用户名: 密码: 验证码:
低扬程大型泵站装置特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究以南水北调东线工程、城市防洪重点工程建设和大型泵站更新技术改造为背景。以低扬程大型泵站为研究对象,运用三维湍流数值模拟和实验研究相结合的方法,系统地研究了泵站工程过流构筑物中新型进水流道、出水流道内流场特性及水力特性,对比测试分析了常见流道的水力特性,提出了泵站新型进、出水流道型线参数确定的原则和方法。从理论上推演分析建立了泵装置动力特性预测数学模型;系统地研究了泵装置起动、停泵过渡过程,建立了完整的起动动态特性数学模型,提出了停泵动态特性计算方法。
     1.基于三维紊流数值模拟,以大型计算流体力学软件Fluent为平台,采用时均N-S方程(RANS)和κ-ε流模型,运用SIMPLEC算法,数值模拟了钟形、竖井贯流和簸箕形进水流道的内流场。以流道出口速度均匀度、速度加权平均角、水力损失大小为评价目标函数,研究了钟形进水流道不同喇叭口悬空高度的内流场特征和水力损失特性,提出了喇叭口悬空高度的合理取值范围。构建了钟形进水流道模型试验装置系统,利用五孔探针测试了不同喇叭口悬空高度时流道出口断面的流速分布,并与数值计算结果进行了比较分析,得出了带泵的流道出口速度分布规律。数值计算揭示了竖井贯流、簸箕进水流道内流场特征、特征断面的流速及水力损失规律,并对竖井贯流泵装置特性、簸箕形进水流道水力特性进行了试验研究,提出了竖井贯流、簸箕形进水流道的优化特征型线及控制尺寸。
     2.运用三维湍流数值模拟的方法,对近年来应用于特低扬程大型泵站中的一种新型出水流道—箱涵式出水流道内流场特征及水力特性进行分析研究。研究中,针对喇叭出口设导水锥和不设导水锥,分别设计了不同喇叭口悬空高度、不同喇叭管型线、不同后壁距、不同后壁型线以及无扩散喇叭管等方案,数值模拟各方案流道内流场,预测旋涡发生位置和形态,得出了流道纵向剖面、喇叭口及出水柱状面上速度分布规律,预测并分析流道水力损失规律。构建模型试验装置系统,制作物理模型,对各数值计算方案进行系列试验研究,测得各方案流道的水力损失,观测了流道内水流流态,研究得出了流道水力损失随流道几何特征参数变化规律。根据数值计算和试验研究的结果,提出了新型箱涵式出水流道优化设计方法。对常见的虹吸式、直管式和钟形出水流道,设计并制作物理模型,测试并比较其水力损失。
     3.从流体力学基本原理出发,运用相似理论中的方程分析法,系统地分析泵装置动力特性、汽蚀特性、飞逸特性的相似模拟方法,阐述了相似准则之间的关系、参数换算比尺。从理论上分析和表达了水泵机械效率、水力效率、容积效率、水泵效率及泵装置效率。根据模型泵(或泵装置)试验数据,利用最小二乘法拟合及牛顿迭代法计算泵效率(或泵装置效率)表达式中拟合系数,将模型水泵各工况点效率分解为水力效率、容积效率和机械效率,实现了各部分效率按各自公式换算,提出了水力效率、容积效率、机械效率、管道效率、泵及泵装置效率换算的新方法,建立了低扬程大型泵站动力特性预测数学模型。
     4.在分析低扬程泵装置机组暂态电气特性、动力特性和管道中空气动力学特性基础上,结合水泵相似率,从理论上系统地研究了拍门断流直管式出流泵装置起动动态特性、虹吸式出水流道泵装置起动动态特性以及快速闸门断流直管式出流泵装置起动动态特性,并分别建立了相应的起动过渡过程数学模型。
     5.基于刚性水锤理论,分析和表达了低扬程大型泵装置水力特性和机组动力学特性,并运用最小二乘曲面拟合方法仿真模拟了水泵全性能曲线。为合理地在停泵动态特性计算中引入全特性曲线稳态参数,研究中,提出将水泵瞬态扬程分解为稳态扬程和惯性水头扬程,与之相应水阻力力矩、推力轴承摩擦力矩也分解为稳态力矩和惯性水头引起附加力矩,方程中稳态参数,即可用基于曲面拟合的全特性曲线方程代入,从而建立贯流泵站事故停泵、液压快速闸门断流停泵动态特性计算有限差分非线性方程组,并给出了计算方法、步骤和计算实例。
Based on the background for construction of East Route Project of the South-to-North Water Transfers, major project of city flood prevention and large pumping station reconstruction, this paper focuses on low-water head large scale pumping station. The internal flow pattern and hydraulic performances of new suction-boxes and discharge passages were systemically studied by applying three-turbulence numerical simulation technique and experimentation. The design criterion and methods were brought forward about how to determine reasonable outline and control parameters about new suction-box and outlet conduit. The hydraulic loss of three ordinary outlet conduits was also tested, compared and analyzed. The new property predication mathematical model of pump set performances were theoretically deduced and set up. This paper also systemically does research on transient process during starting period and pump stopping. The complete starting dynamic characteristic mathematical model and a group of new pump stopping dynamic characteristic equations were created. The main work and achievement details are as follows:
     1. The Reynolds-Averaged Navier-Stokes (RANS) equation was applied for the simulation of 3D flow field in bell-like, shaft tubular and dustpan shaped suction box of large pumping stations. The standard k-s turbulence model based on the Boussinesq hypothesis and SIMPLEC algorithm were adopted in the calculation. Velocity distribution uniformity, velocity-weighted average swirl angle and hydraulic loss magnitude were treated as value objective function during studying on internal pattern and hydraulic loss characteristics of bell-like intake conduit with different suction open heights. The optimization suction open height range was obtained. Constructing model apparatus system of bell-like suction box, the outlet section velocity distribution was measured by probe under various suction open heights. By comparing with computational results, the velocity distribution law of outlet section equipped with pump was revealed. According to the indicated internal flow pattern, velocity on special cross profile and hydraulic loss by numerical simulation and hydraulic characteristics by test, the optimum outline and "control dimensions about shaft tubular and dustpan shaped suction box were attained.
     2. Based on three-turbulence numerical simulation technique, the internal pattern and hydraulic characteristics were studied about new style outlet conduit namely called tank-like outlet passage which has been used in special low-water head city flood prevention pumping station for recent years. The different schemes of outlet open height, diffusion trumpet-like duct outline, the distance from back-wall to shaft center and no diffusion tube were designed with outlet cone or without outlet cone. By simulating each scheme internal flow field, the position and pattern of various types of vortices were predicted , the friction coefficient about various schemes are obtained and the law of hydraulic loss was also predicted and analyzed. Constructing model apparatus system and making physical models, each scheme hydraulic loss was measured and the variation law of hydraulic loss went with different geometry parameters came to light. According to numerical simulation and experimental results, the optimum design method about new style tank-like outlet conduit was put forward. The siphon discharge passage, straight outlet tube and bell-like outlet passage physical model were designed and made, three outlet passage hydraulic loss were measured and compared.
