用户名: 密码: 验证码:
大气表面层高雷诺数湍流实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们在甘肃青土湖地区干涸平坦的湖床上建立了高雷诺数流动观测列阵,对大气表面层三维风速、温度、沙尘浓度等进行了空间多点梯度同步测量,获得了大量高雷诺数大气表面层流动数据。通过对观测数据的严格筛选及预处理,得到了ReιO(106)的与规范湍流边界层可比的中性平稳流动数据,并利用这些数据对边界层流动的统计特征、谱以及湍流结构进行了分析。本文的主要结果和创新点有:
     发现对数标度的平均速度廓线的卡门常数随着雷诺数的增加而增大,在雷诺数达到Reι~O(106)的大气表面层中卡门常数约为0.43,高于实验室低雷诺数边界层结果。在证实大气表面层中存在大尺度与超大尺度湍流结构的基础上,发现超大尺度结构尺度随高度增加而增大,表面层中上部超大尺度结构仍显著存在,其流向尺度超过10倍表面层厚度;而且超大尺度结构的能量贡献随雷诺数增大,在表面层中上部超过70%。流向预乘谱分析发现中低波数区域谱线随高度的变化存在“翻转”现象,这一现象揭示了大气表面层中上部的VLSMs起源与实验室流动中"Bottom-up"的壁面小涡自组织机制不同,其来源于表面层外大涡"top-down"的破碎过程。进一步的,通过对流向功率谱特征及变化规律进行分析提取,本文给出了一个新的湍流谱表征公式,可以准确刻画功率谱中-1次方谱区并反映其随高度的变化。在此基础上,建立了一个高雷诺数流动的风速预测模型,预测结果与实测数据的比较证明该模型具有较高的精度。
     另外,表面层中展向湍动能的垂向分布也近似满足对数线性标度的规律,而且展向功率谱均存在符合-1次方标度的区域,分析两者密切相关。
Observations using the observation array of high Reynolds number turbulence, which was arranged on the dry flats of Qingtu Lake, were performed and large amounts of data of high Reynolds number surface flow were obtained. After rigorous screening and pretreatment to the measured data, the steady wind data in the near neutral flow were selected and used to analyze the mean velocity profile, distributions of turbulence intensity and Reynolds shear stress, spectra and turbulence structures. The results show that the statistics characters at Reτ-O(106) agree with their variation with Reynolds number suggested by previous laboratory works and it indicate the near neutral atmospheric surface layer (ASL) behaves like a canonical turbulent boundary layer during the selected hours of data. The main works and innovations of this thesis are concluded as follows:
     The von Karman constant which is a key parameter in logarithm-law representation of mean velocity profile increase with Reynolds number and is about0.43at Reτ~O(106) in the atmospheric surface layer, higher than its magnitude in low Reynolds number flows. Similar as the vertical distribution of streamwise turbulence intensity, the spanwise turbulence intensity varies log-linearly with height.
     The large scale motions (LSMs) and very large scale motions (VLSMs) are confirmed in ASL by different ways. The VLSMs are detected clearly in the upper of ASL and their streamwise length scale of VLSMs increase with wall normal distance and their streamwise length scale reach up to10δ. The contribution of VLSMs to the turbulence kinetic energy is more than70%, which is higher than the results of low and moderate Reynolds number flow. Particularly, the pre-multiplied spectrum curves of different heights reverse at low wave-number range. It suggests that the VLSMs in upper ASL come from the outer "large eddy" moving downwards and sheared by surface, i.e., the "Top-Down" mechanism. It is different from the "Bottom-Up" mechanism which believes the VLSMs originate with self-organization of small streaks near the surface.
     Further, a new streamwise velocity power spectrum representation formula is proposed through analyzing the measured power spectra and their variation. It can characterize the "-1" spectral law range accurately. Based on the analysis results of spectra and the turbulence structures, a velocity prediction model for high Reynolds number flow is established. With this model, the wind velocity at a higher height can be predicted using the measured wind velocity at a lower height, and the statistics characteristics and spectra of predicted velocities agree well with the measured results.
