kg), but inhibiting action to GST at high dosage (=133.3 mg/Kg). With the enhancing of dosage forβ-asarone, the activity of CarE was somewhat promoted.β-asarone had induced action to Est isozyme intro-pest at different dosages, whereas the induced effect hadn't close relationship with treated dosage.
引文
1.操海群,岳永德,花日茂,汤锋.植物源农药研究进展(综述).安徽农业大学学报,2000,27(1):40-44
    2.曹阳,刘梅,郑彦昌.五种储粮害虫11个品系的磷化氢抗性测定.粮食储藏,2003,32(2):9-12
    3.曹阳.我国储粮害虫玉米象和米象磷化氢抗药性调查.河南工业大学学报(自然科学版),2005,26(5):1-5
    4.曹阳.我国谷蠹、赤拟谷盗、锈赤扁谷盗和土耳其扁谷盗磷化氢抗药性调查.河南工业大学学报(自然科学版),2006,27(1):1-6
    5.陈根强.砂地柏精油主成分松油烯-4-醇杀虫作用研究[D].陕西杨陵:西北农林科技大学植保学院,2001
    6.陈冀胜,郑硕.中国有毒植物.北京:科学出版社,1987
    7.陈同素.中华农学会报,1933,118:67-74
    8.程东美,胡美英.黄杜鹃对3种仓储害虫的毒杀试验.粮食储藏,2000,29(6):3-6
    9.邓望喜,杨志慧,杨长举.几种植物性物质防治储粮害虫的初步研究.粮食储藏,1989,18(2):29-34
    10.邓望喜.城市昆虫学.北京:农业出版社,1992,9
    11.杜小凤,徐建明,王伟中,吴传万.植物源农药研究进展.农药,2000,39(11):8-10
    12.杜毅,周超凡.石菖蒲临床应用与实验研究的概述.内蒙古中医药,1993,12(1):40
    13.樊西惊,雷周印.无公害植物性杀虫剂.西安:西北大学出版社,1994,138
    14.范志金,陈年春.截形叶螨抗药性主导机制的研究.植物保护学报,1996,23(2):175-180
    15.冯彦华,冯维卓.加入“WHO”对植保的影响及对策.见:李典谟,张芝利,黄大卫,李国强主编,走向21世纪的中国昆虫学,中国昆虫学会2000年学术年会,北京,2000,北京:中国科学技术出版社,2000,701-703
    16.付昌斌,张兴.砂地柏提取物对粘虫幼虫体内几种酶系活性的影响.植物保护学报,2000,1(27):75-78
    17.傅以钢,黄亚,张亚雷,赵建夫.3种水生植物对水溶液中乐果的降解作用研究.农业环境科学学报,2006,25(4):90-94
    18.高聪芬,张兴.砂地柏精油的熏蒸杀虫活性初探.南京农业大学学报,1997,20(3):50-53
    19.高聪芬.砂地柏精油熏蒸杀虫作用研究[D].陕西杨陵:西北农林科技大学植保学院,1996
    20.高蓉,田暄,张兴,余向阳.鬼臼毒素类生物活性物质的研究概况.农药学学报,2000a,2(3):1-6
    21.高蓉,田暄,张兴.3种鬼臼毒素类物质杀虫活性测试.西北农林科技大学学报(自然科学版),2001,29(1):71-74
    22.高蓉,田暄,张兴.鬼臼毒素类似物结构与砂型后活性关系初探Ⅰ—几种衍生物的合成及杀虫活性测试.西北农业大学学报,2000b,28(5):8-13
    23.高蓉.鬼臼毒素类似物结构与杀虫活性关系初探[D].陕西杨陵:西北农林科技大学植保学院,1998
    24.高希武,姜辉,陶岭梅.生物源农药研究的现状与展望.见:面向21世纪的植物保护发展战略,中国植物保护学会年会论文集,北京:中国科学技术出版社,2001,158
    25.顾玄.昆虫与植病,1934,2:663-667
    26.郭惠琳,高希武.棉蚜抗氧化乐果品系的羧酸酯酶基因突变.昆虫学报,2005,48(2):194-200
    27.何池全,陈少风,叶居新.石菖蒲抑菌效应的研究.环境与开发,1997,8(3):25
    28.何衍彪,詹儒林,赵艳龙,马蔚红.20种植物提取物对芒果炭疽菌的抑制作用.热带作物学报,2005,26(3):86-90
    29.何衍彪,詹儒林,赵艳龙.植物源农药的研究和利用.热带农业科学,2004,24(3):48-56
    30.何运转,李梅,冯国蕾,王荫长.拟除虫菊酯对家蝇Na~+K~+-ATPase抑制作用的研究.昆虫学报,1999,42(1):19-24
    31.贺春贵.几种植物杀虫剂的初步研究.甘肃农业大学学报,1996,31:233
    32.贺红武,黄刚良.作为生物合理农药资源的热带植物.世界农药,2000,22(5):8-13
    33.侯华民,张兴.植物精油对玉米象的熏蒸和种群抑制活性研究.粮食储藏,2001,30(3):8-11
    34.侯华民.植物精油的杀虫活性及熏蒸机理的研究[D].陕西杨陵:西北农林科技大学植保学院,1997
    35.胡锦官,顾健,王志旺.石菖蒲及其有效成分对中枢神经系统作用的实验研究.中药药理与临床,1999,15(3):19
    36.胡美英,赵善欢.黄杜鹃花杀虫活性成分及其对害虫毒杀作用的研究.华南农业大学学报,1992,13(3):9-15
    37.胡美英,赵善欢.几种植物杀虫剂对杂拟谷盗的毒力试验.华南农业大学学报,1993,14(4):32-37
    38.湖南嘉和县粮食局.苦楝籽粉压盖粮面防治储粮害虫.粮油科技,1984,(3):40-41
    39.黄福辉,项发根,周为民.关于山苍子有效成分在储粮中的应用.粮食储藏,1980,(2):19-22
    40.黄蕾,翟建平,蒋鑫焱,王传瑜,聂荣.三种水生植物在不同季节去污能力的对比研究.环境保护科学,2005a,31(129):44-47
    41.黄蕾,翟建平,聂荣,王传瑜,蒋鑫焱.5种水生植物去污抗逆能力的试验研究.环境科学研究,2005b,18(3):33-38
    42.黄泰康.常用中药成分与药理手册.北京:中国医药科技出版社,1994,686
    43.黄远征,左尧凤,何宗英.两种新的茴香脑资源植物.天然产物研究与开发,1991,3(3):18-23
    44.嘉善县陶庄粮管所.利用中草药防治储粮害虫的探讨.浙江粮油科技,1975,(2):5-7
    45.姜武锋,马文斌,向金平,陈波,杨长举,杨志慧,张宏宇,胡建芳.植物防护剂安粮仙防治储粮害虫的研究.粮食储藏,1999,(5):19-22
    46.蒋庆慈和姜武峰.荆门市储粮害虫对磷化氢、马拉硫磷抗药性及对策技术研究.粮食储藏,1995,24(5):125-128
    47.蒋志胜,尚稚珍,王晓博,杨椒华.美洲大蠊Na~+、K~+-ATPase作为筛选靶标的初步研究.农药学学报,2000,4(2):28-32
    48.蒋志胜,颜增光,何佳,杜育哲,尚稚珍.典型光活化毒素a-三噻吩对棉铃虫和亚洲玉米螟Na~+、K~+-ATPase的抑制作用.农药学学报,2003,2(5):47-52
    49.金中初.石菖蒲单体α—细辛醚的诱变性及其体外代谢途径研究.浙江医科大学学报,1982,(1):1
    50.李飞,韩召军,唐波.抗性品系棉蚜乙酰胆碱酯酶和羧酸酯酶的变异.昆虫学报,2003,46(5):578-583
    51.李恒.中国植物志,1979,13(3):9
    52.李宏.ATPase的研究进展.生物学杂志,1996,1:9-12
    53.李会新,魏木山,易平炎,柯治国,南玉生.25种植物精油对四纹豆象的防治效果.粮食储藏,2001,30(6):7-9
    54.李隆术,李光灿.植物芳香油防治仓虫的试验.粮食储藏,1985,(4):1-9
    55.李隆术,赵志模.我国仓储昆虫研究和防治的回顾与展望.昆虫知识,2000,37(2):84-88
    56.李麦香,江泽荣.菖蒲挥发油及其主要成分动态变化的研究.中国中药杂志,1994,19(5):274-277
    57.李明,曾唏,季祥彪,熊继文,康冀川.盐酸黄连素对蚜虫生物活性的研究.昆虫学报,1999,42(2):140-143
    58.李前泰,宋永成.谷虫防护剂谷虫净的有效防虫期试验.粮油仓储科技通讯,1999,(1):31-32
    59.李前泰,宋永成.几种植物挥发油杀虫效果的试验研究.粮食储藏,2001,30(1):19-22
    60.李世昌.土壤与肥料,1935,1(2):79-86
    61.梁权.关于目前谷蠹防治问题的探讨.粮食储藏,1995,24(1):3-8
    62.梁晓天.漫谈中草药的化学研究.百科知识,1988,(7):421
    63.林忠莲,张立力.磷化氢对谷蠹和玉米象成虫体内乙酰胆碱酯酶的影响.郑州工程学院学报,2001,22(4):35-42
    64.刘邦强,高音,吴汉军.三种菖蒲的鉴定和应用.时珍国医国药,2004,15(8):496
    65.刘建宏,王东昌,张兴,钟玉仙,曹翠珍.砂地柏提取物对粘虫和玉米象取食、存活及繁殖的影响.吉林农业大学学报,2000,22(4):45-47
    66.刘素琪,石建军,曹挥,贾峰彪,刘贤谦,师光禄.杀虫植物的研究现状及展望.见:李典谟,张芝利,黄大卫,李国强主编,走向21世纪的中国昆虫学,中国昆虫学会2000年学术年会,北京,2000,北京:中国科学技术出版社,2000,1092-1095
    67.刘素琪,石建军,曹挥,贾峰彪,刘贤谦,师光禄.植物的杀虫有效成分概况.见:李典谟,张芝利,黄大卫,李国强主编,走向21世纪的中国昆虫学,中国昆虫学会2000年学术年会,北京,2000,北京:中国科学技术出版社,2000,1098-1101