     3. Based on hydromechanics theory, the similitude methods for the model test of pump set characteristics, cavitation characteristics and runway speed characteristics were analyzed by applying the equation analytical method of analogy theory. The similarity criteria of parameters scaling laws and key points between the model experiments and the prototype experiments were set forth. The expressions of mechanical efficiency, hydraulic efficiency, cubage efficiency and overall efficiency for pump and pump set were given through theoretical analysis. Considering model pump or pump set experimental data, the constant coefficient used in the overall efficiency formula were obtained through least-square technique and Newton-Raphson method. From the view point of the new efficiency formula, the overall efficiency can be decomposed and each component should be converted alone between hydraulic model and prototype. According to analogy theory, the new conversion methods of mechanical efficiency, hydraulic efficiency, cubage efficiency, pump overall efficiency and pump set efficiency were put forward. The dynamical characteristics prediction mathematical model of low-water head pumping station was set up.
     4. Based on theoretical analysis of aerodynamic characteristics of the discharge pipeline, transient electric and dynamic characteristics of low-water head pump set, the transient parameters were systemically studied about straight discharge pipe with valve gate breaking flow, siphon outlet passage and straight discharge pipe with quick-stop gate breaking flow during starting period. The mathematical model of transient parameters was put forward for unsteady flow in low-water head pumping installation.
     5. Based on incompressible water hammer theory, the pump apparatus hydraulic characteristics and pump-unit dynamic characteristics were analyzed and expressed. By utilizing the mathematical model of least square surface fitting of a rectangular region and computer simulation technology, the universal complete pump characteristics was simulated. In order to introduce complete characteristics curves into computation, for the first time transient water head was decomposed into steady condition water head and inertia water head, accordingly water resistance moment and thrust bearing friction moment were also divided into steady condition moment and inertia additional moment. Finite-difference non-linear coupled equations of transient process were established in tubular pumping station while accidental pump-stopping happens or while pumping off with quick-stop gate breaking flow and Newton-Raphson iterative method was used to solve. The mathematical model was applied to simulate the transient process of actual pumping station of the east route of South-North Water Diversion Project during pump stopping.
引文
[1]钱正英.中国水利历史、现状、展望[M].南京:河海大学出版社,1992
    [2]索丽生.新水事新思路-从近年来的重大水事看新时期治水思路的转变[J].中国水利,2002,(8):16-18
    [3]黄红虎,谢卫东,张娟.南水北调东线工程简介[J].能源研究与利用,2004,(1):3-5
    [4]国家发展计划委员会、水利部.南水北调工程总体规划[R].2002
    [5]水利部淮河水利委员会、水利部海河水利委员会.南水北调东线工程规划[R].2001修订
    [6]中水淮河工程有限责任公司(水利部淮委规划设计研究院).南水北调东线第一期泵站总体设计方[R].2004
    [7]水利部淮委规划设计研究院.南水北调东线第一期工程项目建议书[R].2002修订
    [8]梅瑞松,杨富昌.我国泵站工程的现状与发展[J].水利水电科技进展,2000,(2):21-23
    [9]泵及泵站专业委员会.泵及泵站工程科技进展综述[J].中国水利,2004,(10):23-25
    [10]刘光临.中国泵站工程50年的建设与发展[J].中国农村水利水电,1999,(10):5-7
    [11]严登丰.泵站工程[M].北京:中国水利水电出版社,2005
    [12]陆林广,张仁田.泵站进水流道优化水力设计[M].北京:中国水利水电出版社,1997
    [13]刘超.低扬程水泵及其装置的研究与发展[J].江苏农学院学报:1998,19(水利专辑):5-12
    [14]钱静仁.轴流式水泵进口水流流态的研究[J].排灌机械,1987,5(3):8-12
    [15]汤方平,袁家博,周济人.进水流道对泵性能影响[J].水泵技术,1994,(4):20-21
    [16]陆林广,刘成云,陈玉明.进水流道对轴流泵装置水力性能的影响[J].水泵技术,1997,(3):25-26
    [17]陆林广,祝婕,冷豫,等.泵站进水流道模型水力损失的测试[J].排灌机械,2005,23(4):14-17
    [18]仇宝云,林海江,黄季艳,等.大型立式轴流泵叶片进口流场及其对水泵影响研究[J].机械工程学报,2005,41(4):28-34
    [19]陆林广,刘丽君,刘军.泵站出水流道基本流态分析[J].水利学报,2000,(3):69-76
    [20]陆林广,吴开平,冷豫,等.泵站出水流道模型水力损失的测试[J].排灌机械,2005,23(5):23-26
    [21]汤方平,袁家博,周济人.轴流泵站进出水流道水力损失的试验研究[J].排灌机械,1995,13(3):13-14
    [22]刘超.低扬程水泵及其装置的研究与进展[J].江苏农学院学报(水利专辑),1998:5-8
    [23]刘超.南水北调工程高比转速水泵装置的有关问题研究[J].水力发电学报,2005,24(1):88-92,101
