用户名: 密码: 验证码:
黄河口及附近海域碳参数与营养盐调查研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是海陆相互作用中最为重要的一环,是陆源物质入海的主要通道。河口的物理、化学、生物过程在空间尺度和时间尺度上的变化程度相对于陆地和海洋都比较剧烈,这些剧烈的河口过程对陆地向海洋的物质输送能够产生明显的影响,从而导致物质在海洋中的含量与分布发生变化。黄河是世界上著名的高浑浊度河流,中游流经富含碳酸盐的黄土高原,强烈的风化作用使水体中无机碳含量极高,同时近几十年来流域内工农业的快速发展导致了水体中较高的污染物浓度,因此黄河所输送的陆源物质入海对河口附近海域的碳循环规律和营养状况乃至整个渤海的生物地球化学过程都会产生重要影响。本世纪初黄河开始实施调水调沙的生产运作,水沙入海量及时空分布同过去相比均发生较大变化,研究当前情况下黄河口的碳输运过程及营养状态,对于更加完整、准确地探讨河口附近海域的环境现状有着重要意义。本文依据2009年5月对黄河口及附近海域的调查,结合水文、化学和生物要素数据,对春季黄河口碳输运规律进行了探讨,并对河口附近海域的营养状况进行了评价。得到的主要结论如下:
     1.春季黄河口淡咸水混合过程中表层水体pCO2在383-1002μatm之间,平均值为615μatm。受黄河水的影响淡水端pCO2较高,随着淡咸水的混合呈明显下降趋势,同此前非汛期调查结果相比并未出现亏损现象。黄河流域强烈的机械侵蚀和化学风化作用使水体碳酸盐含量极高,碳酸盐体系成为黄河口pCO2的主要控制因素;温度、浮游植物光合作用和生物好氧呼吸作用对pCO2的分布不构成主要控制因素。
     2.无机碳、有机碳和营养盐的分布均受黄河淡水输入以及海水稀释作用的影响。淡水端无机碳含量较高,在淡咸水混合过程中与盐度呈负相关关系分布,其中PIC的海水端含量减少99%而DIC减少25%。当TSS小于569mg/L时,黄河口无机碳输运以溶解态为主;反之,则以颗粒态为主。有机碳含量同样随着盐度升高而降低,海水端POC和DOC含量比淡水端分别下降了92%和35%。当TSS小于250mg/L时,入海有机碳以溶解态为主,反之,以颗粒态为主。硝酸盐、亚硝酸盐与硅酸盐浓度在淡咸水混合过程中保守降低,氨氮入海浓度高于淡水端,磷酸盐浓度在混合初期即大幅下降因而海水端浓度较低。DIC、Alk并未出现低盐区内的亏损现象,可能与本次调查期间较小流量以及海水顶托作用有关。
     3.黄河口附近海域表层水体pC02范围在311~723μatm之间,平均值为480μatm。黄河冲淡水输入的碳酸盐含量较高,受碳酸盐平衡体系影响河口处pC02较高;多年来丰水期淡水输入造成河口以南海域表层水体pC02仍然维持在较高水平。整个调查海域超过2/3的面积均为CO2的源区。温度、浮游植物光合作用和生物好氧呼吸作用对调查海域内pC02的分布不构成主要控制因素。
     4.枯水季节,黄河口附近海域碳系统各参数的分布并非仅由黄河冲淡水所决定。由于淡水量较小,各参数的分布仅在河口处受其影响有较为明显的高浓度分布;淡水常年输入物质在河口以南海域的积聚、滞留以及由此带来的沉积物的二次污染是枯水季节该海域各参数表、底层浓度依然维持较高水平的主要原因。
     5.黄河淡水输入造成河口处硝酸盐、亚硝酸盐与硅酸盐浓度较高,氨氮和磷酸盐不是主要来源于淡水所以浓度低于调查区域内平均水平。南部浅水海域无机氮有显著高浓度分布,并非是由于淡水直接输入造成,黄河三角洲滨海湿地的水交换和黄河淡水输入物质的多年积累是枯水季节该海域无机氮浓度较高的主要原因。北部海域受渤海沿岸流南下影响,存在磷酸盐的高值区。
     6.调查海域表、底层N/P分别为248和141,磷限制状态严重。整个海域富营养化指数均小于0.6,平均值仅为0.18,约2/3的调查区域达到一类水标准,总体水质状况正常,南部浅水海域污染相对较重。DIN浓度极高,COD和P04-P浓度较小,DIN是黄河口附近海域水质的主要影响因子,需要引起足够的重视。
As the main channels for transportation of terrigenous materials, estuaries play an important role in the interaction between continental and marine systems. The spatial and time scale changes of physical, chemical and biological processes in estuaries are more severely than those in continent and ocean, which have significant influence on the materials transportation and lead to difference contents and distributions. The Yellow River, famous for its high turbidity, also has high concentration of carbonate because of strong chemical weathering in the basin, meanwhile, the rapid growth of industry and agriculture had brought serious pollution. Based on the reasons above, the transportation of terrigenous materials from continent to adjacent water has important effect on carbon cycle and nutritional status in the adjacent water and even biogeochemical process in the whole Bo Hai Sea. Taking the changes of water and sediment fluxes caused by the water and sediment regulation into account, the study for current status of the Yellow River Estuary is necessary. In combination with the data of hydrology, chemistry and biology collected from the Yellow River Estuary and adjacent water in May 2009, carbon transportation characteristics and eutrophication degree were studied. The main conclusions are drawn as follows:
     1. The pCO2 ranged from 383 to 1002μatm, and had an average of 615μatm during the mixing of fresh and salt waters. High value was observed in Fresh Water Side (FWS) due to Yellow River water input and decreased by mixing of fresh and salt water. The carbonate system was the main control factors of pCO2 while the temperature, photosynthesis and biological aerobic respiration were not.