    68.罗伯良.植物杀虫剂资源的开发应用与保护.湖南林业科技,2000,27(1):59-63
    69.罗万春,李云寿,慕立义,赵善欢.苦豆子生物碱对萝卜蚜的毒力及其对几种酯酶的影响.昆虫学报,1997b,40(4):358-365
    70.罗万春,慕立义,李云寿.植物源生物碱的杀虫作用.农药,1997a,36(7):11-15
    71.南京药学院中麻组.石菖蒲挥发油的初步研究——石菖蒲挥发油主要成分的研究.中草药通讯,1978,9(6):1-5
    72.秦晓民,徐敬东,邱小青,王文.石菖蒲对大鼠胃肠肌电作用的实验研究.中国中药杂志,1998,23(2):107-109
    73.邱艳,宋旭红,薛东,杨长举,林开春,韩波,谢令德,舒在习.蛇床子素乳油对玉米象的防效及毒力分析.湖北农业科学,2007,46(1):79-80
    74.荣晓东,徐汉虹,赵善欢.植物性杀虫剂印楝的研究进展.农药学学报,2000,2:9-14
    75.申军,肖柳英,张丹.石菖蒲挥发油抗心律失常的实验研究.广州医药,1993,24(3):44
    76.沈同,王镜岩.生物化学(第二版).北京:高等教育出版社,1991
    77.沈寅初,张一宾.生物农药.北京:化学工业出版社,2000
    78.水菖蒲研究协作组.中医药研究参考,1979,(4):14
    79.孙秀英,黄丽娟,刘秀兰,庞淑荣.中药菖蒲化学成份分析.中医药信息,1996,1:47-48
    80.孙耘芹,冯国蕾,袁家硅,祝平,龚坤元.棉蚜对有机磷杀虫剂抗性的生化机理.昆虫学报,1987,30(1):13-19
    81.谭仁祥,王剑文,徐琛,崔桂友.植物成分功能.北京:科学出版社,2003,99-125
    82.谭天伟.天然产物分离新技术.化工进展,2003,22(7):665-666
    83.唐川江,侯太平,陈放.瑞香狼毒防治仓储害虫的初步研究.粮食储藏,2001,30(4):11-13
    84.唐洪梅,席萍,薛秀清.石菖蒲不同提取物化学成分的GC-MS分析.广东药学,2001,11(6):33-35
    85.唐启义.DPS 3.01数据处理系统[Z].北京,2003
    86.唐振华,毕强.杀虫剂作用的分子行为.上海:远东出版社,2003,182-200
    87.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社,2000,190-192
    88.田暄,高蓉,张兴.鬼臼毒素类似物结构与砂型后活性关系初探Ⅱ—构效关系分析及理想结构推测.西北农业大学学报,2000,28(6):20-24
    89.田雨,冷欣夫.溴氰菊酯对不同品系家蝇脑突触体膜蛋白磷酸化及ATP酶活性的影响.昆虫学报,1999,2(42):113-119
    90.童红云,赵善欢。雷公藤对菜粉蝶幼虫的毒理效应及防治试验.华南农业大学学报,1988,9(4):14-20
    91.王继栋,田暄,张兴.砂地柏叶中鬼臼毒素的分离与鉴定.西北农业大学学报,2000,28(6):25-29
    92.王继栋,张兴.砂地柏中脱氧鬼臼毒素含量与杀虫活性测试.西北农业大学学报,2000,28(5):14-17
    93.王启坤.天然产物害虫控制剂的研究进展.西北农业大学学报,1993,2(2):45-49
    94.王守成.中草药防治鱼病验方.养殖天地,2003,3:32-33
    95.王文,刘涵芳,宋玉成,张伯崇,徐敬东.菖蒲的本草考证.中草药,1995,26(5):262-264
    96.王晓清,姜武峰.7种植物提取物对赤拟谷盗种群形成抑制作用的研究.粮食储藏,1999,(1):9-12
    97.王永庆.中医理论与临床研究进展.哈尔滨:黑龙江科学技术出版社,1990:243
    98.魏红梅.几种植物精油的熏蒸杀虫作用及其活性成分研究[D].陕西杨陵:西北农林科技大学植保学院,2000
    99.魏玉平,徐汉虹.假荜拔抽提物对赤拟谷盗的毒杀作用初步研究.农资科技,1998,(2):8-9
    100.吴钜文,陈建峰.植物源农药及其安全性.植物保护,2002,28(4):39-41
    101.吴立军,吕扬,孙荃荃.菖蒲新倍半萜醇的晶体结构分析.中国药物化学杂志,1993,3(3):201-202
    102.吴文君,曹金娟.植物性农药质量控制.农药科学与管理,1997,18(1):24-25
    103.吴文君,陈广泉,王兴林.苦皮藤提取物对玉米象的抑制作用及机理.粮食储藏,1988,17(6):9-14
    104.吴文君,刘惠霞,朱靖博.杀虫天然产物苦皮藤Ⅱ、Ⅲ、Ⅳ的结构鉴定.农药,1993a,32(3):7-9
    105.吴文君,刘慧霞,朱靖博,沈宝成.天然产物杀虫剂—原理、方法、实践.陕西:陕西科学技术出版社,1998:66
    106.吴文君,刘慧霞,朱靖博.苦皮藤麻醉成分苦皮藤素Ⅳ的结构鉴定.西北农业大学学报,1993b,21(1):1-5
    107.吴文君.杀虫植物苦皮藤研究.农药,1991,30(6):10-12
    108.夏传国,陈杰林,李隆术,郑易敏,易进海.丹皮及其提取物对儿种中药材仓储害虫的忌避作用研究.粮食储藏,2000,29(1):3-9
    109.谢红英,蒋红云,王国平,冯平章.石菖蒲根茎提取物对粘虫的生物活性.农药,2004,43(8):367-369
    110.谢红英.石菖蒲杀虫活性、有效成分分离和制剂开发初步研究[M].湖南长沙:湖南农业大学植物科技学院,2004
    111.徐汉虹,鞠荣.植物源光活化毒素的研究与新农药开发.华南农业大学学报(自然科学版),2003,24(4):103-105
    112.徐汉虹,张志祥,查友贵.中国植物性农药开发前景.农药,2003,42(3):1-10
    113.徐汉虹,赵善欢,江福银,黄国维.精油防治仓库害虫的实仓应用.华南农业大学学报,1993b,14(3):42-47
    114.徐汉虹,赵善欢,周俊,丁靖垲,喻学俭.芸香精油的化学成分和杀出活性初探.天然产物研究与开发,1994a,6(4):56-61
    115.徐汉虹,赵善欢,朱亮锋.齿叶黄皮精油的杀虫作用与有效成分研究.华南农业大学学报,1994b,15(2):56-60
    116.徐汉虹,赵善欢,朱亮锋.精油对储粮害虫种群的繁殖抑制作用研究.中国粮油学报,1993a,8(2):11-17
    117.徐汉虹,赵善欢.五种精油对害虫的忌避作用和杀卵作用研究.中国粮油学报,1995,10(1):1-5
    118.徐汉虹,赵善欢.猪毛蒿精油的杀虫作用研究.华南农业大学学报,1993,14(1):97-102
    119.徐汉虹.杀虫植物与植物性杀虫剂.北京:中国农业出版社,2001
    120.徐晖.鬼臼类木脂素衍生物合成及构效关系初探[D].陕西杨陵:西北农林科技大学植保学院,2000
    121.严晓平,黎万武,刘作伟,覃章贵,吴秀琼,宋永成,沈兆鹏.我国主要储粮害虫抗性调查研究.粮食储藏,2004,4(32):17
    122.颜增光,蒋志胜,杜育哲,尚稚珍.光活化毒素a-T对棉铃虫和亚洲玉米螟离体水解酶系的影响.南开大学学报(自然科学版),2003,36(1):50-54
    123.杨长举,邓望喜,杨志慧,文必然,何功欣.26种中草药和香料植物对赤拟谷盗成虫的驱避作用.华中农业大学学报,1992,11(4):339-341
    124.杨长举,杨志慧,邓望喜,胡望清,胡建芳.几种植物性物质防治绿豆象的初步研究.中国粮油学报,1994,9(2):4-9
    125.杨峻山,何芝义,陈玉武.石菖蒲挥发油成分的研究.中草药通讯,1979,10(4):4-7
    126.杨石城,邓望喜,郭佑波.几种植物油对四纹豆象的作用方式与防治研究.粮食储藏,1997,26(6):11-14
    127.杨守珍.农报,1936,3(26):1341-1344
    128.杨晓燕,陈发奎,吴立军.石菖蒲水煎液化学成分的研究.中草药,1998,29(11):730
    129.杨晓燕,陈发奎.菖蒲的化学成分研究概况.沈阳药科大学学报,1999,16(1):71-78
    130.杨晓燕,陈发奎.菖蒲的药理作用研究概况.中成药,1998,20(12):36-37
    131.杨永年.石菖蒲主要成分α—细辛脑致畸性研究.南京医学院学报,1986b,(4):248
    132.杨永年.石菖蒲主要成分α—细辛脑致突变研究.南京医学院学报,1986a,(1):11
    133.杨玉.α—细辛脑片治疗148例慢性阻塞性肺部疾病.新药与临床,1986,5(4):210
    134.姚康,杨长举.用山苍子芳香油防治蚕豆象.昆虫学报,1984,27(2):173-180
    135.姚康.仓库害虫及益虫.北京:中国财政经济出版社,1986
    136.姚康.国外植物性谷物保护剂研究简介.第二次全国粮油储藏专业学术交流会文献选编,1981,28-38
    137.姚英娟,薛东,杨长举,李绍勤,谢令德,舒在习.6种植物源粉剂与复配剂防治储粮害虫的效果.湖北农业科学,2006e,45(1):65-68
    138.姚英娟,薛东,杨长举,谢令德,舒在习,韩波,林开春.蛇床子提取物对几种储粮害虫的驱避和触杀效应.昆虫知识,2006d,43(5):653-656
    139.姚英娟,薛东,杨长举,谢令德,舒在习.巴豆粉及其溶剂提取物对玉米象的防治效果.昆虫知识,2006f,43(6):793-797
    140.姚英娟,薛东,杨长举,谢令德,舒在习.巴豆提取物对玉米象的生物活性.昆虫知识,2006c,43(1):64-67
    141.姚英娟,薛东,杨长举.21种植物提取物对玉米象的生物活性.昆虫学报,2005,48(5):692-698