    [24]成立,刘超,汤方平,等.立式泵装置进水流道演化数值分析研究[J].水动力学研究与进展,2004,19(1):81-85
    [25]钱义达,严登峰,刘超,等.泵站开敞式进水流道试验研究[J].江苏农学院学报,1989,10(2):47-52
    [26]严忠民.侧向进水前池水流的试验研究[J].河海大学学报,1991,19(5):49-54
    [27]徐辉,田家山.大型污水泵站前池进水流态的研究[J].给水排水,1995,(4):5-8
    [28]徐辉.城市排水泵站进水水力特性研究[D].南京:河海大学,2005
    [29]汤方平,耿卫明,杨国平.进水池流态对泵进口流场的影响[J].排灌机械,2004,(5):12-14
    [30]李大亮.开敞式进水池内部流动的3D-PIV实验研究[D].扬州:扬州大学,2004
    [31]李连超、常近时.大型供水泵站进水池模型流场PIV测量[J].中国农业大学学报,2002,7(4):100-103
    [32]李永,李小明,张波涛,等.水泵进水池内部流动PIV实验的深入分析[J].工程热物理,2002,23(2):190-192
    [33]Matahel Ansar,Tatsuaki Nakato,Ansar.Experimental Study of 3D Pump-Intake Flows with and without Cross Flow[J].Journal of Hydraulic Engineering,2001,127(10):825-834
    [34]Jose Matos Silva,Songheng Li.Numerical simulation of flow in practical water-pump intakes[M].Proceedings of the ⅩⅩⅨ IAHR Congress,Beijing,CHINA,2001
    [35]Songheng Li,Lai Y G,Patel,V C,et al.Water-intake pump bays:three-dimensional flow modeling,validation,and application[M].Proceedings of the 4th International Conference on Hydro informatics,Cedar Rapids,USA,2000
    [36]Rajendran V P,Constantinescu G S,Patel V C.Experimental validation of numerical model of flow in pump-intake bays[J].Journal of Engineering,1999,125(11):1119-1126
    [37]陆林广.开敞式进水池优化水力计算[J].水利学报,1997,(3):16-25
    [38]Constantinescu G S,Patel V C.A numerical model for simulation of pump-intake flow and vortices[J].Journal of Hydraulic Engineering,1998,124(2):123-134
    [39]Constantinescu G S,Patel V C.Role of turbulence model in prediction of pump-bay vortices[J].Journal of Hydraulic Engineering,2000(5):387-391
    [40]刘超,成立,汤方平,等.水泵站开敞式进水池三维紊流数值模拟[J].农业机械学报,2002,33(6):53-55
    [41]杨应玖.大型立式轴流泵站肘形进水流道的设计[J].排灌机械,1984,2(1):12-16
    [42]刘光临,刘贵友.大型轴流泵站肘形进水流道CAD研究[J].水利水电技术,1993,(5):33-37
    [43]丘传忻,皮积瑞,余碧辉.大型立式泵钟形进水流道的设计与研究[J].武汉水利电力学院学报,1983,(2):9-17
    [44]陈莱洲.坡头电排站大型轴流泵钟形进水流道的设计与运行[J].水利水电技术,1991,(7):49-54
    [45]严登丰.泵站过流设施与截流动闭锁装置[M].北京:中国水利水电出版社,2000
    [46]陈松山,王林锁,陆伟刚,等.魏村泵站双向进水流道设计[J].排灌机械,2001,19(1):35-38
    [47]中华人民共和国水利电力部.泵站设计规范设计分册(SD204-86)[S].北京:水利电力出版社,1987
    [48]阎超,皮积瑞.大型贯流泵站进水流道的流体动力学数值分析理论[J].武汉水利电力学院学报,1987,(04):21-27
    [49]陈红勋,关醒凡,谢达荣,等.一种计算大型泵站进水流道内部流场的方法[J].排灌机械,1993,(4):19-22,26
    [50]胡玉仙.基于FLUENT软件的泵站进出水流道流动模拟研究[D].武汉:武汉大学,2004
    [51]陆林广,刘成云,陈玉明.泵站进水流道的两种基本流态[J].水泵技术,1997,(4):25-28
    [52]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,200l,29(1):40-45
    [53]陆林广,冷豫,吴开平,等.泵站进水流道内部流态模型试验方法研究[J].排灌机械,2005,23 (03):17-19,49
    [54]陆林广,周济人.泵站进水流道三维紊流数值模拟及水力优化设计[J].水利学报,1995,12(12):67-75
    [55]陆林广,冯汉民.大型斜式轴流泵站进水流道的优化设计[J].江苏农学院学报,1990,(3):63-69
    [56]Lu Linguang,et al.The finite element solution of quasi 3-Dcross problems for inlet passage of a large pumping station[C].The 3rd Japan-China Joint Conference on Fluid machinery Osaka April 23-25,1990,P.Ⅱ-123
    [57]Lu Linguang,et al.Optimum hydraulic design for inlet passage of large pumping station [C].International Conference on Pumps and Systems,19-21 May 1992 Beijing,China,R572
    [58]陆林广,汤方平.钟形进水流道的优化水力计算[J].江苏农学院学报,1997,18(4):83-87
    [59]陆林广,周济人,叶健,等.簸箕型进水流道优化设计[J].水利学报,1997,42(9):31-36
    [60]陆林广,杲东彦,祝婕.大型泵站虹吸式出水流道优化水力设计[J].农业机械学报,2005,36(4):60-63
    [61]刘超,成立,汤方平.水泵站前池三维流动计算和试验[J].农业机械学报,2001,32(6):41-44
    [62]刘超,成立,汤方平.取水前池复杂流动数值模拟[J].华北水利电力学院学报,2001,22(3):35-39
    [63]成立,刘超,谢伟东,等.大型泵站肘形弯管进水流道数值优化研究[J].排灌机械,2002,20(6):19-22
    [64]成立,刘超,周济人,等.大型立式泵站簸箕型进水流道三维紊流数值模拟[J].水力发电学报,2004,23(4):65-68
    [65]成立,,刘超,周济人,等.大型立式泵站双向进水流道三维紊流数值模拟[J].农业机械学报,2004,35(3):61-64
    [66]成立,刘超,周济人,等.基于RNG湍流模型的双向泵站出水流道流动计算[J].水科学进展,2004,15(1):109-112
    [67]朱红耕,袁寿其.大型泵站肘形进水流道三维紊流仿真计算[J].中国农村水利水电,2005,(4):42-43,48
    [68]朱红耕,袁寿其,刘厚林,等.肘形进水流道对立式轴流泵水力性能影响的数值模拟[J].农业工程学报,2006,22(2):6-9
    [69]朱红耕,袁寿其,刘厚林,等.大型泵站虹吸式出水流道三维紊流数值计算[J].扬州大学学报(自然科学版),2005,8(2):74-78
    [70]李龙,王泽,胡荣霞,等.双向贯流泵装置水力性能的数值分析[J].农业机械学报,2007,38(1):76-79
    [71]陈松山,葛强,严登丰,等.泵站竖井进水流道数值模拟与装置特性试验[J].农业机械学报,2006,37(10):58-61
    [72]陈松山,周正富,潘光星,等.泵站簸箕型进水流道水力特性试验研究及数值模拟[J].扬州大学学报,2006,9(4):73-77
    [73]陈松山,周正富,屈磊飞,等.泵站箱涵式出水流道三维湍流数值分析[J].江苏大学学报(自然科学板),2005,26(6):468-471
    [74]陈松山,何钟宁,屈磊飞,等.泵站钟型出水流道水力特性试验及内流场分析[J].水泵技术,2006,(3):37-39,44
