用户名: 密码: 验证码:
环境友好型硅化物和氧化物热电材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种将电能与热能直接互相转换的功能材料,它提供了一种安全可靠、全固态的发电和制冷方式,具有较大的应用潜力。但大多性能较好的热电材料都是由价格昂贵且有毒的元素如Te、Sb、Co、Pb等组成,它们所带来的环境问题和高经济成本成为热电材料应用的瓶颈之一。高锰硅因具有价格低廉、无毒环保、热化学稳定等优良特性成为当今倍受关注的环保型热电硅化物之一。目前世界上研究高锰硅热电材料的主要国家是俄罗斯和日本,所报导的最高热电优值ZT在0.7附近,且利用高锰硅作为P型单元的热电模块的转换效率可达到8%-12%。而国内对高锰硅热电材料和器件的的研究正处于起步阶段。
     本文以环保型硅化物和氧化物为研究方向,选择了高锰硅和钙钛矿氧化物La_(1-x)Sr_xCoO_3作为研究对象,从材料热电性能的调控、结构的纳米化以及器件的模拟计算几个方面进行了详细研究。
     以高锰硅热电性能的提高为目的,通过原位熔炼、机械研磨和热压烧结等方法制备了含第二组元的高锰硅复合材料CeSi_2/HMS、PbTe(Ag_2Te)/HMS和SiGe(Ge)/HMS,对各种高锰硅复合材料相结构、微观形貌和热电性能进行了研究。实验表明,由于第二相的物理特性和在基体中的非弥散分布,CeSi_2和PbTe(Ag_2Te)的引入使高锰硅的热电性能下降。在SiGe(Ge)/HMS复合材料中,虽然也形成了非弥散分布的SiGe相,但由于部分Ge原子对高锰硅中Si原子的取代效应,复合材料的功率因子增加,同时其晶格热导率降低,ZT值得到了25%-50%的提到。SiGe(Ge)第二相对高锰硅的影响还体现在对其显微结构的影响。SiGe(Ge)加入后,高锰硅中的MnSi条纹的数量和形态发生了明显变化,很可能对高锰硅的热学或电学输运性能产生了重要影响。
     以实现低热导的高锰硅纳米结构材料为目的,通过高能机械球磨法制备了不同晶粒尺寸和相组成的高锰硅粉末。本文首次发现了高锰硅的机械力化学分解现象,并研究了高锰硅的相分解率与各球磨参数和晶粒尺寸之间的关系。将单相的高锰硅纳米粉末进行热压后发现,单相高锰硅在高温下发生了相变,产生了MnSi相。通过同步辐射X射线衍射进行原位分析后发现,纳米尺寸对高锰硅的相变有重要影响。和微米粉末相比,纳米高锰硅粉末的相变温度较低,且相变速率和相变程度较大。压力对纳米高锰硅的相变在不同温度下也会产生抑制或加强。本文分析认为,纳米高锰硅高温下的相变主要是高锰硅非公度相之间的自转变。这种自转变相变发生的条件和程度与高锰硅体系的自由能和热动力学特性相关。高锰硅自身结构的特殊性,即强烈的空间各向异性和由此导致的纳米尺度下的结构不稳定性是高锰硅机械力化学分解和自转变的本征原因。尽管机械球磨纳米化被证明能够提高很多其它材料的热电性能,但本文的实验表明,纳米高锰硅的相变产生MnSi金属相,这种金属相会使材料的热电性能大幅度降低。因此,通过球磨法制备的纳米高锰硅材料无法应用于热电器件。
     分别通过固相反应法和溶胶凝胶法与热压烧结的结合,制备了不同Sr掺杂的La_(1-x)Sr_xCoO_3固体氧化物材料,并研究了温度和Sr掺杂对氧化物材料热电性能的影响。结果表明,未掺杂的LaCoO_3在室温下具有高达到555μV/K的Seebeck系数,但随着温度的升高而迅速降低;随着Sr掺杂量的增加,试样的Seebeck系数发生明显下降。在溶胶凝胶法制备的试样中,过多的Sr掺杂提高了氧化物的热导率,降低了ZT值。溶胶凝胶法制备的La_(0.9)Sr_(0.1)CoO_3氧化物在室温下具有最大的ZT值仅有0.046。温度和Sr掺杂对La_(1-x)SrxCoO_3电学输运性能的影响与载流子浓度的变化以及Co~(3+)离子在不同温区和掺杂量下的的自旋态转变有关。
     热电器件的制作需要优化各种器件参数以获得最佳的工作性能。本文以热电传输学基本理论为指导,通过Mathematica数学软件和程序,对由P型高锰硅和N型Mg_2(Si,Sn)构成的单对热电模块的尺寸优化参数A_p/A_n、热流输入密度Q、电能输出功率密度P_(max)和最大转换效率η_(max)进行了计算,并模拟了接触条件对热电模块工作性能的影响。计算表明,当冷热端温度分别固定为298K和898K时,该热电模块在理想接触状态下可产生8.29%的最大转换效率。同样的条件下,获得最大输出功率P_(max)和最大转换效率η_(max)的尺寸优化参数A_p/A_n分别为1.97和1.89。模拟结果表明,当接触层电导率和热导率的数值和P型或N型单元的数值接近或更大时,模块的工作性能和理想接触状态时接近;而当两者同时以数量级的程度减小时,模块的转换效率和输出功率都会大幅度降低。
Thermoelectric(TE) materials are functional materials that can convert heat energy to electricity directly and visas verse.They show great potential in practical applications providing a safe,reliable and full-solid-state way of power generation and refrigeration.Most of the state-of-the-art TE materials are however alloys composed of high cost and toxic elements,such as Te,Sb,Co,Pb,etc.,which constrains the development of TE applications due to the environmental and economic issues with them.Higher manganese silicides(HMS), one of the most promising TE silicides,have attracted increasing interest for their low cost of raw materials,environmental friendliness and thermal and chemical stabilities.Most of the research on HMS have being carried out in Russia and Japan,where a maximum dimensionless figure of merit of 0.7 was reported and a conversion efficiency of 8%-12%of a HMS-based silicide TE module was achieved.However,China is just on the starting line for the research of HMS TE materials and devices.
     Based on the concept of developing environmental-friendly TE materials,detailed investigation was performed on HMS and oxide materials.Focuses have been made in several aspects from property tuning,nanostructuring to module simulation.