    142.姚英娟,杨长举,薛东.石菖蒲粉、提取物及复配剂对玉米象的防治效果.中国粮油学报,2006a,21(5):133-138
    143.姚英娟,杨长举,薛东.石菖蒲提取物对玉米象的驱避和触杀作用.华中农业大学学报,2006b,25(6):614-617
    144.余向阳,高聪芬,张兴.砂地柏果实提取物杀虫活性初探.西北农业大学学报,1999,27(2):55-59
    145.余向阳,张兴.砂地柏果实中杀虫活性成分研究.西北农业大学学报,1999,27(3):11-15
    146.余向阳.砂地柏果实中杀虫活性成分的分离及生物活性研究[D].陕西杨陵:西北农林科技大学植保学院,1997
    147.袁东海,高士祥,任全进,尹大强,王连生.几种挺水植物净化生活污水总氮和总磷效果的研究.水土保持学报,2004a,18(4):77-92
    148.袁东海,任全进,高士祥,张洪,尹大强,王连生.儿种湿地植物净化生活污水COD、总氮效果比较.应用生态学报,2004b,15(12):2337-2341
    149.袁倚盛,王承炜,周晓鹰.石菖蒲降脂有效成分的研究.中草药,1982,13(9):3-4
    150.曾伶.储粮害虫对磷化氢抗性的研究进展.昆虫天敌,1996,18(4)增刊:37-41
    151.张家俊,陈文为.中药酸枣仁、龙齿、石菖蒲对小鼠脑组织单胺类神经递质及其代谢物的影响.北京中医药大学学报,1995,18(6):64
    152.张丽丽,杨长举.茵陈蒿的三种不同溶剂提取物对赤拟谷盗作用方式和作用效果的研究.粮食储藏,2005,(2):6-9
    153.张龙翔,张庭芳,李令媛.生化实验方法和技术.北京:高等教育出版社,1997,111-116
    154.张锐,晁开,刘锦霞.利用植物次生代谢产物开发生物农药.甘肃科学学报,1998,10(3):82-84
    155.张兴,高蓉,田暄,余向阳.砂地柏果实中杀虫活性成分的结构鉴定.西北农业大学学报,1999b,27(4):16-18
    156.张兴,王兴林,冯俊涛,赵善欢.植物性杀虫剂川楝素的开发研究.西北农业大学学报,1993b,21(4):1-5
    157.张兴,王兴林,胡兆农.抑制玉米象种群形成的植物样品筛选研究.粮食储藏,1992,21(3):3-9
    158.张兴,王兴林,王胜宝,吴文东.西北地区杀虫植物资源初步调查.甘肃农业大学学报,1993c,28(1):93-98
    159.张兴,王兴林,杨凌.抑制玉米象种群的植物样品筛选研究.粮食储藏,1993a,22(4):3-8
    160.张兴,杨崇珍,王兴林.西北地区杀虫植物的筛选.西北农业大学学报,1999a,27(2):21-27
    161.张兴,赵善欢.川楝素对菜青虫呼吸系统及其他几种生理指标的影响.华南农业大学学报,1992a,13(2):5-11
    162.张兴,赵善欢.川楝素对菜青虫体内几种酶系活性的影响.昆虫学报,1992b,35(2):171-177
    163.张兴,赵善欢.几种植物性物质对米象、玉米象的初步防治试验.粮食储藏,1983b,48:1-8
    164.张兴,赵善欢.楝科植物对几种害虫的拒食和忌避作用.华南农学院学报,1983a,4(3):1-7
    165.张兴.新杀虫植物砂地柏研究进展.西北农业大学学报,1995,23(4):53-57
    166.张兴.抑制赤拟谷盗种群形成的植物样品筛选研究.粮食贮藏,1992,21(3):3-9
    167.张业光,邱宇彤,赵善欢,等.紫背金盘提取物对四种鳞翅目害虫作用活性的初步研究.华南农业大学学报,1992,13(4):63-68
    168.张宗炳.拒食剂作为储粮保护剂.粮食储藏,1986,(1):7-12
    169.赵善欢,万树青.杀虫植物的研究及应用进展.广东农业科技,1997,(1):26-28
    170.赵善欢.植物质杀虫剂最近研究成果.农药,1983,6:28-29
    171.赵颖,高希武,胡熳华,郑炳宗.棉蚜不同抗性品系羧酸酯酶比较.植物保护学报,1997,24(4):351-355
    172.赵玉成.农铎,1932,52:11-13
    173.郑乃涛.中华农学会报,1935,133:135-149
    174.郑宁远.科学丛刊,1934,4:1-6
    175.郑永权,姚建仁,邵向东.21世纪农药展望.植物保护,1998,24(4):39-40
    176.钟国华,马安勤.植物源农药研究开发中几个问题的探讨.见:李典谟,张芝利,黄大卫,李国强主编,走向21世纪的中国昆虫学,中国昆虫学会2000年学术年会,北京,2000,北京:中国科学技术出版社,2000,1077-1080
    177.周大兴,包祖晓,吴雄生,翟鹏贵.石菖蒲醇提物的抗惊厥作用.中国现代应用药学杂志,1999,16(2):19
    178.周利娟,程东美,徐汉虹,胡美英.羊角扭对菜粉蝶幼虫的生物活性及药效的研究.华南农业大学学报,2000,21(1):41-43
    179.周顺玉,李庆,杨群芳,蒋素蓉,邹勇.18种植物乙醇提取物对柑桔全爪螨的生物活性.中国南方果树,2004,33(6):29-31
    180.周晓园,李芮.药用菖蒲研究近况.山东中医学院学报,1994,18(4):270-274
    181.周云龙.植物生物学.北京:高等教育出版社,1999
    182.朱海云,李广泽,廉应江,冯俊涛,张兴.砂地柏果实中2种二萜类杀虫活性成分的分离.西北农林科技大学学报(自然科学版),2005,33(2):79-82
    183.Al-BashariAli,钟国华,胡美英.苦槛蓝抽提物对菜青虫生物活性的影响.华南农业大学学报.1999.,20(3):28-31
    184. Aayi FA, Lale NES. Susceptibility of unprotected seeds and seeds of local bambara groundnut cultivars protected with insecticidal essential oils to infestation by Callosobruchus maculates (Fab.) (Coleoptera: Bruchidae). J. Stored Prod. Res., 2001, 37:47-62
    185. Andrew P. Stability of the natural insecticide a zadirachtin in aqueous and organic solvents. Pestic. Sci., 1998, 53:217-222
    186. Arnason T, Towers GHN, Philogene BJR, Lambert JDH. The role of natural photosensitizers in plant resistance to insects. Am. Chem. Soc., 1983, 208:140-151
    187. Belmain SR, Neal GE, Ray DE. Golob insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food and Chemical Toxicology, 2001,39:287-291
    188. Benner P.Pesticidal compounds from higher plants. Pestic. Sci., 1993, 39:95-102
    189. Berger BM, Tunc J, Erler F. Ovicidal activity of essential oils from five plants against two stored-product insects. J. Stored Prod. Res., 2000, 36(2): 161-168
    190. Bloszyk E, Nawrot J, Harmatha J, Drozdz B, Chmielewicz Z. Effectiveness of antifeedants of plant origin in protection of packaging materials against storage insects. Journal of Applied Entomology, 1990, 110(1): 96-100
    191. Bulusu S, Chakravarty I. Effect of subacute administration of three organophosphorus pesticides on the hepatic phosphatases under various nutritional conditions. Environ. Res., 1987, 44:126
    192. Chaidir J, Hiort BW, Nugroho FI, Wray V, Witte L, Hung PD, Kiet LC, Sumaryono W, Proksch P. New insecticidal rocaglamise derivatives from flowers of Aglaia duperreana (Meliaceae). Phytochemistry, 1999, 52:837-842
    193. Champagne DE, Koul O, Isman MB, Scudder GGE, Towers GHN. Biological activity of limonoids from the Rutales. Phytochemistry, 1992, 17(2): 377-394