     Spectrum analysis shows "-1" spectral law region in spanwise velocity power spectra, and the spanwise turbulent kinetic energy varies log-linearly with wall-normal distance.
引文
[1]George W K, Castillo L. Zero-pressure-gradient turbulent boundary layer [J]. Applied Mechanics Reviews,1997,50(12):689-729.
    [2]George W K. Is there a universal log law for turbulent wall-bounded flows? [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007, 365(1852):789-806.
    [3]Nagib H M, Chauhan K A. Variations of von Karman coefficient in canonical flows [J]. Physics of Fluids,2008,20(10):101518.
    [4]Zagarola M V, Smits A J. Mean-flow scaling of turbulent pipe flow [J]. Journal of Fluid Mechanics,1998,373:33-79.
    [5]Nagib H M, Chauhan K A, Monkewitz P A. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2007,365(1852):755-770.
    [6]Kim H T, Kline S J, Reynolds W C. The production of turbulence near a smooth wall in a turbulent boundary layer [J]. J. Fluid Mech,1971,50(1):133-160.
    [7]Marusic I, Mathis R, Hutchins N. High Reynolds number effects in wall turbulence [J]. International Journal of Heat and Fluid Flow,2010,31(3):418-428.
    [8]Hutchins N, Marusic I. Large-scale influences in near-wall turbulence [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007, 365(1852):647-664.
    [9]Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers [J]. Journal of Fluid Mechanics,2007,579:1-28.
    [10]Zheng X J, Zhang J H, Wang G H, et al. Investigation on very large scale motions (VLSMs) and their influence in a dust storm [J]. Science China Physics, Mechanics and Astronomy,2013, 56(2):306-314.
    [11]Coles D. The law of the wake in the turbulent boundary layer [J]. Journal of Fluid Mechanics, 1956,1(02):191-226.
    [12]Lewkowicz A K. An improved universal wake function for turbulent boundary layers and some of its consequences [J]. Zeitschrift fuer Flugwissenschaften und Weltraumforschung, 1982,6:261-266.
    [13]Perry A E, Marusic I. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis [J]. Journal of Fluid Mechanics,1995,298: 361-388.
    [14]Marusic I, Perry A E. A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support [J]. Journal of Fluid Mechanics,1995,298:389-407.
    [15]Lindgren B, Osterlund J M, Johansson A V. Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers [J]. Journal of Fluid Mechanics,2004,502:127-152.
    [16]Wosnik M, Castillo L, George W K. A theory for turbulent pipe and channel flows [J]. Journal of Fluid Mechanics,2000,421:115-145.
    [17]Oberlack M. A unified approach for symmetries in plane parallel turbulent shear flows [J]. Journal of Fluid Mechanics,2001,427:299-328.
    [18]Spalart P R, Coleman G N, Johnstone R. Direct numerical simulation of the Ekman layer:a step in Reynolds number, and cautious support for a log law with a shifted origin [J]. Physics of Fluids,2008,20(10):101507.
    [19]Jones M B, Nickels T B, Marusic I. On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer[J]. Journal of Fluid Mechanics,2008,616: 195-203.
    [20]Perry A E, Henbest S, Chong M S. A theoretical and experimental study of wall turbulence [J]. Journal of Fluid Mechanics,1986,165:163-199.
    [21]Hafez S. H. M. The structure of accelerated turbulent boundary layers, Ph.D. thesis, University of Melbourne, Australia,1991.
    [22]Marusic I, Uddin A K M, Perry A E. Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers [J]. Physics of Fluids,1997,9(12): 3718-3726.
    [23]Marusic I, Kunkel G J. Streamwise turbulence intensity formulation for flat-plate boundary layers [J]. Physics of Fluids,2003,15(8):2461-2464.
    [24]Hultmark M, Vallikivi M, Bailey S C C, et al. Turbulent pipe flow at extreme Reynolds numbers [J]. Physical review letters,2012,108(9):094501.
    [25]Hultmark M, Vallikivi M, Bailey S C C, et al. Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow [J]. Journal of Fluid Mechanics,2013,728:376-395.