    [75]刘为民.泵站进水流道对水泵性能影响的数值模拟研究[D].扬州:扬州大学,2005
    [76]鄢碧鹏,朱红耕,袁寿其.新型肘形进水流道水力特性预测[J].农业机械学报,2006,37(2):37-40
    [77]刘小龙,施卫东,潘中永,等.泵站出水流道三维不可压缩湍流流场数值模拟[J].中国农村水利水电,2003,(6):25-26
    [78]杲东彦.虹吸式出水流道三维紊流数值模拟及优化试验研究[D].扬州:扬州大学,2003
    [79]戴红霞.驼峰后带长直管的泵站虹吸式出水流道水力特性研究[D].南京:河海大学,2006
    [80]徐峰.双向贯流泵数值模拟研究[D].南京:河海大学,2005
    [81]韩丹.双向贯流泵站进出水流道流场数值模拟[D].南京:河海大学,2005
    [82]周正富,陈松山,葛强等.大型泵站钟形进水流道三维紊流数值模拟[J].中国农村水利水电,2006,(4):61-64
    [83]王业明,魏海.泵站进水流道三维造型系统的研究[J].扬州大学学报,2000,3(1):58-61
    [84]王业明,陆林广,谭建荣.泵站肘形流道流场可视化与仿真系统的研究[J].农业机械学报,2002,33(6):56-59
    [85]皮积瑞,丘传忻,余碧辉.大型立式轴流泵站进出水流道形式的实验研究[J].水泵技术,1982,(3):1-7
    [86]皮积瑞,丘传忻.大型泵站进出水流道形式的研究之二[J].水泵技术,1983,(1):8-13
    [87]皮积瑞,丘传忻.大型泵站进出水流道形式的研究之三[J].水泵技术,1983,(3):15-19
    [88]皮积瑞.贯流泵流道型式的分析与设计[J].水泵技术,1984,(1):25-29
    [89]皮积瑞,阎超.大型贯流式水力机械灯泡体选型的电算法[J].水泵技术,1985,(3):55-59
    [90]钱静仁.大型轴流泵箱室式(钟型)进水流道的研究[J].河海大学学报(自然科学版),1980,(4):86-94
    [91]张庆范,吴桐林,靳子清,等.贯流泵装置模型的初步试验研究[J].排灌机械,1984,(4):18-22
    [92]张庆范,吴桐林,靳子清.贯流泵装置的试验研究[J].农业机械学报,1985,(2):40-49
    [93]曹志高,钱义达.泵站钟型进水流道试验研究[J].水泵技术,1989,(3):26-31
    [94]刘超,周济人,汤方平,等.低扬程双向流道泵装置研究[J].农业机械学报,2001,32(1):49-51
    [95]郑源,张德虎,刘益民,等.贯流泵装置能量特性试验研究[J].流体机械,2003,31(2):1-4
    [96]张德虎,戴正,廖锐.贯流泵装置特性模型试验与节能[J].能源研究与运用,2003,(3):22-24
    [97]陆林广,吴昌新,纪建中,等.灯泡贯流泵流道模型水力损失的测试[J].南水北调与水利科技,2007,5(1):82-84
    [98]陈毓陵,徐辉,吴新明.双向进水流道流态改善研究[J].排灌机械,2000,18(5):14-17
    [99]华明,曹正浩,仲付维.泵站斜式进水流道水力特性试验[J].水利水运工程学报,2000,(4):61-64
    [100]陈毓陵,华明,曹光华.30°斜式轴流泵站的水力模型试验[J].南京水利科学院水利水运科学研究,2000,(2):55-58
    [101]汤方平,刘超,周济人,等.低扬程贯流泵装置模型试验研究[J].水泵技术,2004,(4):28-31
    [102]周济人,刘超,袁家博,等.大型泵站箱涵式双向进水流道试验研究[J].扬州大学学报,1999,2(4):79-82
    [103]施卫东.浙江盐官下河泵站轴流泵装置模型的研究[J].农业工程学报,1999,15(2):85-89
    [104]施卫东.望虞河开敞式轴流泵装置模型试验研究[J].中国农村水利水电,1997,(9):34-37
    [105]施卫东.新夏港泵站轴流泵装置模型装置的研究[J].佳木斯工学院学报,1997,25(3):202-206
    [106]施卫东.开敞式高比转速轴流泵模型装置的试验研究[J].水利学报,1998,(6):58-63
    [107]陈松山,葛强,杨国平,等.箱涵式进水泵站喇叭管悬空高度的试验研究[J].扬州大学学报,2004,7(3):59-62
    [108]北村升.泵吸水管的问题[J].泵工学,1972,8(9)
    [109]Krishna H C R.Return flow on the suction side of an axial flow impeller[M].Trans IAHR Symp5th,1970
    [110]吴君安.离心泵吸入管中流动的探讨[J].水泵技术,1980(2):36-42
    [111]刘超.水泵进水流道内部流态的研究[D].南京:华东水利学院,1981
    [112]刘超.大型泵站钟形进水流道流速场的试验研究[J].江苏农学院学报,1985,6(2):41-47
    [113]仇宝云,冯晓莉,袁寿其,等.大型泵站双孔出水流道偏流分析[J].水力发电学报,2005,24(6):110-114,120
    [114]Tang fangping,Liuchao.PIV for propeller pumps applications[C].The second international symposium of fluid machinery and fluid engineering,2000:128-134
    [115]谢伟东,蒋小欣,刘铭峰,等.竖井式贯流泵装置没计[J].排灌机械,2005,(1):16-18
    [116]陈红勋.大型泵站用轴流泵结构的开发与应用[J].农业工程学报,1996,12(3):83-86
    [117]左东启.模型试验的理论和方法[M].北京:水利电力出版社,1984
    [118]华东水利学院.抽水站[M].上海:上海科学技术出版社,1986:174-177
    [119]#12
    [120]周君亮.模型水力特性换算研究[J].江苏水利,2004,(6):8-15
    [121]朱红耕,袁寿其,刘厚林,等.泵及泵装置与模型水力特性换算方法[J].农业机械学报,2006,37(12):91-95
    [122]葛强,周君亮,李龙,等.低扬程水泵装置水力特性参数换算研究综述[J].河海大学学报,2006,34(2):165-170
    [123]Camerer R.Vorlesungen uber wasserkraftmachinen[M].2nd ed Leipzig Und Berlin,1924:225-227
    [124]Moody L F.Section on hydraulic machinery of handbook applied hydraulics[M].New York:McGraw Hill,1942:88-90
    [125]Stepanoff A J.Centrifugal and axial flow pumps[M](2nd ed).New York:John Wiley & Sons Inc,1957:69-75,308
    [126]SchlichtingH.Boundary layer theory[M].New York:McGraw Hill,1960
    [127]Pfleiderer C.Die kreiselpumpen f(u|¨)r fl(u|¨)ssigkeiten urd gase[M].New York:Springer Verlag,1961:168,79-84
    [128]Wislicenus G F.Fluid mechanics ofturbomachinery[M].New York:Dover Publication Inc,1965:54-57
    [129]Aderson H H.Statistical records of pump and water turbine efficiencies:performance predication conference Proc[J].J Mech E,1977,C1:72
    [130]Henry P.Hydraulic machinery model testing current state of technology in hydraulic machinery[M].NewYork:John Wiley&Sons Inc Gower,1989:79-82
    [131]刘大恺主编.水轮机(第三版)[M].北京:中国水利水电出版社,1997:69-74
    [132]IEC.International code for model acceptance test of hydraulic turbines[S].IEC Publication 193,1965
    [133]IEC.International code for model acceptance test of storage pumps[S].IEC Publication 497,1976
    [134]IEC International Standard.Determination of prototype performance from model acceptance tests of hydraulic machine with consideration of scale effects[S].IEC Publication 995,1991