    194. Chan P, Soon-Ⅱ K, Young-Joon A. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J. Stored Prod. Res., 2003, 39 (3): 333-342
    195. Charpentier A, Fournier D. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestle. Biochem. Physiol., 2001, 70(2): 100-107
    196. Chung TC, Sun CN. Malathion and MIPC resistance in Nilaparvata lugens (Homoptera: Delphacidae). J. Econ. Entomol., 1983, 76:1-5
    197. Ciccia G, Coussio J, Mongelli E. Insecticidal activity against Aedes aegypti larvae of some medicinal South Americn plants. Jourmal of Ethnopharmacology, 2000, 72:185-189
    198. Daniewski WM, Gumulka M, Przesmycka D. Sesquiterpenes of Lactarius origin, antifeedant structure-activity relationship. Phytochemistry, 1995, 38(5): 1161-1168
    199. Daniewski WM, Gumulka M, Anczewski W, Masnyk M, Bloszyk E, Gupta KK. Why the yew tree (Taxus baccata) is not attacked by insects. Phytochemistry, 1998, 49:1279
    200. De-Luca Y. Catalogue des Metazoaires Parasites et Predateurs de Bruchidae (Coleoptera). J. Stored Prod. Res., 1965, 1:51-98
    201. Devonshire AL, Heidari R, Bell KL, Campbell PM, Campbell BE, Odgers WA, Oakeshott JG., Russell RJ. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Biochem. Physiol., 2003, 76:1-13
    202. Devonshire AL. The properties of a carboxylesterase from the peachpotato aphid, Myzus persicac (Sulz.), and its role in conferring insecticide resistance. Biochem. J., 1977, 167:675-683
    203. Dreyer M, Nugroho BW, Bohnenstergel F.Ebel R, Wray V, Witte L, Bringmann G, Muhlbacher J, Herold M, Hung PD, Kiet LC, Proksch E New insecticidal rocaglamide derivatives and related compounds from Aglaia oligophylla. J. Nat. Prod., 2001, 64:415-420
    204. Ebenizer OO. Effect of some Ghanaian plant components on control of two stored-product insect pests of cereals. J. Stored Prod. Res., 2001, 37(1): 85-91
    205. Eberhard U. Control of phycophtbor infestans with berberine. C. A., 1984, (101): 72-74
    206. Eckenbach U, Lampman RL, Seigler DS, Ebinger J, Novak RJ. Mosquitociidal activity of acetylenic compounds from Cryptotaenia Canadensis. Journal of Chemical Ecology, 1999, 25(8):1885-1893
    207. Erler FI, Ulug B. Yalcinkaya Repellent activity of five essential oils against Culex pipiens. Fitoterapia, 2006, 77(7-8): 491-494
    208. Fields PG, Xie YS, Hou X. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. J. Stored Prod. Res., 2001, 37:359-370
    209. Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp. Biochem. Physiol, 1994,108c: 19-31
    210. Gao JR, Zhu KY. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 2002, 73:164-173
    211. Gao P, Hou TP, Gao R, Cui Q, Liu SG Activity of the botanical aphicides 1,5-dipheny l-1-pentanone and 1,5-dipheny 1-2-pentra-1-one on two species of Aphididnae. Pest Manag. Sci., 2001,57(3): 307-310
    212. Giacomo M. Gas Chromatographic and Mass Spectrometric studies of the constituents of the rhizome of calamus II, the volatile constituents of the essential oil. Journal of Chromatography, 1985,328:195-206
    213. Gonzalez CA, Cabrera R, Monzon ARS, Fraga BM. Persea indica as a natural source of the insecticide Ryam odol. Phytochemistry, 1993,34(2): 397-400
    214. Haque MA, Nakakita H, Ikenaga H, Sota N. Development-inhibiting activity of some tropical plants against Sitophilus zeamais Motschulsky (Coleoptera: Carculionidae). J. Stored Prod. Res., 2000,36: 281-287
    215. Harish C, Ahufa DF, Nagender A. A Repellency of different plant extracts and commercial formulations used as prophylactic sprays to protect bagged grain against Tribolium Castaneum-a field study. J. Stored Prod. Res., 2000, 37(6): 582-585
    216. Harmartha J, Nawrot J. Comparison of the feeding deterrent activity of some sesquiterpene lactones and a lignan lactone towards selected insect storage pests. Biochem. System. Ecol., 1984, 12:95
    217. Hiort J, Chaidir, Bohnenstengel FI, Nugroho BW, Schneider C, Wray V, Witte L, Hung PD, Kiet LC, Proksch P. New insecticidal rocaglamide derivatives from the roots of Aglaia cluperreanua. J. Nat. Prod., 1999, 62:1632-1635
    218. Hirashima A, Ueno R, Eto M. Effects of various stressors on larval growth and whole-body octopamine levels of Tribolium castaneum. Pesticide Biochem. and Physiol., 1992, 44(3): 217-225
    219. Hu MY, Klocke JA, Chiu SF. Response of five insect species to a botanical insecticide, Rhodojaponin III. Jour. Econ. Ent., 1993, 86(3): 706-711