     Aiming at improving the TE performance,HMS composites with secondary phases were prepared through in situ melting or ex situ mechanical mixing combined with hot-pressing densification process.Composites of CeSi_2/HMS,PbTe(Ag_2Te)/HMS and SiGe(Ge)/HMS were synthesized and their phase structures,microstructure and TE properties were investigated.It was found that the TE performance of CeSi_2/HMS and PbTe(Ag_2Te)/HMS was degraded due to the physical transport characteristics of the secondary phases and their inhomogeneous distribution in the matrix.In the composite SiGe(Ge)/HMS,although inhomogeneity of SiGe precipitations was observed,the figure of merit was improved due to increased power factor and reduced lattice thermal conductivity by partial substitution of Ge for Si.The ZT value was improved by 25%-50%in SiGe(Ge)/HMS composites.Moreover, the microstructure of the inherent MnSi layers in SiGe(Ge)/HMS was significantly influenced by addition of Ge,which may also affect the transport properties of the material.
     Nanostructuring is an effective way to improve the TE performance by quantum effect in many material systems.HMS powders with different grain sizes and phase constitution were obtained by high-energy ball milling.The mechanochemical decomposition of HMS was for the first time discovered in this work,and the effects of ball milling parameters on the decomposition rate of HMS and their grain sizes were studied in detail.It was found that by hot-pressing the single phase HMS nanopowders,the MnSi phase was obtained in the pellet. In situ energy dispersive x-ray diffraction revealed some phase transformations under high temperature,on which the grain size effect was important.Compared to the micropowders, the HMS nanopowders showed much lower temperature and faster rate of phase transformation.High pressure could either depress or accelerate the phase transformation of nanopowders in different temperature ranges.It was understood that the phase transformation of HMS should be attributed to the inter-evolution of several incommensurate phases,which is closely related to the total internal energy of the system and the thermodynamic features of Mn-Si system.Intrinsically,the highly anisotropic crystal structures of HMS and their decreased stability under nanoscale dimension were supposed to introduce mechanochemical decomposition and inter-evolution of HMS.The presence of metallic MnSi phase during the phase transformation neglected the possibility of using ball-milled HMS nanopowders as TE materials.
     Perovskite-type La_(1-x)Sr_xCoO_3 oxides were synthesized by solid state reaction and sol-gel method combined with hot-pressing,and the effects of temperature and Sr-doping on the TE properties were explored.It was found that the undoped LaCoO_3 showed an extremely high Seebeck coefficient of 555μV/K at 300K,which however decreased quickly with increasing temperature.As Sr-doping was introduced,the Seebeck coefficient showed also sudden decrease,and a good TE performance was not expected due to reduced power factors.The maximum figure of merit was obtained in sol-gel prepared La_(0.9)Sr_(0.1)CoO_3 with a ZT value of only 0.046 at 300K,which is even not considerable for TE use.The increase of carrier concentration by Sr-doping and the spin state transition of Co~(3+) at different temperatures were attributed to the change of electrical transport properties of La_(1-x)Sr_xCoO_3.