     2. The distributions of inorganic carbon, organic carbon and nutrients were all impacted by the fresh water input and saltwater dilution. Inorganic carbon had obviously high concentration in FWS which had a negative correlation with salinity during mixing of fresh and salt water. In the Salt Water Side (SWS) the drop of PIC and DIC concentration were 99% and 25%, respectively. When TSS=569mg/L, the ratio of DIC/PIC is 1, which indicate that inorganic carbon transport in the Yellow River Estuary was mainly in the form of DIC. Organic carbon showed a negative correlation with salinity too, the concentration of POC and DOC dropped by 92% and 35%, respectively. When TSS=250mg/L, the ratio of DOC/POC is 1, which indicate that organic carbon transport in the Yellow River Estuary was mainly in the form of POC. Concentrations of nitrate, nitrite and silicate were decreased conservatively, ammonia had high value in SWS than that in FWS, phosphate had low value in SWS because of sharp drop at the beginning of mixing of fresh and salt water.
     3. The pCO2 of adjacent water of the Yellow River Estuary ranged from 311-723μatm, and had an average of 480μatm. In the Estuarine water affected by the diluted water from the Yellow River, carbonate showed a significantly high value and led to high pCO2 by carbonate system. Input of fresh water in wet season over years maintained high level of pCO2 in the south of estuarine water. Two thirds of the survey area was a source of pCO2. The temperature, photosynthesis and biological aerobic respiration were not main control factors.
     4. The distributions of carbon system parameters were not only determined by the fresh water from Yellow River in dry season. As the small amount, only the distributions in estuarine water showed relatively high concentration. Accumulation of materials input by fresh water over years and secondary pollution of sediments in the south of estuary were the reasons that maintained high surface and bottom concentrations in this area in dry season.
     5. The results indicated that fresh water from the Yellow River was the main source of the NO3-N, NO2-N and SiO3-Si, which had high-value areas of surface concentration in the estuary. The concentrations of NH4-N and PO4-P in the estuary were lower than the average levels which meant diluted water was not the main source. Significantly concentrations of inorganic nitrogen observed in the south shoal area were not directly caused by input of diluted water from Yellow River, while the water exchange in the Yellow River Delta Wetland and the accumulations of materials from diluted water were the main reasons which resulted the high concentrations in dry season. The coastal flow from Bo Hai Sea led to the obvious high-value area of PO4-P in the north of the Yellow River Estuary.
     6. The N/P ratios in surface and bottom seawater were 248 and 141 respectively, which meant severe phosphorus limiting eutrophication in the survey area; the eutrophication indices (EI) were lower than 0.6 and two-thirds of the survey area reached first class standard besides relatively heavy pollution in the south shoal. As a main factor affecting the water quality, inorganic nitrogen which had a high concentration needed enough attention.