    220. Hu MY, Zhong GH, Wu QS, Chiu SF. Studies on the biological activities of yellow azalea, Rhododen dronmolle G D on against the vegetable leaf miner, Liriomzas ativae. Entomologia Sinica, 2000, 7(1): 65-70
    221. Huang Y, Larn SL, Ho SH. Bioactivities of essential oil from Elletaria cardamomum (L.) to Sitophilus zeamais (Motschulsky) and Tribolium castaneum (Herbst). J. Stored Prod. Res., 2000, 36(1): 107-117
    222. Huang YZ, Yang CJ, Xue D, RO Akinkurolere, Yao YJ. Contact and repellency activities of ethanol extracts from 20 medicinal plants against Rhizopertha dominica (Fab.) (Coleoptera: Bostrichidae). Acta Entomologica Sinica, 2007, 50(2): 118-124
    223. Ime EE. Molluscicidal effects of neem (Azadirachta indica) extracts on edible tropical land snails. Pest Management Science, 2004, 160 (2): 178-182
    224. Janusz PI, Bozena L, Alina TD, Barbara L, Zbigiew W, Jan N. Feeding-deterrent activity of a-asarone isomers against some stored Coleoptera. Pest Management Science, 2000, 56(6): 560-564
    225. Jayawardena KGI, Karunaratne SHPP, Ketterman AJ, Hemingway J. Determination of the role of elevated B2 esterase in insecticide resistance in Culex quinquefasciatus (Diptera: Culieidae) from studies on the purified enzyme. Bull. Entomol. Res., 1994, 84:39-44
    226. Jembere B, Ahmed H. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimands Charicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry, 2001, 57:385-391
    227. Jespers ABK. Natural products in plant protection. Jour. Econ. Ento., 1993, 99(3): 109-117
    228. Jilani G, Malik MM. Studies on neem plant as a repellent against stored grain insects. Pak. J. Sci. Ind. Res., 1973, 16:251-254
    229. Jilani G, Saxena R, Rua BP. Repllent and growth inhibiting effects of turmeric oil, sweet flag oil, neem oil and "Margosan-O" on red flour beetle (coleoptera: Tenebrionidae). J. Econ. Entomol., 1988, 81:1226-1230
    230. Jotwani MG, Sircar P. Neem seed as a protectant against stored grain pests infecting wheat seed. Indian Journal of Entomology, 1965, 27:160-164
    231. Juliana G, Su HCE Laboratory studies on several plant materials as insect repellents for protection of cereal grains. Journal of Economic Entomology, 1983, 76:154-157
    232. Karunarame SHPP, Small GJ, Hemingway J. Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvata lugens Stal and other planthopper species. Int. J. Pest Manage., 1999, 45:225-230
    233. Keita MS, Vincent C, Schmit JP, Ramaswamy S, Bélanger A. Effects of various essential oils on Callosobruchus maculates F. (Coleoptera: Bruchidae). J. Stored Prod. Res., 2000, 36:355-364
    234: Ketterman AJ, Karunaratne SHPP, Jayawardena KGI. Qualitative differences between populations of Culex quinquefasciatus in both the esterase A2 and B2 which are involved in insecticide resistance. Pestic. Biochem. Physiol., 1993, 47:142-148
    235. Khan WM, Ahmad D, Ahmad I, Osman SM. Nonedible seed oils as insect repellent. J. Am. OiL Chem. Soc., 1983, 60:949
    236. Kim DH, Aim YJ. Contact and fumigant activities of constituents of Foeniculum vulgare fruit against three Coleopteran stored-product insects. Pest Manag. Sci., 2001, 57:301
    237. Kim SI, Park C, Ohh MH, Cho HC, Ahn YJ. Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricone (Coleoptera: Anobiidae). J. Stored Prod. Res., 2003, 39:11-19
    238. Kim SI, Roh JY, Kim DH, Lee HS, Ahn YJ. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J. Stored Prod. Res., 2003, 39:293-303
    239. Kim Soon-Ⅱ, Yi Jee-Hwan, Tak Jun-hyung, Ahn Young-Joon. Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). J. Stored Prod. Res., 2004, 120(4): 297-304
    240. Koul O, Isman MB. Antifeedant and grow inhibitory effects of sweetflag, Acorus calamus oil on Peridroma saucia (Lepidoptera: Noctuidae). Insect Sci. Applic., 1990, 11(1): 47-53
    241. Lale NES, Mustapha A. Potential of combining neem (Azadirachta indica, A. Juss) seed oil with varietal resistance for the management of the cowpea bruchid, Callosobruchus maculates (F.). J. Stored Prod. Res., 2000, 36:215
    242. Latif Z, Thomas GH, Martin JR, Roger DW, Peter GW. Novel and insecticidal isobutylamides from Dinosperma eythrococca. J. Nat. Prod., 1998, 61(5): 614-619