     Optimization of size parameters is usually needed before building TE devices to obtain best performances.Using the well-known TE theories and Mathematica programming software,the optimized size parameter A_p/A_n,heat flow Q,maximum power density P_(max) and efficiencyη_(max) were simulated for a simple TE module based on P-type HMS and N-type Mg_2(Si,Sn).The results show that the module is able to produce a maximum efficiency of 8.29%in ideal contact condition when the temperatures of the cold and hot side maintain 298K and 898K,respectively.The size parameter A_p/A_n for obtaining P_(max) andη_(max) should be 1.97 and 1.89,respectively.Contact simulation revealed that when the electrical and thermal conductivity of the contact layer is comparable or better than the P- and N-type materials,the performance of the TE module shows no significant decline,while it is the opposite case when the electrical and thermal conductivity of the contact layer decrease simultaneously by the magnitude of 10~1-10~2.
引文
1.B.C.Sales,Thermoelectric materials-Smaller is cooler.Science,2002,295,1248-1249.
    2.F.J.DiSalvo,Thermoelectric cooling and power generation.Science,1999,285,703-706.
    3.R.F.Service,Semiconductor advance may help reclaim energy from 'lost' heat.Science,2006,311,1860-1860.
    4.J.S.Lee,S.H.Rhi,C.N.Kim,Y.Lee,Use of two-phase loop thermosyphons for thermoelectric refrigeration:experiment and analysis Applied Thermal Engineering,2003,23,1167-1176.
    5.J.G.Vian,A.Rodriguez,D.Astrain,J.G.Barberena,I.P.Urdiain,Development of a thermoelectric icemaker device built in a refrigerator,in Proceedings of the 25th International Conference on Thermoelectrics,2006,Wien,Austria,IEEE.
    6.D.J.Highgate,S.D.Probert,Higher energy-efficiency,readily transportable incubators.Applied Energy 1990,35,135-149.
    7.N.F.G(u|¨)ler,R.Ahiska,Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit.Applied Thermal Engineering 2002,22,1271-1276.
    8.R.Fettig,A view to recent developments in thermoelectric sensors,in Proceedings of the 15th International Conference on Thermoelectrics,1996,Pasadena,Canada
    9.P.E.Phelan,V.A.Chiriac,T.Y.T.Lee,Current and future miniature refrigeration cooling technologies for high power microelectronics.IEEE Transactions on Components and Packaging Technologies,2002,25,356-365.
    10.J.Bierschenk,M.Gilley,Assessment of TEC Requirements for Thermoelectrically Enhanced Heat Sinks for CPU Cooling Applications.in Proceedings of the 25th International Conference on Thermoelectrics,2006,Wien,Austria,IEEE.
    11.T.Metzger,R.P.Huebener,Modelling and cooling behaviour of Peltier cascades Cryogenics,1998,39,235-239
    12.M.M.Kaila,High Temperature Superconductor THz Thermal Sensors and Coolers Journal of Superconductivity and Novel Magnetism,2005,18,427-431.
    13.R.D.Abelson,Space Missions and Applications,in Thermoelectrics Handbook,D.M.Rowe,Editor.2005,CRC Press,Boca Raton,USA,Ch.56.
    14.张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势.电源技术,2006,30,525-530.
    15.F.J.Weinberg,D.M.Rowe,G.Min,Novel high performance small-scale thermoelectric power generation employing regenerative combustion systems.Journal of Physics D-Applied Physics,2002,35,L61-L63.
    16.M.A.Schmidt,Portable MEMS Power Sources.in 2003 IEEE International Solid-State Circuits Conference,2003,San Francisco,USA,IEEE.
    17. T. Haruyama, Performance of Peltier elements as a cryogenic heat flux sensor at temperature down to 60K. Cryogenics, 2001, 41, 335-339.
    