    [26]Marusic I, Monty J P, Hultmark M, et al. On the logarithmic region in wall turbulence [J]. Journal of Fluid Mechanics,2013,716:R3.
    [27]Meneveau C, Marusic I. Generalized logarithmic law for high-order moments in turbulent boundary layers [J]. Journal of Fluid Mechanics,2013,719:R1.
    [28]Kolmogorov A N. Dissipation of energy in locally isotropic turbulence[C], Dokl. Akad. Nauk SSSR.1941,32(1):16-18.
    [29]Tchen C M. On the spectrum of energy in turbulent shear flow [J]. J. Res. Nat. Bur. Stand, 1953,50(1):51-62.
    [30]Klebanoff S G, Singer J L, Wilensky H. Psychological consequences of brain lesions and ablations [J]. Psychological bulletin,1954,51(1):1.
    [31]Hinze J O. Turbulence—An Introduction to its Mechanism and Theory. McGraw-Hill, New York,1959.
    [32]Pond S, Smith S D, Hamblin P F, et al. Spectra of velocity and temperature fluctuations in the atmospheric boundary layer over the sea [J]. Journal of the Atmospheric Sciences,1966,23(4): 376-386.
    [33]Bremhorst K, Bullock K J. Spectral measurements of temperature and longitudinal velocity fluctuations in fully developed pipe flow [J]. International Journal of Heat and Mass Transfer, 1970,13(8):1313-1329.
    [34]Bremhorst K, Walker T B. Spectral measurements of turbulent momentum transfer in fully developed pipe flow [J]. Journal of Fluid Mechanics,1973,61(01):173-186.
    [35]Perry A E, Abell C J. Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes [J]. Journal of Fluid Mechanics,1977,79(04):785-799.
    [36]Korotkov B N. Some types of local self-similarity of the velocity field of wall turbulent flows [J]. Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. i. Gaza,1976,6:35-42.
    [37]Bullock K J, Cooper R E, Abernathy F H. Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow [J]. Journal of Fluid Mechanics,1978, 88(03):585-608.
    [38]Perry A E, Henbest S, Chong M S. A theoretical and experimental study of wall turbulence [J]. Journal of Fluid Mechanics,1986,165:163-199.
    [39]Perry A E, Lim K L, Henbest S M. An experimental study of the turbulence structure in smooth-and rough-wall boundary layers [J]. Journal of Fluid Mechanics,1987,177:437-466.
    [40]Erm L P, Smits A J, Joubert P N. Low Reynolds number turbulent boundary layers on a smooth flat surface in a zero pressure gradient [M], Turbulent Shear Flows 5. Springer Berlin Heidelberg,1987:186-196.
    [41]Kaimal J C. Horizontal velocity spectra in an unstable surface layer [J]. Journal of the Atmospheric Sciences,1978,35(1):18-24.
    [42]Claussen M. Estimation of the Monin-Obukhov similarity functions from a spectral model [J]. Boundary-Layer Meteorology,1985,33(3):233-243.
    [43]Perry A E, Li J D. Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers [J]. Journal of Fluid Mechanics,1990,218: 405-438.
    [44]Erm L P, Joubert P N. Low-Reynolds-number turbulent boundary layers [J]. Journal of Fluid Mechanics,1991,230:1-44.
    [45]Antonia R A, Raupach M R. Spectral scaling in a high Reynolds number laboratory boundary layer [J]. Boundary-Layer Meteorology,1993,65(3):289-306.
    [46]Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence [J]. Quarterly Journal of the Royal Meteorological Society,1972,98(417):563-589.
    [47]Yaglom A M. Fluctuation spectra and variances in convective turbulent boundary layers:A reevaluation of old models [J]. Physics of Fluids (1994-present),1994,6(2):962-972.
    [48]Lauren M K, Menabde M, Seed A W, et al. Characterisation and simulation of the multiscaling properties of the energy-containing scales of horizontal surface-layer winds [J]. Boundary-Layer Meteorology,1999,90(1):21-46.
    [49]Hogstrom U, Hunt J C R, Smedman A S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer [J]. Boundary-Layer Meteorology,2002, 103(1):101-124.