    [135]Spurk J H,Grein H.水力机械考虑比尺效应的性能预测[J].耿延芳,寿梅华,译.水力发电学报,1999,(3):100-120
    [136]Aspuru J J,Bassy A.Efficiency Results on the Pump Turbine Prototype[M].IAHR Symposium,Rome,1972:89-93
    [137]Ippen A T.The influence of viscosity on centrifugal pump performance[J].Trans ASME,1946,68:823-848
    [138]Bullock R O.Analysis of Reynolds number and scale effects on performance of turbo-machinery[J].ASME Journal of Engineering for Power,1964,86(3):247-256
    [139]Balje O E.A study on Reynolds number effects in turbomachines[J].ASMEJournal of Engineering for Power,1964,86(3):247-256
    [140]Kittredge C P.Estimating the efficiency of prototype pumps from model tests[J].ASME of Engineering for Power,1968,90(2):129-139
    [141]Sutton M.Pump scale laws as affected by individual component losses[J].Proc Instn Mech Engrs,1967-1968,182(Pt3M):76-82
    [142]Gulich J F.Effenct of Reynolds number and surface roughness on the efficiency of centrifugal pumps [J].ASME Journal of Fluids Engineering,2003,125(34):670-679
    [143]李文广,邓德力.离心泵的雷诺数及其影响[J].水泵技术,1999,(3):11-13.
    [144]Muehlemann E.Zur aufwertung des wirkungsgradesvon ueberdruck wasserturbinen[M].Schweizerische Banzeitung,1948
    [145]Hutton S P.Component losses in Kaplan turbines and the prediction of efficiency from model tests,Proc[M].Institution of Mechanical Engineers,1954
    [146]Ida T.An analysis of scale effects on water turbine characteristics.Report of Faculty of Engineering[J].Kanagawa University,March,1980
    [147]Ida T.An analysis of scale effects on pump turbine characteristics in pumping model[M].New York:Institution of Mechanical Engineers,1981:28-37
    [148]中华人民共和国水利部.水泵模型验收试验规程(SL140-97)[S].北京:中国水利电力出版社,1997
    [149]Brekke H A.Discussion on design criteria for large turbines[M].IAHR Symposium,Beijing,1989:102-108
    [150]常近时,寿梅华,于希哲.水轮机运行[M].北京:水利电力出版社,1983:343-348
    [151]JIS B 8327-1997.Test method for pump performance using model[S].Japanese Association of Standardization,1977
    [152]JIS B 8327-2002.Test method for pump performance using model[S].Japanese Association of Standardization,2003
    [153]郑玉春,何忠人,陈坚,等.大型水泵装置性能参数换算方法的探讨[J].水利学报,1995,(10):47-52
    [154]蒋履祥.水泵效率换算方法的探讨[J].河海大学学报,1989,17(1)(增刊):70-74
    [155]张仁田,童利忠,卜舸.Re数对水泵效率换算影响的试验研究[J].排灌机械,,19(2):8-12
    [156]张仁田,张平易,阎文立.大型泵站系统性能参数的换算方法[J].农业机械学报,1999,30(2):49-53
    [157]张仁田,张平易,阎文立.泵及泵装置效率换算方法的研究[J].水泵技术,1996,(6):27-31,39
    [158]张仁田.泵装置效率比尺效应及换算方法的研究[J].水力机械技术,1996,(1):14-18
    [159]陈立,张仁田,张平易.双向泵站装置效率换算方法的探讨[J].排灌机械,1996,(3):23-27
    [160]杨建设.水轮机效率公式的现状及讨论[J].华北水利水电学院学报,2000,21(04):24-28
    [161]陈松山,严登丰,葛强,等.泵及泵装置效率换算方法[J].农业机械学报,2006,37(11):52-55
    [162]陈松山,葛强,周正富,等.泵装置模型试验模拟方法分析[J].水力发电学报,2006,25(5):135-140
    [163]王林锁,陈松山,葛强,等.泵及泵装置效率预测方法研究[J].扬州大学学报,2001,4(2):66-70
    [164]严登丰,叶健,陈茂满,等.泵及泵装置效率表达与换算[J].排灌机械,2007,25(1):1-8
    [165]Okada M.Operational performance of high head and high speed pump turbines[J].1975,(11):424-429
    [166]王冰,杨德晔.中国水力发电工程[M].北京:中国水利电力出版社,2000:42-52
    [167]陆佑楣,潘家铮.抽水蓄能电站[M].北京:水利电力出版社,1992:141-143
    [168]丁浩.水电站压力引水系统非恒定流[M].北京:水利电力出版社,1986
    [169]Hanif chaudhry M.实用水力过渡过程[M].陈家远,孙诗杰,张治滨译.成都:四川水力发电工程学会,1985
    [170]刘竹溪,刘光临.泵站水锤的防护措施及其简易计算(上)[J].中国农村水利水电,1984,(5):34-39
    [171]刘竹溪,刘光临.泵站水锤的防护措施及其简易计算(下)[J].中国农村水利水电,1984,(6):35-37
    [172]刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社,1988
    [173]于必录等.泵系统过渡过程分析与计算[M].北京:水利水电出版社,1993
    [174]金锥,姜乃昌,汪兴华.停泵水锤及其防护[M].北京:中国建筑工业出版社,1993
    [175]端润生,悔祖彦.混流可逆式水泵水轮机的全特性[J].水利水电技术,1982,(2):36-42
    [176]由彩堂、黄桂京,何成连.潘家口水电站混流可逆式机组的动态模拟试验研究[J].水利水电技术,1991,(10):49-55
    [177]常近时.混流式水泵水轮机装置泵工况断电过渡过程的解析计算方法[J].水利学报,1991,178(11):61-67
    [178]刘竹青,常近时.抽水蓄能电站水力装置系统动态过程仿真[J].中国农业大学学报,1999,4(6):69-73
    [179]刘光临,蒋劲等.泵站水锤阀调节防护试验研究[J].武汉水利电力大学学报,1991,(6):12-19
    [180]刘光临,刘梅清,贾琦.泵系统中调压塔水锤防护特性研究[J].水利学报,1995,(3):1-11
    [181]刘光临,郭满华.水泵全性能曲线的计算机仿真[J].水利学报,1998,(8):1-7
    [182]刘光临,刘梅清.多泵并串联复杂泵系统水锤分析及控制[J].农业机械学报,1998,29(3):59-64
    [183]刘光临,刘时芳.空气罐对长距离输水管道水锤的预防效用[J].中国给水排水,2000,16(12):36-38
    [184]杨晓东,朱满林,李郁侠.装有进排气阀的长距离压力输水系统水锤计算研究[J].水利学报,1998,(增刊):60-64