引文
Abril G, Nogueira M, Etcheber H, et al. Behavior of Organic Carbon in Nine Contrasting European Estuaries. Estuarine, Coastal and Shelf Science,2002,54:241-262.
    Alexander R B. Stream flow-induced variations in nitrate flux in tributaries to the Atlantic Coastal Zone. Biogeochemistry,1996,33(3):149-177.
    Bricker S B, Clement C G, Pirhalla D E, et al. National estuarine eutrophication assessment: Effects of nutrient in the nation's estuaries. NOAA, National Ocean Service. Special Projects Office and the National Centers for Coastal Ocean Science, Silver Spring, MD,1999, p.71.
    Cai W J, Lawrence R P. Mary A M, et al. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnol Oceanogr, 1999,44(3):639-649.
    Cai W J. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophysical Research Letter,2003,30(2):1-4.
    Carlson C A, Ducklow H W, Hansell D A, et al. Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnology and Oceanography,1998,43:375-386.
    Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid river:the Yangtze and Yellow Rivers (China). Marine Chemistry,1993,43:235-246.
    Cerwall H. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone[J]. Ambio,1990,19:109-112.
    Chen C, Lin T A, Huang C M, et al. Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas. Mar Chem,1996, 54:179-190.
    Chen J S, Gao X M, He D W, et al. Nitrogen contamination in the Yangtze River system, China[J]. Journal of Hazardous Materials,2000,73(2):107-113.
    Dai M H, Zhai W D, Cai W J, et al. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research,2008,28:1416-1423.
    Ducklow H W and McCallister S L. The biogeochemical of carbon dioxide in the coastal oceans. In:A R Robinson and K H Brink (Editors), The Global Coastal Ocean:Multiscale Interdisciplinary Process. The Sea, Ideas and Observations on Progress in the Study of the Sea(Volume 13). Harvard University Press, Cambridge, MA, pp.269-316.
    Etheridge D M, Steel L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research,1996,101:4115-4128.
    Frankignoulle M, Abril G, Borges A, et al. Carbon dioxide emission from European estuaries. Science,1998,282:434-436.
    Goldenfeld N, Kadanoff L P. Simple lessons from Complexity[J]. Science,1999,284:87-89.
    Gordeev V V. A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean. American Journal of Science.1996,296(6):664-691.
    Hedges J I, Keil R G, Bernner R. What happens to terrestrial organic matter in the ocean? Organic Geochemistry,1997,27:195-212.
    Hedges J I. Global biogeochemical cycles:progress and problems. Marine Chemistry,1992,39: 67-93.
    Heip C H R, Goosen N K, Herman P M J, et al. Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology Annual Review,1995, 33:1-149.
    Herman P M J, Heip C H R. Biogeochemistry of the Maximum Turbidity zone of Estuaries (MATURE):some conclusions. Journal of Marine System,1999,22:89-104.
    Holligan D A, Reiner W A. predicting the responses of coastal zone to global change. In:F. Woodward (Editor), Ecological consequences of global climate change. Advances in Ecological Research,22. Academic Press,1992, London, pp.211-255.
    Hu C, Ji Z, Wang T. Dynamic characteristic of sea current and sediment dispersion in the Yellow River Estuary. International Journal of Sediment Research,1998,13(2):16-26.
    IGBP, IHDP, WCRP. The carbon challenge:An IGBP-IHDP-WCRP Joint Project. Stockholm: International Geosphere and Biospere Program,2001, pp.3-12.
    Ignatiades L, Karydis M, Vounatsou P. A Possible method for evaluating oligotrophy and eutrophication based an nutrient concentration scales. Mar. Pollut. Bull.1992,24 (5):238-243.
    Ittekkot V, Safiullah S, Mycke B. Seasonal variability and geochemical significance of organic
    matter in the River Ganges, Bangladesh. Nature,1985,317:800-802.
    Justic, D. A simple oxygen index for trophic state description. Mar. Pollut. Bull.1991,22 (4): 201-204.
    Kempe S, Pettine M, Cauwet G. Biogeochemistry of European rivers. In Biogeochemistry of Major World Rivers, SCOPE,1991,42:169-212.