    [50]张静红,近地表的流场结构及其对沙尘输运的影响。博十论文,兰州大学,2013
    [51]Nickels T B, Marusic I, Hafez S, et al. Evidence of the k 1-1 Law in a High-Reynolds-Number Turbulent Boundary Layer[J]. Physical review letters,2005,95(7): 074501.
    [52]Townsend A A. The Structure of Turbulent Shear Flow,2nd Edn. [M]. Cambridge Univ. Press, 1976.
    [53]Perry A E, Abell C J. Scaling laws for pipe-flow turbulence [J]. Journal of Fluid Mechanics, 1975,67(02):257-271.
    [54]Perry A E, Chong M S. A description of eddying motions and flow patterns using critical-point concepts [J]. Annual Review of Fluid Mechanics,1987,19(1):125-155.
    [55]Perry A E, Li J D. Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers [J]. Journal of Fluid Mechanics,1990,218: 405-438.
    [56]Perry A E, Marusic I, Li J D. Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis [J]. Physics of Fluids,1994,6(2):1024-1035.
    [57]Nikora V. Origin of the "-1" spectral law in wall-bounded turbulence [J]. Physical review letters,1999,83(4):734.
    [58]Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of sound and vibration,1972,25(1):111-128.
    [59]Solari G. Equivalent wind spectrum technique:theory and applications [J]. Journal of Structural Engineering,1988,114(6):1303-1323.
    [60]Di Paola M. Digital simulation of wind field velocity [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74:91-109.
    [61]Yan B, Lin X, Luo W, et al. Numerical study on dynamic swing of suspension insulator string in overhead transmission line under wind load[J]. Power Delivery, IEEE Transactions on,2010, 25(1):248-259.
    [62]Wu D, Wu Y, Tamura Y. Compensation of high-frequency components of wind load by wind tunnel testing [J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(12): 929-935.
    [63]Torrielli A, Pia Repetto M, Solari G. Long-term simulation of the mean wind speed [J]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(11):1139-1150.
    [64]Davenport A G. The spectrum of horizontal gustiness near the ground in high winds [J]. Quarterly Journal of the Royal Meteorological Society,1961,87(372):194-211.
    [65]Simiu E, Scanlan R H. Wind effects on structures:fundamentals and applications to design [M]. John Wiley,1996.
    [66]Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layers [J]. Journal of Fluid Mechanics,1967,30(04):741-773.
    [67]Laufer J, Narayanan M A B. Mean period of the turbulent production mechanism in a boundary layer [J]. Physics of Fluids 1971,14(1):182-183.
    [68]Kovasznay L S G, Kibens V, Blackwelder R F. Large-scale motion in the intermittent region of a turbulent boundary layer [J]. Journal of Fluid Mechanics,1970,41(02):283-325.
    [69]Brown G L, Thomas A S W. Large structure in a turbulent boundary layer [J]. Physics of Fluids 1977,20(10):S243-S252.
    [70]Cantwell B J. Organized motion in turbulent flow [J]. Annual Review of Fluid Mechanics, 1981,13(1):457-515.
    [71]Murlis J, Tsai H M, Bradshaw P. The structure of turbulent boundary layers at low Reynolds numbers [J]. Journal of Fluid Mechanics,1982,122:13-56.
    [72]Kim K C, Adrian R J. Very large-scale motion in the outer layer [J]. Physics of Fluids,1999, 11(2):417-422.
    [73]Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer [J]. Journal of Fluid Mechanics,2000,422:1-54.
    [74]Guala M, Hommema S E, Adrian R J. Large-scale and very-large-scale motions in turbulent pipe flow [J]. Journal of Fluid Mechanics,2006,554:521-542.
    [75]Balakumar B J, Adrian R J. Large-and very-large-scale motions in channel and boundary-layer flows [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,365(1852):665-681.
    [76]Adrian R J. Hairpin vortex organization in wall turbulence [J]. Physics of Fluids,2007,19(4): 041301.
    [77]Priymak V G, Miyazaki T. Long-wave motions in turbulent shear flows [J]. Physics of Fluids,1994,6(10):3454-3464.