    [185]杨晓东,朱满林.水锤计算中的水锤消除器数学模型[J].西安理工大学学报,1998,14(2):157-161
    [186]杨开林.电站与泵站中的水力瞬变及调节[M].北京:中国水利电力出版社,2000
    [187]杨开林,石维新.南水北调北京段输水系统水力瞬变的控制[J].水利学报,2005,36(10):1176-1182
    [188]刘梅清,邱锦春,周龙才,等.泵管渠池复杂抽水系统的过渡过程计算[J].武汉大学学报(工学版),2003,36(4):6-9,14
    [189]刘梅清,胡玉仙,周龙才,等.长距离高摩阻供水工程中的水锤计算与防护[J].中国农村水利水电,2004,(6):93-95
    [190]黄卫军.泵站水力过渡过程试验研究[D].西安:西安理工大学,2003
    [191]谢水波,邱长军,陈胜兵,等.停泵水锤预测中的直接迭代格式与电算方法[J].水利学报,2001,(6):80-85
    [192]于永海,张乃国,周济人.带有长进水管的泵系统事故停泵水锤分析[J].水利水电技术,2000,31(7):25-28
    [193]陆伟刚.泵站油压快速闸门理论和设计研究[D].扬州:扬州大学,1992
    [194]陆伟刚,郭兴明,周秀彩,等.大型泵站快速闸门断流过程理论研究[J].农业机械学报,2005,(4):52-54
    [195]陈松山.大型轴流泵站停泵动态特性理论研究[D].扬州:扬州大学,1993
    [196]陈松山,严登丰,蒋丽君,等.低扬程水泵装置停泵过渡过程近似计算[J].农业机械学报,2004,35(3):58-60
    [197]李彦军.低扬程大型泵站停泵动态特性理论研究[D].扬州:扬州大学,2003
    [198]黄良勇,李彦军,严登丰,等.低扬程泵装置停泵过渡过程分析[J].农业机械学报,2006,37(4):52-55
    [199]宋静.快速闸门断流立式轴流泵站停泵过渡过程数值模拟[D].南京:河海大学,2006
    [200]周大庆,张仁田,屈波.大型立式轴流泵站停泵过渡过程研究[J].河海大学学报(自然科学版),2006,34(3):272-275
    [201]江苏机电排灌工程研究所.淮阴泵站起动、停泵试验研究报告[R].扬州:扬州大学,1986
    [202]江苏机电排灌工程研究所.樊口泵站起动、停泵动态特性试验研究报告(一)[R].扬州:扬州大学,1989
    [203]湖北省水利勘测设计院.水利水电勘测设计(樊口泵站技术讨论会专刊)[C].1982
    [204]湖南省水利勘测设计院.大泵站拍门测试研究报告[R].长沙:湖南省水利勘测设计院,1982
    [205]湖南省水利勘测设计院.抽水泵站大型拍门的设计与运行[R].长沙:湖南省水利勘测设计院,1988
    [206]陈新方.大型轴流泵起动动态特性计算[J].华东水利学院学报,1979,(3):108-115
    [207]王煦时、陈新方、刘大恺.轴流和斜流泵站的启动特性[J].农业机械学报,1980,(3):50-60
    [208]严登丰,刘超,金禾.泵系统起动瞬态特性(一)[J].江苏农学院学报,1986,7(2):47-54
    [209]严登丰、刘超、金禾.淮阴泵站起动试验研究[J].江苏农学院学报,1988,9(4):41-48
    [210]严登丰,刘超.泵系统起动瞬态特性计算[J].水利学报,1989,(10):66-72
    [211]李江云.大型排水泵站超驼峰水位压缩空气启动装置研究[J].中国农村水利水电,1999,(9):36-40
    [212]李江云,马彦斌.大泵站驼峰水位运行压缩空气断流系统的设计方法[J].水利学报,1999,(8):61-66
    [213]刘梅清,刘光临,冯卫民,等.大型泵站水力过渡过程计算及蓄能式液压启闭闸门的研究[J].农业机械学报,2000,31(3):55-58
    [214]刘梅清,杨文容,徐叶琴.带虹吸式出水流道轴流泵站起动水力过渡过程研究[J].武汉大学学报(工学版),2003,36(1):1-4
    [215]汪桂钦.大型贯流泵站起动动态特性理论研究[D].扬州:扬州大学,2000
    [216]葛强,陈松山.灯泡式贯流泵站机组起动过渡过程仿真计算[J].中国电机工程学报,2006,26(5):160-163
    [217]葛强,段小汇,徐良良,等.南水北调大型泵站同步电动机起动动态特性试验研究[J].大电机技术,2006,(5):1-5
    [218]于永海,徐辉,陈毓陵,等.城市排污泵站虹吸式出水管水力瞬变过程现场试验分析[J].给水排水,2005,31(9):36-39
    [219]周大庆,吴玉林,张仁田.大型立式轴流泵站起动过渡过程研究[J].水力发电学报,2007,26(1):120-122,128
    [220]陈松山,严登丰,陆伟刚,等.低扬程泵装置起动虹吸驼峰压力分析[J].排灌机械,2003,99(4):10-12
    [221]陈松山,严登丰,陆伟刚,等.低扬程水泵装置起动过渡过程分析[J].江苏大学学报(自然科学版),2003,24(5):47-50,
    [222]陈松山,严登丰,陆伟刚,等.低扬程虹吸流道泵装置起动动态特性数学模型[J].流体机械,2004,32(6):9-12
    [223]陶文铨.数值传热学(第2版)[M].西安:西安大学出版社,2001
    [224]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004
    [225]Marzio Piller,Enrico Nobile,J.Thomas.DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Journal ofFluid Mechanics,2002,458:419-441
    [226]许春晓.槽道湍流的直接数值模拟[D].北京:清华大学,1995
    [227]傅德薰,马延文.平面混合流拟序结构的直接数值模拟[J].中国科学(A辑),1996,26(7):657-664
    [228]J.G.Wissink.DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J].Inter.J.Heat Fluid Flow,2003,24(4):626-635
    [229]V.Michelassi,J.G.Wissink,W.Rodi.Direct numerical simulation,large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade:A comparison[J].Journal of Power and Energy,2003,217(4):403-412
    [230]吴立新,是勋刚,受周向扰动的涡环的直接数值模拟[J].空气动力学学报,1997,15(1):27-33
    [231]邓岗,许春晓,弯槽湍流的直接数值模拟[J].水动力学研究与进展(A辑),2002,17(3):311-317
    [232]王明皓,符松,章光华,竖直平板间湍流自然对流中的螺旋羽流结构[J].科学通报,2002,47 (3):173-177
    [233]H.K.Versteeg,W.Malalasekera.An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].New York:Wiley,1995
    [234]伍敏伟,张兆顺.圆管湍流结构的数值研究[J].水动力学研究与进展(A辑),2002,17(3):334-342
    [235]姚军,樊建人,岑可法.圆柱近尾迹湍流涡结构的直接数值模拟[J].工程热物理学报,2002,23(5):561-564
    [236]Ferziger J H.High-level simulation of turbulent flows.In:Essers J A,ed.Computational methods for turbulent flows,transonic and viscous flows[M].Washington DC:hemisphere,1983.93-182
    [237]Orszag S A.Numerical simulation of turbulence flows.In:Frost W,Moulden T H,eds.Handbook of turbulence[M].New York:Plenum Press,1977.281-313
    [238]Markatos N C.The mathematical modeling of turbulence flows[J].Appl Math Modeling,1986.10:190-220
    [239]Moin P,Kim J.Numerical investigations of turbulent channel flow[J].J Fluid Mech.,1982,118:341-377
    [240]Chapman D R.Computational aerodynamics development and outlook[J].AIAA J.,1979,17:1293-1313