    Kirchman D L, Lancelot C, Fasham M, et al. Dissolved organic matter in biogeochemical models of the ocean. Towards a Model of Ocean Biogeochemical Processes. Berlin:Springer,1993, 209-225.
    Li J Y, Zhang J. Chemical weathering processes and atmospheric CO2 consumption in the Yellow River drainage basin. Marine Geology and Quaternary Geology,2003,22:43-49(in Chinese).
    Liu Dongsheng. The loess deposit in the middle huanghe basin. Beijing:Science Press,1964:244.
    Liu T.S. Loess in China. New York:Springer,1985:224.
    Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemistry Cycle,1996,10(1):23-41.
    Mantoura R F C, Woodward E M S. Conservative behavior of riverine dissolved organic carbon in the Severn Estuary:chemical and geochemical implications. Geochim. Cosmochim. Acta,1983, 4:1293-1309.
    Meybeck M. Carbon nitrogen and phosphorus transport by world rivers. American Journal of Science,1982,282:401-450.
    Milliman J D, Meade R H. World-wide delivery of river sediments to the oceans. Journal of Geology,1983,(91):1-21.
    Moffat A S. Global nitrogen overload problem grows critical [J]. Science,1998,279:988-989.
    Mukhopadhyay S K, Biswas H, De T K, et al. Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. J. Environ. Monit,2002,4: 549-552.
    Pacala S W, Hartt G C, Baker D, et al. Consistent load and atmosphere based US carbon sink estimates. Science,2001,292:2316-2320.
    Paerl H.W. Coastal eutrophication and harmful algal blooms:Importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources. Limnol. Oceanogr, 1997,42(5.Part 2):1154-1165.
    Prentice I C, Farquhar G D, Fasham M J R, et al. The carbon cycle and atmospheric CO2. In: Houghton J T, Yihui D, Eds. The Intergovernmental Panel on Climate Change (IPCC). Third Assessment Report,2001, Cambridge:Cambridge University Press.
    Raven J A and Falkowski P G. Oceanic sinks for atmospheric CO2. Plant Cell and Environment, 22(6):741-755.
    Raymond P A, Cole J J. Gas exchange in rivers and estuaries:Choosing a gas transfer coefficient. Estuaries,2001,24:312-317.
    Redfield A C. The biological control of chemical factors in the environment[J].1958, Am. Sci. 46:561-600.
    Riley J P, Sklrrow G. Chemical Oceanography. Academic Press,1976,2:1-149.
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science,2004a, 305(5682):367-371.
    Sarma V V S S, Kumar M D, Marerikar M. Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophys. Res. Lett.,2001,28:1239-1242.
    Schiettecatte L S, Thomas H, Bozec Y, et al. High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea. Marine Chemistry,2007,106:161-173.
    Schlmel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystem. Nature,2001,414:169-172.
    Smith S V, Hollibaugh J T. Coastal metabolism and the oceanic organic carbon balance. Review of Geophysics,1993,31:75-89.
    Smith S V, Mackenzie F T. The oceanic as a net heterotrophic system:implication from the carbon
    biogeochemical cycles. Global Biogeochemical Cycles,1987,1(3):187-198.
    Smith S V. Phosphorus Versus nitrogen limitation in the marine environment[J].1984,29 (1): 1149-1160.
    Stallard R F, Edmond J M. Geochemistry of the Amazon:2.The influence of the geology and weathering environment on the load. J. Geophys. Res.,1983,88:9671-9688.
    Takahashi T, Olafsson J, Goddard J G, et al. Sutherland S C. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans:a comparative study. Global Biogeochemical Cycles,1993,7(4):843-878.
    Taylor G T, WAYJ, Scranton M I. Plank tonic carbon cycling and transport in surface waters of the highly urbanized Hudson River estuary. Limnol, Oceanogr,2003,48:1779-1795.
    Ternon J F, Oudot C, Dessier A, et al. A seasonal tropical sink for atmospheric CO2 in the Atlantic Ocean:the role of the Amazon River discharge. Marine Chemistry,2000,68:183-201.
    Turner R E, Rabalais N N. Changes in Mississippi River water quality this century-implications for coastal food webs. Bioscience,1991,41,140-147.