    18. A. Gulian, K. Wood, G. Fritz, e. al., X-ray/UV single photon detec-tors with isotropic Seebeck sensors. Nuclear Instruments and Methods in Physics Research Section A, 2000, 444, 232-236.
    
    19. M. Matsumiya, Q. Fabin, W. Shin, N. Izu, I. Matsubara, N. Murakama, S. Kanzaki, Thermoelectric CO gas sensor using Au and CO_3O_4 thin film. Journal of Electrochem Society, 2004,151, H7-H10.
    
    20. J. LaGrandeur, D. Crane, S. Hung, B. Mazar, A. Eder, High Efficiency Waste Energy Recovery System for Vehicle Applications. in Proceedings of the 25th International Conference on Thermoelectrics, 2006, Wien, Austria.
    
    21. W. Moser, G. Friedl, H. Hofbauer, Small-scale Pellet Boiler with Thermoelectric Generator. in Proceedings of the 25th International Conference on Thermoelectrics, 2006, Wien, Austria.
    
    22. T. Ota, F. Kouichi, S. Tokura, K. Uematsu, Development of Thermoelectric Power Generation System for Industrial Furnaces in Proceedings of the 25th International Conference on Thermoelectrics, 2006, Wien, Austria.
    
    23. C.B. Vining, An inconvenient truth about thermoelectrics. Nature Materials, 2009, 8, 83-85.
    
    24. R. Venkatasubramanian, Phonon blocking electron transmitting superlattice structures as advanced thin film thermoelectric materials, in Recent Trends in Thermoelectric Materials Research III. 2001, 175-201.
    
    25. T.C. Harman, M.P. Walsh, B.E. Laforge, G.W. Turner, Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34, L19-L22.
    
    26. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297, 2229-2232.
    
    27. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413, 597-602.
    
    28. H. Bottner, G. Chen, R. Venkatasubramanian, Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bulletin, 2006, 31, 211-217.
    
    29. B.C. Sales, D. Mandrus, R.K. Williams, Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272, 1325-1328.
    
    30. T.M. Tritt, Thermoelectric materials - Holey and unholey semiconductors. Science, 1999,283,804-805.
    
    31. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPb_mSbTe_(2+m): Bulk thermoelectric materials with high figure of merit. Science, 2004,303, 818-821.
    