    [78]Nagib H, Hites M. High Reynolds number boundary layer measurements in the NDF [J]. AIAA paper,1995,95:0786.
    [79]Jimenez J. The largest scales of turbulent wall flows [J]. CTR Annual Research Briefs,1998, 137:54.
    [80]Ganapathisubramani B, Longmire E K, Marusic I. Characteristics of vortex packets in turbulent boundary layers [J]. Journal of Fluid Mechanics,2003,478:35-46.
    [81]Morrison J F, McKeon B J, Jiang W, et al. Scaling of the streamwise velocity component in turbulent pipe flow [J]. Journal of Fluid Mechanics,2004,508:99-131.
    [82]Lee J H, Sung H J. Very-large-scale motions in a turbulent boundary layer [J]. Journal of Fluid Mechanics,2011,673:80-120.
    [83]Aggarwal S K, Yapo J B, Grinstein F F, et al. Numerical simulation of particle transport in planar shear layers [J]. Computers & fluids,1996,25(1):39-59.
    [84]Cooper D 1, Leclerc M Y, Archuleta J, et al. Mass exchange in the stable boundary layer by coherent structures [J]. Agricultural and forest meteorology,2006,136(3):114-131.
    [85]Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy [J]. Boundary-layer meteorology,2011,140(3): 429-451.
    [86]Del Alamo J C, Jimenez J. Spectra of the very large anisotropic scales in turbulent channels [J]. Physics of Fluids,2003,15(6):L41.
    [87]Jimenez J, Del Alamo J C, Flores O. The large-scale dynamics of near-wall turbulence [J]. Journal of Fluid Mechanics,2004,505:179-199.
    [88]Monty J P, Stewart J A, Williams R C, et al. Large-scale features in turbulent pipe and channel flows [J]. Journal of Fluid Mechanics,2007,589:147-156.
    [89]Monty J P, Hutchins N, Ng H C H, et al. A comparison of turbulent pipe, channel and boundary layer flows [J]. Journal of Fluid Mechanics,2009,632:431-442.
    [90]Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics,1999,387:353-396.
    [91]Liu Z, Adrian R J, Hanratty T J. Large-scale modes of turbulent channel flow:transport and structure [J]. Journal of Fluid Mechanics,2001,448:53-80.
    [92]Marusic I. On the role of large-scale structures in wall turbulence [J]. Physics of Fluids,2001, 13(3):735-743.
    [93]Wu X, Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer [J]. Journal of Fluid Mechanics,2009,630: 5-41.
    [94]Zhao R, Smits A J. Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow [J]. Journal of Fluid Mechanics,2007,576:457-473.
    [95]Morrison J F. The interaction between inner and outer regions of turbulent wall-bounded flow [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,365(1852):683-698.
    [96]Mathis R, Hutchins N, Marusic I. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers [J]. Journal of Fluid Mechanics,2009,628:311-337.
    [97]Guala M, Metzger M, McKeon B J. Interactions within the turbulent boundary layer at high Reynolds number [J]. Journal of Fluid Mechanics,2011,666:573-604.
    [98]Hutchins N, Chauhan K, Marusic I, et al. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory [J]. Boundary-layer meteorology, 2012,145(2):273-306.
    [99]Hunt J C R, Morrison J F. Eddy structure in turbulent boundary layers [J]. European Journal of Mechanics-B/Fluids,2000,19(5):673-694.
    [100]Hunt J C R, Carlotti P. Statistical structure at the wall of the high Reynolds number turbulent boundary layer [J]. Flow, turbulence and combustion,2001,66(4):453-475.
    [101]Hogstrom U, Hunt J C R, Smedman A S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer [J]. Boundary-Layer Meteorology,2002, 103(1):101-124.
    [102]Smits A J, McKeon B J, Marusic I. High-Reynolds number wall turbulence [J]. Annual Review of Fluid Mechanics,2011,43:353-375.
    [103]Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations [J]. Journal of Fluid Mechanics,2005,524:57-80.
    [104]DeGraaff D B, Eaton J K. Reynolds-number scaling of the flat-plate turbulent boundary layer [J]. Journal of Fluid Mechanics,2000,422(1):319-346.