    243. Lee HK, Park C, Ahn YJ. Insecticidal activities of asarones identified in Acorus gramineus rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutoidae). Application Entomology Zoology, 2002, 37(3): 459-464
    244. Lee SE, Choi WS, Lee HS. Cross-resistance of achlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis (Coleoptera: Cucujidae) to fumigant toxicity of essential oil extracted from Eucalyptus tlobulus and its major monoterpene, 1,8-cineole. J. Stored Prod. Res., 2000, 36: 383-389
    245. Li CJ, Fukushi, Kawabata Y. Antivirad and antifungal activity of some naphthoqulnones isolated from the root of Lithosper mummery. J. Pestic. Sci., 1998, 23(1): 54-57
    246. Liu ZL, Ho SH. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook F. et Thomas again the grain storage insects, Sitophilus zeamais Motsch. and Tribolium Castaneum (Herbst). J. Stored Prod. Res., 1999, 35(4): 317-328
    247. Maddrid FJ, White NDG, Loschiavo SR. Insect in stored cereals and their association with farming practiced in southern Manitoba. Canadian Entomologist, 1990, 122:515-523
    248. Marina DG, Pietro M, Previtera L, Aliotta G, Pinto G, Pollio A. Allelochemical activity of phemylpropanes from Acorus gramineus. Phytochemistry , 1989, 28(9): 2319-2321
    249. Martin J. Plants, Insects, and Man-Their Inter-relationships. Economic Botany, 1982, 36(3): 346-354
    250. Matsuda K, Kimura M, Komai K, Hamada M. Nematicidal activities of (-)-N-methyicytisine and (-)-angyrine from Sophora flavescens against pine wood nematodes. Agric. Biol. Chem., 1989, 53(8): 2287-2288
    251. Mazibur M, Eahman, Gerhard H, Schmidt. Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleopteraf: Bruchidae). J. Stored Prod. Res., 1999,35 (3): 285-295
    252. Meen JJ. Neem based pesticides. In: Preceding for International Symposium on Neem based Products for Industrilization in China, February, 2001. Kun ming, China, 2001,34
    253. Miao YG Studies on the activity of the alkaline phosphatase in the midgut of infected silkworm Bombyx mori L. J. Appl. Entomol., 2002,126:138-142
    254. Morallo RB. Botanical insecticides against the diamond-back moth. In: Diamondback Moth Management, Procedings of the First International Workshop, 11-15 March, 1985, Asian Vegetable Research and Development Center, Taiwan, 1986, 241
    255. Murugan K, Jahanmohini P, Babu R. Effect of neem kernel extracts and neem oil on nutritive and reproductive physiology of Heliothis armigera Hub. In: Singh RP, Chari MS, Raheja AK, Kraus W (Eds.), Neem and Environment, New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd., 1996, 321-334
    256. Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, Kasai S, Severson DW, Kono Y, Tomita T. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex triaeniorhynchus. Biochem. Biophysic. Res. Comm., 2004, 313: 794-801
    257. Nakakita H, Winks RG Phosphine resistance in immature staged of a laboratory selected strain of Tribolium castaneum.J. Stored Prod. Res., 1981,17: 43-52
    258. Nakakita H. Stored rice and stored products insects. In: Rice Inspection Technology Manual. A.C.E. Corporation, Tokyo, Japan, 1998:49
    259. Nathan SS, Kalaivani K, Murugan K, Chung GP. The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenee) the rice leaffolder. Pestic. Biochem. Physiol., 2005, 81: 113-122
    260. Nathan SS. Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol., 2006, 84 (2): 98-108
    261. Nawrot J, Bloszyk E, Harmatha J. Action of antifeedants of plant origin on beetles infesting stored products. Acta Entomologica Bohemoslovaca, 1986, 83(5): 327-335
    262. Nawrot J, Harmatha J, Kostova I, Ognyanov I. Antifeeding activity of rotenone and some derivatives towards selected insect storage pest. Biochem. System. Ecol., 1989,17: 55-57
    263. Newcomb RD, Campbell PM, Russell RJ, Oakeshott JG cDNA cloning, baculovirus expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Mol Biol., 1997, 27:15-25
    264. Ntonifor NN, Monah IM. Use of three spices to protect stored maize against Sitophilus zeamais. Tropical Science, 2001, 41: 74-77
    265. Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Gehling M, Proksch P. An insecticidal rocaglamide derivatives and related compounds from Aglaia oddorata (Meliaceae). Phytochemistry, 1999, 51: 367-376