    [241]Shumann U.Subgrid scale model for finite difference simulation of tur-bulent flow in plane channels and annuli[J].J Comput Phys.,1975,18:376-404
    [242]Kogaki T,Kobayashi T,Taniguchi N.Large eddy simulation of flow around a rectangular cylinder[J].Fluid Dynamics Res.,1997,20:11-24
    [243]Jordan S A,Ragab S A.A large eddy simulation near wake of a circular cylinder[J].ASME J Fluids Engineering,1998,120:243-252
    [244]Yang Z Y.Large eddy simulation of fully developed turbulent flow in a rotating pipe[J].Int J Numer Methods Fluids,2000,33:681-694
    [245]Smagorinsky J.General Circulation Experiments with the Primitive Equations:Part 1,the Basic Experiment[J].Monthly Weather Review,1963,91(3):99-164
    [246]Deardorff J.W.A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers[J].J.FluidMech.,1970,41(2):453-480
    [247]Moin P.et al.Numerical Investigation of Turbulent Channel Flow[J].J.Fluid Mech.,1982,118:341-377
    [248]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展(A辑),1992,7(Sup.):614-422
    [249]何子干,倪汉根.大涡模拟法的二维形式[J].水动力学研究与进展(A辑),1994,9(1):30-36.
    [250]Charles C.S.Song.A Weakly Compressible Flow Model & Rapid Convergence Methods[J].Journal of Fluid Engineering,1988,110:441-445
    [251]A.A.Feiz,M,Ould-Rouis,G.Lauriat.Large eddy simulation of turbulent flow in a rotating pipe[J].Inter.J.Heat Fluid Flow,2003,24(3):412-420
    [252]郭照立,郑楚光,柳朝晖.基于Lattice Boltzmann方法的圆柱绕流大涡模拟[J].工程热物理学报,2002,23(4):479-481
    [253]Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall[J].AIAA Journal,2002,40(6):1139-1145
    [254]D.G.E.Grigoriadis,J.G.Bartzis,A.Goulas.Efficient treatment of complex geometries for large eddy simulations of turbulent flows[J].Computers and Fluids,2004,3(2):201-222
    [255]L.Shen,D.K.P.Yue.Large-eddy simulation of free-surface turbulence[J].Journal of Fluid Mechanics,2001,440:75-116
    [256]R.E.Julian,K.Smolarkiewicz.Eddy resolving simulations of turbulent solar convection[J].International Journal for Numerical Methods in Fluids,2002,39(9):855-864
    [257]J.C.Li.Large eddy simulation of complex turbulent flows:Physical aspects and research trends[J].Acta Mechanica Sinica,2001,17(4):289-301
    [258]李筱芳.混流式水轮机内部流动的计算[J].水利水电技术,1996,27(12):22-25
    [259]张昌兵,杨永全.混流式转轮中流场的大涡模拟[J].水科学进展,2002,13(6):675-681
    [260]曲景学,杨永全,等.消能孔板空化特性的数值模拟[J].四川大学学报(工程科学版),2001,33(3):30-33
    [261]杨建明,吴玉林,曹树良.流体机械中高雷诺数流动的大涡模拟[J].工程热物理学报,1998,19(2):184-188
    [262]卡里尔E.陈熙,周晓青译.燃烧室与工业炉的模拟[M].北京:科学出版社,1987
    [263]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1989
    [264]J.O.Hinze.Tubulence[M].New York..Mc Graw-Hill,1975
    [265]Rodi W.Turbulence models and their application in hydraulics[M].2~(nd) ed.Netherlands,IAHR,1984,9-46
    [266]Bradshaw P,Cebeci T,Whitelaw J H.Engineering calculation methods for turbulent flows[M].London:Academic Press,1981
    [267]Gessner F B,Emery A F.The numerical prediction of developing turbulent flow in rectangular ducts[M].ASME J Fluids Engineering,1981,101:445-455
    [268]凯斯W M,克拉福特M E.对流传热与传质[M].陈熙,翟殿春译.北京:科学出版社,1986
    [269]Spalding D B.Heat transfer from turbulent separated flows[J].J Fluid Mech.,1967,Part 1,27:97-109
    [270]Chieng C C,Launder B E.On the calculation of turbulent heat transport downstream from an abrupt pipe expansion[J].Numer Heat Transfer,1980,(3):189-207
    [271]Amano R S.Development of turbulence near-wall model and its application to separated and reattached flows[J].Numer Heat Transfer,1984,(7):59-75
    [272]Rodi W.Experience with two-layer models combining the k-ε model with a one-equation model near the wall[J].1991,AIAA-91-0216
    [273]Chen H C,Patel V C.Near wall turbulence models for complex flows including separation[J].AIAAJ.1988,26:641-648
    [274]B.E.Launder,D.B.Spalding.Lectures in Mathematical Moddels of Turbulence[M].London:Academic Press,1972
    [275]陈景仁(美).湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [276]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].Int.J.Heat and Mass Transfer,1972,(15):1787-1806
    [277]J.P.Van Doormal,G.G.Raithby.Enhancement of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,(7):147-163.