    [105]Hutchins N, Monty J P, Ganapathisubramani B, et al. Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer [J]. Journal of Fluid Mechanics, 2011,673:255-285.
    [106]Tomkins C D, Adrian R J. Spanwise structure and scale growth in turbulent boundary layers [J]. Journal of Fluid Mechanics,2003,490:37-74.
    [107]Talamelli A, Persiani F, Fransson J H M, et al. CICLoPE—a response to the need for high Reynolds number experiments [J]. Fluid dynamics research,2009,41(2):021407.
    [108]Nickels T B, Marusic I, Hafez S, et al. Some predictions of the attached eddy model for a high Reynolds number boundary layer [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2007,365(1852):807-822.
    [109]Osterlund J M. Experimental studies of zero pressure-gradient turbulent boundary layer flow [M]. Royal Institute of Technology, Department of Mechanics,1999.
    [110]Deck S, Renard N, Laraufie R, et al. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650 [J]. Journal of Fluid Mechanics, 2014,743:202-248.
    [111]Marusic I, McKeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers:recent advances and key issues [J]. Physics of Fluids,2010,22(6):065103.
    [112]Sadr R, Klewicki J C. Surface shear stress measurement system for boundary layer flow over a salt playa [J]. Measurement Science and Technology,2000,11(9):1403.
    [113]Metzger M M, Klewicki J C. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers [J]. Physics of Fluids,2001,13(3):692-701.
    [114]Metzger M M, Klewicki J C, Bradshaw K L, et al. Scaling the near-wall axial turbulent stress in the zero pressure gradient boundary layer [J]. Physics of Fluids,2001,13:1819-1821.
    [115]Marusic I, Kunkel G J. Streamwise turbulence intensity formulation for flat-plate boundary layers [J]. Physics of Fluids,2003,15(8):2461-2464.
    [116]Kunkel G J, Marusic I. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow [J]. Journal of Fluid Mechanics,2006,548: 375-402.
    [117]Marusic I, Hutchins N. Study of the log-layer structure in wall turbulence over a very large range of Reynolds number [J]. Flow, Turbulence and Combustion,2008,81(1-2):115-130.
    [118]Marusic I, Heuer W D C. Reynolds number invariance of the structure inclination angle in wall turbulence [J]. Physical review letters,2007,99(11):114504.
    [119]王国华,贾淑明,郑晓静.观测支架引起的大气边界层风场的失真规律[J].兰州大学学报(自然科学版),2012,48(5):71-78
    [120]ONG L, WALLACE J. The velocity field of the turbulent very near wake of circular cylinder [J]. Experiments in Fluids.1996,20:441-453
    [121]Dabberdt W F. Wind disturbance by a vertical cylinder in the atmospheric surface layer [J]. Journal of Applied Meteorology,1968,7(3):367-371.
    [122]Camp D W, Kaufman J W. Comparison of tower influence on wind velocity for NASA's 150-meter meteorological tower and a wind tunnel model of the tower [J]. Journal of Geophysical Research,1970,75(6):1117-1121.
    []23]蒋维楣,张子瑜,黄炎.南京高塔风洞模拟研究[J].南京大学学报:自然科学版,1985,21(3):551-556.
    [124]Moses H, Daubek H G. Errors in wind measurements associated with tower-mounted anemometers [J]. RADIOLOGICAL PHYSICS DIVISION SEMIANNUAL REPORT July through December,1959,1961.
    [125]Wyngaard J C. Atmospheric turbulence [J]. Annual Review of Fluid Mechanics,1992,24(1): 205-234.
    [126]Wark C E, Nagib H M. Experimental investigation of coherent structures in turbulent boundary layers [J]. Journal of Fluid Mechanics,1991,230:183-208.
    [127]Spalart P R. Direct simulation of a turbulent boundary layer up to Rθ=1410[J]. Journal of Fluid Mechanics,1988,187:61-98.
    [128]Schlichting H. Boundary-layer theory [M]. McGraw-Hill, New York,1968.