    266. Okonkwo EU, Okpye WI. The efficacy of four seed powders and the essential oils as protectants of cowpea and maize grain against infestation by Callosobruchus maculates (Fabricius) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. International Journal of Pest Management, 1996, 42:143-146
    267. Pandji C. Insectidal constituents from species of Zingiberacen. Phytochemistry, 1993, 34(2): 415-419
    268. Paneru RB, Le Patoure GNJ, Kennedy SH. Toxicity of Acorus calamus rhizome powder from Eastern Nepal to Sitophilus granaries (L.) and Sitophilus oryzae (L.) (Coleoptera, Curculionidae). Crop Protect, 1997,16: 759-763
    269. Park C, Kim SI. Ann YJ. Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. J. Stored Prod. Res., 2003, 39: 333-342
    270. Paul Pachlatko J. Natural products in crop protection. Chimia, 1998, (52): 29-47
    271. Philogene BJR, Arnason JT, Berg CW, Duval F, Champagne D, Taylor RG, Leitch LC, Morand P. Synthesis and evaluation of the naturally occurring phototoxin, alpha-terthienyl as acontrol agent for larvae of Aedes intrudens, Aeded atropalpus (Diptera: Culiciae) and Simulium verecundum (Diptera: Simulidae). J. Econ. Ent., 1985, 78:121-126
    272. Philogene BJR, Arnason JT, Towers GHN, Abramowsky Z, Campos F, Champagne D, Mclachlan D. Bernerine-a naturally occurring phototoxic alkaloid. J. Chem. Econ., 1984,10:115-124
    273. Raja N, Albert S, Ignacimutnu S. Effect of plant volatile oils in Protecting Stored Cowpea Vigna unguiculate (L) Walpers against Callosobruchus maculates (F.) (Coleptera: Bruchidae) infestation. J. Stored Prod. Res., 2001, 37(2): 127-132
    274. Ram RN, Singh SK, Carbofuran-induced histopathological and biochemical changes in liver of the teleost fish, Channa punctatus (Bloch). Ecotoxicol. Environ. Safety, 1988, 16: 194
    275. Ramarethinam S, Loganathan S. Studies on the biology and management of swallow tail butterfly, Papiliode moleus L. (Lepidoptera: Papilionidae) infesting the curry leaf, Murraya koenigii (L.) sprenge. Pestology, 2001, 25(12): 970-1012
    276. Ramarethinam S, Marimuthu S, Loganathan S, Murrgesan NV. Effect of Nimbecidine (0.03% percent Azadirachtin) on sphingid caterpillar Deilephila sp. (Lepidoptera: Sphingidae) in East Indian Rosebay Tabernaemontana divericata (Linn.). Pestology, 2002, 26(4): 9-14
    277. Ranson H, Prapanthadara L, Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem. J., 1997, 324: 97-102
    278. Rao PJ, Gupta S, Raj DM. Neem effects on Spodoptera litura (Fab.): A holistic study. In: Singh RP, Chari MS, Raheja AK, Kraus W (Eds.). Neem and Environment, New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd., 1996, 357-374
    279. Regnault-Roger C, Hamraoui A, Holeman M, Theron E, Pinel R. Insecticidal effect of essential oils from Mediterranean plants upon Acanthoscelides obtectus Say(Coleoptera: Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.).J. Chem. Ecol, 1993, 19(6): 1233-1244
    280. Regnault-Roger C, Ribodeau M, Hamraoui A, Bareau I, Blanchard P, Gil-Munoz M, Barberan FT. Poloyphenolic compounds of mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res., 2004, 40: 395-408
    281. Roaday RM, Duffey SS. Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect physiol, 1986, 32: 827-833
    282. Rong Tsao. Starting from nature to make better insecticides. Chemtech, 1995,25(7): 23-27
    283. Sakharov IY, Makarova IE, Ermolin GA. Chemical modification and composition of tetrameric isozyme K of alkaline phosphatase from harp seal intestinal mucosa. Comp. Biochem. Physiol, 1989, 92:119-122
    284. Sangappa, HK. Effectiveness of oils as surface protectant against the bruchid Callosobruchus chinensis Linn. Infestation on redgram. Mysore Journal Agricultural Sciences, 1977, 11(3): 391-397
    285. Saxena BP, Koul O, Tikku K, Atal CK. A new insect chemosterilant isolated from Acorus calamus L. Nature, 1977,270: 512-513
    286. Schmutteret H. The Neem Tree. Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes. VCH Weinheim Germany, 1995,1-696
    287. Sekou MK, Charles V, Schmit JP, Arnason JT, Belanger A. Efficacy of essential oil of Ocimum basilicum Land O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculates (Fab). Coleoptera: Bruchidae. J. Stored Prod. Res., 2001, 37(4): 339-349