    Turner R E, Rabalais N N. Evidence for coastal eutrophication near the Mississippi River delta. Nature,1994,368,619-621.
    Van Bennekom A J, Wetsteijn F.J. The winter distribution of nutrients in the Southern Bight of the North Sea(1961-1978)and in the estuaries of the Scheldt and the Rhine/Meuse, Netherlands, Journal of Sea Research,1990,25,75-87.
    Ver L M B, Mackenzie F T, Lerman A. Biogeochemical responses of the carbon cycle to natural and human perturbations:past, present, and future. American Journal of Science,1999a, 299(7-9):762-801.
    Veyssy E, Etcheber H, Lin R G, et al. Seasonal variations and origins of particulate organic carbon in the lower Garonne River at La Re'ole (SW France). Hydrobiologia,1999,391:113-126.
    Wang Z A, Cai W J, Wang Y C, et al. The southeastern continental shelf of the United Statesas an atmospheric CO2 source and an exporter of inorganic carbon to the ocean. Continental Shelf Research,2005,25:1917-1941.
    Werner B T. Complexity in natural landform patterns[J]. Science,1999,284:102-104.
    White A F, Blum A E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta.1995,59:1729-1747.
    Whitesides G M. Complexity in Chemistry[J]. Science,1999,284:89-92.
    Zhai W D, Dai M H, Cai W J, et al. High partial pressure of CO2 and its maintaining mechanism in a substropical estuary:the Pearl River estuary, China. Marine Chemistry,2005,93(1):21-32.
    Zhai W D, Dai M H, Cai W J, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry,2005,96:87-97.
    Zhai W D, Dai M H, Guo X H. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze)River, China. Marine Chemistry,2007, (107):342-356.
    Zhang J. Chemical trend of national rivers in China:Huanghe and Changjiang. AMBIO,1995,24: 274-278.
    陈彬.福建湄洲湾海域营养状态趋势预测.台湾海峡,2002,21(3):322-327.
    陈静生,于涛.黄河流域氮素流失模数研究[J].农业环境科学学报,2004,23(5):833-838.
    陈静生,张宇,于涛,等.对黄河泥沙有机质的溶解特性和降解特性的研究-再论黄河水的COD值不能真实反映其污染状况.环境科学学报,2004,24(1):1-5.
    陈淑珠,顾郁翘,刘敏光,等.黄河口及其邻近海域营养盐分布特征.青岛海洋大学学报,1991,21(1):34-42.
    陈为峰,史衍玺,田素锋,等.黄河口新生湿地土壤氮磷分布特征研究[J].水土保持学报,2008,22(1):69-73.
    陈彰榕.现行黄河口拦门沙的形态和演化.青岛海洋大学学报,1997,27(4):539-546.
    成国栋,薛春汀主编.黄河三角洲沉积地质学.北京,地质出版社,1997.
    段水旺,章申,陈喜保,等.长江下游氮、磷含量变化及其输送量的估计[J].环境科学,2000,21(1):53-56.
    高学鲁.中国近海典型海域溶解无机碳系统的生物地球化学特征.中国科学院海洋研究所博士论文,2005.
    桂祖胜,张龙军,张向上,等.2005年9月黄河口淡咸水混合过程中pC02变化规律及行为.海洋环境科学,2008,27(6):615-617.
    郝彦菊,王宗灵,朱明远,等.莱州湾营养盐与浮游植物多样性调查与评价研究.海洋科学进展,2005,23(2):197-204.
    胡春宏,曹文洪.黄河口水沙变异与调控Ⅰ-黄河口水沙运动与演变基本规律.泥沙研究,2003,10(5):1-8.
    胡春宏,曹文洪.黄河口水沙变异与调控Ⅱ-黄河口治理方向与措施.泥沙研究,2003,10(5):9-14.
    黄海挺,杨作升,张彩云.黄河口拦门沙动态研究.海洋科学,2003,27(6):35-37.
    纪大伟,杨建强,高振会,等.莱州湾西部海域枯水期富营养化程度的初步研究.海洋通报,2007,26(1):78-81.
    江春波,张龙军,王峰.南黄海夏季海水pCO2研究Ⅱ—下层海水涌升和长江冲淡水对海-气界面CO2通量的贡献.中国海洋大学学报,2006,36(sup.);147-152.