    [129]Ligrani P M, Moffat R J. Structure of transitionally rough and fully rough turbulent boundary layers [J]. Journal of Fluid Mechanics,1986,162:69-98.
    [130]Monkewitz P A, Chauhan K A, Nagib H M. Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers [J]. Physics of Fluids,2007, 19(11):115101.
    [131]Marusic I, Kunkel G J. Turbulence intensity similarity laws for turbulent boundary layers[C], IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Springer Netherlands, 2004:17-22.
    [132]Kulandaivelu V, Marusic I. Evolution of zero pressure gradient turbulent boundary layers [J]. Evolution,2010,5:9.
    [133]Osterlund J M, Johansson A V, Nagib H M, Hites M H. A note on the overlap region in turbulent boundary layer [J]. Phys Fluids,2000,12:1-4
    [134]Hutchins N, Nickels T B, Marusic I, Chong M S. Hot-wire spatial resolution issues in wall-bounded turbulence [J]. J Fluid Mech.2009,635:103-136
    [135]Chauhan K A. Study of Canonical Wall-bounded Turbulent Flows. PhD thesis, Illinois Institute of Technology, USA,2007
    [136]Monkewitz P A, Chauhan K A, Nagib H M. The turbulent shear stress in zero pressure gradient boundary layers [C], ⅩⅫIUTAM,25-29 August 2008, Adelaide, Australia
    [137]Townsend A A. The turbulent boundary layer [M] in Boundary Layer Research. Springer Berlin Heidelberg,1958:1-15.
    [138]Grant H L. The large eddies of turbulent motion [J]. Journal of Fluid Mechanics,1958, 4(02):149-190.
    [139]Robinson S K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics,1991,23(1):601-639.
    [140]Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence [J]. Journal of Fluid Mechanics,2001,431:433-443.
    [141]Del Alamo J C, Jimenez J, Zandonade P, et al. Scaling of the energy spectra of turbulent channels [J]. Journal of Fluid Mechanics,2004,500:135-144.
    [142]Bailey S C C, Hultmark M, Smits A J, et al. Azimuthal structure of turbulence in high Reynolds number pipe flow [J]. Journal of Fluid Mechanics,2008,615:121-138.
    [143]Smedman A S, Hogstrom U, Hunt J C R, et al. Heat/mass transfer in the slightly unstable atmospheric surface layer [J]. Quarterly Journal of the Royal Meteorological Society,2007, 133(622):37-51.
    [144]Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy [J]. Boundary-layer meteorology,2011,140(3): 429-451.
    [145]Baas A C W. Challenges in aeolian geomorphology:investigating aeolian streamers [J]. Geomorphology,2008,93(1):3-16.
    [146]Hutchins N, Ganapathisubramani B, Marusic I. Spanwise periodicity and the existence of very large scale coherence in turbulent boundary layers [C]. Proc. Fourth Intl Symposium on Turbulence and Shear Flow Phenomena.2005:39-44.
    [147]Krogstad P A, Antonia R A. Structure of turbulent boundary layers on smooth and rough walls [J]. Journal of Fluid Mechanics,1994,277:1-21.
    [148]Marusic I, Mathis R, Hutchins N. Predictive model for wall-bounded turbulent flow [J]. Science,2010,329(5988):193-196.
    [149]Bandyopadhyay P R, Hussain A. The coupling between scales in shear flows [J]. Physics of Fluids,1984,27(9):2221-2228.
    [150]Wang G, Bo T, Zhang J, Zhu D Z, Zheng X J. The critical frequency of the large-scale vortices and the background turbulence in desert area [J]. Atmospheric Research,2014,143: 293-300.
    [151]Teunissen H W. Structure of mean winds and turbulence in the planetary boundary layer over rural terrain [J]. Boundary-Layer Meteorology,1980,19(2):187-221.
    [152]Simiu E, Scanlan R H. Wind effects on structures:fundamentals and applications to design [M]. John Wiley, New York,1996.
    [153]Zheng X J, Liu H Y,Wang G H,Bo T L.Strueture inclination angles at different Reynolds numbers in the atmospheric surface layer. Enviroment Fluid Mechanics, (sutmitted)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700