    [278]S.V.Patankar.Numerical Heat Transfer and Fluid Flow[M].Washington:Hemisphere,1980
    [279]R.I.Issa.Solution of the implicitly discredited fluid flow equations by operator-splitting[J].J.Comput.Phys.,1986,62:40-65
    [280]Jones W P,launder B E.The prediction of laminarization with a two equation model of turbulence[J].Int.J.Heat Mass Transfer,1972,155:301-314
    [281]Launder B E,Spalding D B.The numerical computation of turbulentjlows[J].Comput Methods Appl Mech Eng.,1974,(3):262-289
    [282]Ozoe H,Mouri A,Ohmuro M,Churchill S W,Lior N.Numerical calculation of laminar and turbulent natural convection in water in rectangular channels heated and cooled isothermally on the opposing vertical walls[J].Int J Heat Mass Transfer,1985,28:125-138
    [283]Henkes R A W M,der Vlugt F F,Hoogendoom C J.Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models[J].Int J Heat Mass Transfer,1991,34(2):377-388
    [284]Barakos G,Mitsoulis E.Natural convection flow in a square cavity revisited.,laminar and turbulent models with wall functions[J].Int J Numer Methods Fluids,1994,(18):685-719
    [285]Launder B E,Reece G J,Rodi W.Progress in the development of a Reynolds-stress turbulence closure[J].J Fluid Mech.1975.68(Part 3):537-566
    [286]Launder B E,Samaraweera D S A.Application of a second-moment turbulence closure to heat and mass transport in thin shear flows-Ⅰ Two-dimensional transport[J].Int J Heat Mass Transfer,1979,22:1633-1643
    [287]Farhanieh B,Davidson L,Sunden B.Employment of second-moment,closure for calculation of turbulent recirculating flows in complex geometries with collocated variable arrangement[J].Int J Numer Methods Fluids,1993,16:525-544
    [288]Fluent Inc.,FLUENT User's Guide[CP-CD].Fluent Inc.,2003
    [289]张新平,吴娟.进水流道对提高低扬程轴流泵站装置效率的分析[J].西北水资源与水工程,1997,8(3):25-29
    [290]施卫东,关醒凡.30°斜轴泵装置模型装置的试验研究[J].中国农村水利水电,1997,(3):28-32
    [291]陆林广,等.45°斜式进水流道的优化水力设计与试验研究[J].水泵技术,1991,(2)46-51
    [292]贯流式机组在南水北调工程的应用研究[J].排灌机械,2004,22(5):1-6
    [293]陈松山,葛强,严登丰,等.大型泵站竖井贳流泵装置能量特性试验[J].中国农村水利水电,2006,(3):54-56
    [294]陆林广,张仁田.方箱式双向进水流道的优化水力设计[J].水利水运科学研究,1997,(1):73-81
    [295]陈松山,葛强,周正富,等.大型轴流泵站双向流道三维紊流数值模拟[J].江苏大学学报,2005,26(2):45-49
    [296]将丽君.泵装置优化设计研究[D].扬州:扬州大学,2004
    [297]中华人民共和国国家标准(GB/T 50265-97).泵站设计规范[S].北京:中国计划出版社,1997
    [298]Cheng R T.Numerical Solution of the Navier-Stokes Equations by the Finite-Element Method.Phys.Fluids[J],1972,15:2098-2105
    [299]Cadafalch J,Pérez-Segarra C C,Cónsul R,etc.Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer[J].ASME J.Fluids Eng.,2002,124(1):11-21
    [300]Van Doormal J P,Raithby G G.Enhancement of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,(7):147-163
    [301]Hayase T,Humphrey J A C,Greif R.A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures[J].Journal of Computation Physics,1992,98:108-118
    [302]J.H.Spurk,H.Grein著.耿延芳,寿梅华译.水力机械考虑比尺效应的性能预测[J].水力发电学报,1999,66(3):110-120
    [303]鄢碧鹏,刘超,汤方平.原模型泵装置效率换算方法研究[J].水电能源科学,2005,23(5):38-40
    [304]A.A.洛马金著,梁荣厚译.离心泵与轴流泵[M].北京:机械工业出版社,1978
    [305]A.J.斯捷潘诺夫著,徐行健译.离心泵和轴流泵[M].北京:机械工业出版社,1980
    [306]M.J.尼尔主编.摩擦学手册(摩擦磨损润滑)[M].北京:机械工业出版社,1984
    [307]关醒凡编著.现代泵技术手册[M].北京:宇航出版社,1995
    [308]W.鲍尔著,王俊宝等译.叶轮机械[M].北京:化学工业出版社,1984
    [309]A.T.特罗斯科兰斯基等著,耿惠彬译.叶片泵计算与结构[M].北京:机械工业出版社,1981
    [310]大桥秀雄.流体机械[M].森北出版株式会社,1971
    [311]JAPANESE INDUSTRIAL STANDARD JIS B 8327[S]:2002
    [312]陈松山,葛强,严登丰.上海浦东国际机场薛家泓泵站泵装置模型试验研究报告[R].扬州:扬州大学,2004
    [313]IEC,International Standard,Determination of Prototype Performance from Model Acceptance Test of Hydraulic machine with Consideration of Scale Effects[S].IEC Publication 995,1991
    [314]严登丰,陈松山,葛强,等.泵站水力模型选择及装置研究报告[R].扬州:扬州大学,2005
    [315]于必录,刘超,杨晓东..泵系统过渡过程分析与计算[M].北京:水利电力出版社,1993.
    [316]Yan D F,Liu C.Dynamic characteristics of pumping system during starting period[c].Proc of the Int.The 3rd Japan-China Joint Conference on Fluid Machinery,Osaka,1990:Ⅰ69-Ⅰ76
    [317]Zhou F,Hicks F,and Steffier P.Transient flow in a rapid filled horizontal pipe with trapped air[J].Hydraulic Engineering,2002,(6):625-634
    [318]Wylie E,and Streeter V.Fluid transients[M].New York:Mc-Graw-Hill,1978
    [319]徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1995.
    [320]Marchal M,Flesh G and Suter P.The Calculation of Waterhammer Problems by Means of the Digital Computer[M].ASCE,Chicago,USA,NOV.,1965
    [321]郑铭,陈池,袁寿其.水锤数值计算的全特性曲线法[J].农业机械学报,2000,31(5):41-44
    [322]水利水电科学研究院水力机电所.淮安三站可逆式灯泡贯流泵装置模型试验研究报告[R].北京:水利水电科学研究院,1988
    [323]Chaudhry M H.Applied Hydraulic Transients[M].Van Nastrand Reinhold Co.,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700