    蒋红,崔毅,陈碧鹃,等.渤海近20年来营养盐变化趋势研究.海洋水产研究,2005,26(6):61-67.
    焦念志,王荣.海洋初级生产光动力学及产品结构.海洋学报,1994,16(5):85-91.
    金相灿,刘鸿亮.中国湖泊富营养化.北京,中国环境科学出版社,1990:163-216.
    雷坤,郑丙辉,孟伟,等.大辽河口N、P营养盐的分布特征及其影响因素.海洋环境科学,2007,26(1):19-23.
    李凡.海岸带陆海相互作用(LOICZ)研究及我们的策略.地球科学进展,1996,11(1):19-23.
    李广楼,崔毅,陈碧鹃,等.秋季莱州湾及附近水域营养现状与评价.海洋环境科学,2007,26(1):45-48.
    李晶莹,张经.黄河流域化学风化作用与大气CO2的消耗.海洋地质与第四纪地质,2003,22:43-49.
    李晶莹,张经.流域盆地的风化作用与全球气候变化.地球科学进展,2002,17(3):411-419.
    李岩,张龙军,苏征,等.长江口淡水端淡、盐水混合表层pCO2的急剧变化及其影响机制.中国海洋大学学报,2006,36(2):295-298.
    李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):20-28.
    林荣根,吴景阳,等.黄河口沉积物对磷酸盐的吸附与释放.海洋学报,1997,16(4)
    刘瑞玉,胡敦欣.中国的海岸带陆海相互作用(LOICZ)研究.地学前缘,1997,4(1-2):194.
    刘霜,张继民,杨建强,等.黄河口生态监控区主要生态问题及对策探析.海洋开发与管理,2009,26(3):49-52.
    马士德,谢肖勃,朱宿兰.辽东湾海域海水DOC、POC及间隙水中的DOC分布特征.1995,6:46-49.
    孟伟,于涛,郑丙辉,等.黄河流域氮磷营养盐动态特征及主要影响因素[J].环境科学学报,2007,27(12):2046-2051.
    米铁柱,于志刚,姚庆祯等.春季莱州湾南部溶解态营养盐研究[J].海洋环境科学,2001,20(3):14-18.
    庞家珍,司书亨.黄河河口演变Ⅱ:河口水文特征及泥沙淤积分布. 海洋与湖沼,1980,11(4):295-305.
    彭云辉,王肇鼎.珠江河口富营养化水平评价[J].海洋环境科学,1991,10(3):7-12.
    蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅱ春季的营养限制情况.海洋学报,2001,23(3):57-65.
    秦宏国.枯、洪季黄河水沙输运的三维数值模拟机特征分析.中国海洋大学硕士论文,2005.
    沈志良.渤海湾及其东部水域的水化学要素.海洋科学集刊,1999,41:51-59.
    石晓勇,史致丽,余恒,等.黄河口磷酸盐缓冲机制的探讨Ⅰ黄河口悬浮物对磷酸盐的吸附 -解吸研究.海洋与湖沼,1999,30(2):192-198.
    宋金明,季学刚,李宁,等.一种海水中溶解无机碳的准确简易测定方法.分析化学,2004,32(12):1689-1692.
    宋金明,徐亚岩,张英,等.中国海洋生物地球化学过程研究的最新进展,海洋科学,2006,30(2):69-77.
    宋美芹,张龙军,江春波.初春(3月)黄海水体垂直混合和生物活动对水-气界面pCO2分布的控制作用.中国海洋大学学学报,2007,37(sup.):067-072.
    苏征,张龙军,王晓亮.黄河河流水体二氧化碳分压及其影响因素分析.海洋科学,2005,29(4):41-44.
    孙丕喜,王波,张朝晖,等.莱州湾海水中营养盐分布与富营养化的关系.海洋科学进展,2006,24(3):329-335.
    孙效功,杨作升,陈彰榕.黄河三角洲冲淤定量计算及其机制讨论.海洋学报,1993,(15):129-136.
    王芳,康建成,周尚哲,等.春秋季长江口及其邻近海域营养盐污染研究.生态环境,2006,15(2):276-283.
    王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟Ⅰ-黄河口切变锋泥沙研究,2006,4(2):1-9.