    288. Shaaya E, Kostjukovski M, Eilberg J, Sukprakarn. Plant oils as fumigants and contact insecticides for the control of stored-product insects. J. Stored Prod. Res., 1997, 33(1): 7-15
    289. Sheehan D, Meade G, Foley VM, Down CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 2001, 360:1-16
    290. Simmonds MSJ, Blaney WM, Ley SV, Savona G, Bruno M, Rodriguez B. The antifeedant activity of clerodance diterpenoids from Teucrium. Phytochemistry, 1989, 28(4): 1069-1071
    291. Simmoods MSJ. Azadirachtin: Structural requirements for reducing growth and increasing mortality in lepidopterous larvae. Entomol. Exp. Appl., 1990, 55(2): 169-182
    292. Sinha RN, Watters FL. Insect pests of flour mills, grain elevators, and feed mills and their control. Ottawa: Agriculture Canada Publication, 1985
    293. Streloke M, Ascher KRS, Schmidt GH, Neumann WP. Vapour pressure and volatility of β-asarone, the main ingredient of an indigigenous stored-product insecticide, Acorus calamus oil. Phytoparasitica, 1989, 17: 299-313
    294. Su HCF, RD Spiers, PG Mahany. Toxicity of citrus oils to several stored-product insects: laboratory evaluation.Journal of Economic Entomology, 1972, 65:1438-1441
    295. Sudesh J, AC Kapoor, Ram S. Evaluation of some plant products against Trogoderma granarium Everts in sorghum and their effects on nutritional composition and organoleptic characteristics. J. Stored Prod. Res., 1996, 32(4): 345-352
    296. Sun CN, Huang SY, Hu NT, Chung WY. Glutathione S-transferase and insect resistance to insecticides. Biochemical Sites of Insecticide Action and Resistance, Berlin: Springer, 2001, 239-252
    297. Sun YP, Johnson ER. Analysis of joint action of insecticides against houseflies. J. Econ. Entomol., 1960,53: 887-892
    298. Swain T. Secondary compounds as protective agents. Ann. Rev. Plant Physiology, 1977, 28: 479-501
    299. Talukder FA, Howse PH. Evaluation of Aphanamixis polystachya as a source of repellents, antifeedants, toxicants and protectants in storage against Tribolium castaneum (Herbst). J. Stored Prod. Res., 1995, 31: 55-61
    300. Tang GW, Yang CJ, Xie LD. Extraction of Trigonella foenum-graecum L. by supercritical flluid CO_2 and its contact toxicity to Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae). Journal of Pest Science, 2007
    301. Tapondjou LA, Adler C, Bouda H, Fontem DA. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. J. Stored Prod. Res., 2002, 38: 395-402
    302. Towers GHN. International of light with phytochemicals in some natural and novel systems. Can. J.Bot., 1984,62: 2900-2911
    303. Tripathi K, Prajapati V, Vermaetal N. Bioactivities of the leaf essential oil of curcuma longa (var.Ch-66) on three species of stored-product beetles (Coleoptera). Journal of Economic Entomology, 2002, 95(1): 183-189
    304. Tyler PS, Taylor RW, Rees DP. Insect resistance to phosphine fumigation in food warehousers in Bangladesh. International Pest Control, 1983, 25: 10-13, 21
    305. Van Asperen K. A study of housefly esterases by means of a sensitive color imetric method. Journal of Insect Physiology, 1962, 8: 401-416
    306. Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Hemingway J. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase in the olive fruit fly Bactrocera oleae. Insect Mol. Biol., 2002, 11(4): 329-336
    307. Wang MF, Lao AN, Wang HC. Two new amides from the roots of Acorus tatarinowii Schott. Chin Chem Lett, 1997, 8(1): 35
    308. Yu SJ. Biochemical characteristics of microsomal and cytosolic glutathione S-transferases in larvae of the fall armyworm Spodoptera frugiperda (JE Smith). Pestic. Biochem. Physiol., 2002, 72:100-110
    309. Yu SJ. Induction of detoxification enzymes by triazine herbicides in the fall armyworm, Spodoptera frugiperda (JE Smith). Pestic. Biochem. Physiol., 2004, 80:113-122
    310. Zhang GR, Zhang WQ, Lian B, Gu LQ, Zhou Q, Liu TX. Insecticidal effects of extracts from two rice varieties to brown planthopper. Journal of Chemical Ecology, 1999, 25(8): 1843-1853
    311. Zhu KY, Gao JR. Kinetic properties and variability of esterases in organophosphate susceptible and resistant grcenbugs, Schizaphis graminum (Homoptera: Aphididae). Pestic. Biochem. Physiol., 1998, 62:135-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700