    王继龙,郑丙辉,秦延文等.辽河口水域溶解氧与营养盐调查分类.海洋技术,2004,23(3):92-96.
    王晓亮,张龙军,苏征,等.黄河口总碱度保守与非保守行为探讨.中国海洋大学学报,2005,35(6):1063-1066.
    吴明清,文启忠,潘景瑜,等.黄河中游地区马兰黄土主要化学成分的再研究.自然科学进展,1996,6(1):80-85.
    夏斌,张晓理,崔毅,等.夏季莱州湾及附近水域理化环境及营养现状评价.渔业科学进展,2009,30(3):103-111.
    夏星辉,周劲松,杨志峰,等.黄河流域河水氮污染分析.环境科学学报,2001,21(5):563-568.
    肖天,王荣.春季与秋季渤海蓝细菌(聚球蓝细菌属)的分布特点.2002,22(12):2071-2078.
    姚庆祯,于志刚,王婷,等.调水调沙对黄河下游营养盐变化规律的影响[J].环境科学,2009,30(12):3534-3540.
    于涛,陈静生.农业发展对黄河水质和氮污染的影响-以宁夏灌区为例.2004,18(5):1-7.
    于志刚,米铁柱,谢宝东,等.二十年来渤海生态环境参数的演化和相互关系[J].海洋环境科学,2000,19(1):15-19.
    张洪亮,杨建强,崔文林.莱州湾盐度变化现状及其对海洋环境与生态的影响.海洋环境科学,2006,25(增刊1):11-14.
    张洁帆,陶建华,李清雪,等.渤海湾氮磷营养盐年际变化规律研究[J].安徽农业科学,2007,35(7):2063-2064.
    张经.中国主要河口的生物地球化学研究.北京,海洋出版社,1996.
    张景平,黄小平,江志坚,等.2006-2007年珠江口富营养化水平的季节性变化及其与环境因子的关系.海洋学报,31(3):113-120.
    张龙军,王彬宇,张经.东海冬夏两季表层海水的二氧化碳分压.青岛海洋大学学报,1999,增刊,149-143.
    张龙军,王婧婧,张云,等.冬季北黄海表层海水pCO2分布及其影响因素探讨.中国海洋大学学报,2008,38(6):955-960.
    张龙军,夏斌,桂祖胜,等.2005年夏季环渤海16条主要入海河流的污染状况.环境科学,2007,28(11):2409-2415.
    张龙军,徐雪梅,温志超.秋季黄河pC02控制因素及水-气界面通量.水科学进展,2009,20(2):227-235.
    张龙军,张云.夏季渤海表层海水pCO2分布特征.中国海洋大学学报,2008(4):635-639.
    张娜,何大伟,陈静生,等.黄河水系氮污染特征初探.环境化学,2003,22(2):105-109.
    张向上,张龙军.黄河口无机碳输运过程对pH异常增高现象的响应.环境科学,2007,28(6):1216-1222.
    张向上.黄河口碳输运过程及其对莱州湾的影响(博士学位论文).青岛,中国海洋大学,2007
    张绪良,谷东起,丰爱平,等.莱州湾南岸滨海湿地的氮_磷循环过程及调控对策[J].中国生态农业学报,2008,16(5):1127-1133.
    张正斌,陈镇东,刘莲生,等.海洋化学原理与应用-中国近海的海洋化学.北京,海洋出版社,]999:504.
    张正斌,陈镇东,刘莲生,等.海洋化学原理与应用.北京,海洋出版社,1999,112-116.
    郑爱榕,李文权,陈敏.浮游植物释放的溶解有机碳对初级生产力测定的低估偏差研究.厦门大学学报(自然科学版),1992,31(4):408-412.
    郑丙辉,秦延文,孟伟,等.1985-2003年渤海湾水质氮磷生源要素的历史演变趋势分析[J].环境科学,2007,28(3):494-499.
    仲崇峻,曾晓起,任一平,等.莱州湾、黄河口水域毛虾渔业生物学特征的研究.海洋湖沼通报,2001(1):31-36.
    朱明远,王秀桂,郑秀荣,等.莱州湾水环境评价与污染控制对策研究报告,国家海洋局第一海洋研究所,1991,4.
    邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨[J].海洋环境科学,1983,2(2):41-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700