    32. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007,19, 1043-1053.
    33.X.B.Zhao,X.H.Ji,Y.H.Zhang,T.J.Zhu,J.P.Tu,X.B.Zhang,Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites.Applied Physics Letters,2005,86,062111.
    34.B.Poudel,Q.Hao,Y.Ma,Y.C.Lan,A.Minnich,B.Yu,X.Yan,D.Z.Wang,A.Muto,D.Vashaee,X.Y.Chen,J.M.Liu,M.S.Dresselhaus,G.Chen,Z.Ren,High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320,634-638.
    35.B.Lenoir,A.Dauscher,M.Cassart,Y.I.Ravich,H.Scherrer,Effect of antimony content on the thermoelectric figure of merit of Bi(1-x)Sb_x alloys.Journal of Physics and Chemistry of Solids,1998,59,129-134.
    36.P.Pierrat,A.Dauscher,B.Lenoir,R.Martin-Lopez,H.Scherrer,Preparation of the Bi_8Sb_(32)Te_(60) solid solution by mechanical alloying.Journal of Materials Science,1997,32,3653-3657.
    37.J.Seo,K.Park,C.Lee,Fabrication and Thermoelectric Properties of n-Type SbI_3-Doped Bi_2Te_(2.85)Se_(0.15) Compounds by Hot Extrusion.Materials Research Bulletin,1998,33,553-559.
    38.J.Y.Yang,T.Aizawa,A.Yamamoto,T.Ohta,Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001,85,34-37.
    39.Y.Noda,M.Orihashi,I.A.Nishida,Preparation and thermoelectric properties of Ag or K doped PbTe.Materials Transactions,JIM,1998,39,602-605.
    40.E.N.Nikitin,V.G.Bazanov,V.I.Tarasov,The thermoelectric properties of solid solution Mg_2Si-Mg_2Sn.Soviet Physics of Solid States,1962,3,2648.
    41.Y.Noda,H.Kon,Y.Furukawa,N.Otsuka,I.A.Nishida,K.Masumoto,Preparation and thermoelectric properties of Mg_2Si_(1-x)Ge_x(x=0-0.4) solid solution semiconductors.Materials Transactions,JIM,1992,33,845-850.
    42.D.M.Rowe,N.Savvides,The reversal of precipitation in heavily doped silicon-germanium alloys.Journal of Applied Physics,1979,12,1613-1619.
    43.C.B.Vining,A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys.Journal of Applied Physics,1991,69,331-341.
    44.J.L.Harringa,B.A.Cook,Application of hot isostatic pressing for consolidation of n-type silicon -germanium alloys prepared by mechanical alloying.Materials Science and Engnineering B,1999,60,137-142.
    45.W.M.Yim,F.D.Rosi,Compound tellurides and their alloys for Peltier cooling-a review.Solid State Electronics,1972,15,1121-1140.
    46.R.Ionesou,J.Jaklovszky,N.Nistor,A.Chiculita,Grain Size Effects on Thermal electrical Properties of Sintered Solid Solutions Based on Bi_2Te_3.Pphysica Status Solidi,1975,27,27-33.
    47.D.B.Hyun,J.S.Hwang,T.S.Oh,J.D.Shim,N.V.Kolomoets,Electrical properties of the 85%Bi_2Te_3-15%Bi_2Se_3 thermoelectric material doped with SbI_3 and CuBr.Journal of Physis and Chemistry of Solids,1998,59,1039-1044.
    48. J.M. Simard, D. Vasilevskiy, S. Turenne, Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi_(1-x)Sb_x)_2(Te_(1-y)Se_y)_3 alloys. in Proceedings of the 22th International Conference on Thermoelectrics, 2003, La Grande Motte, France.
    
    49. D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi_4Te_6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287, 1024-1027.
    
    50. D.Y. Chung, T.P. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, A new thermoelectric material: CsBi_4Te_6. Journal of the American Chemical Society, 2004,126, 6414-6428.
    
    51. U. Winkler, Die electrischen eigenschaften der intermetallisher verbingungen Mg_2Si, Mg_2Ge, Mg_2Sn und Mg_2P. Helvetica Physica Acta, 1955, 28, 633.
    
    52. Y. Noda, H. Kon, Y. Furukawa,I.A. Nishida, K. Masumoto, Temperature dependence of thermoelectric properties of Mg_2Si_(0.6)Ge_(0.4). Materials Transactions, JIM, 1992, 33,851-855.
    
    53. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Highly effective Mg2Si_(1-x)Sn_x thermoelectrics. Physics Review B 2006, 74, 045207.1-045207.5.
    
    54. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, T.M. Tritt, High figures of merit and natural nanostructures in Mg_2Si_(0.4)Sn_(0.6) based thermoelectric materials. Applied Physics Letters, 2008, 93, 102109.
    
    55. B.C. Sales, D. Mandrus, B.C. Chaoumakos, Filled skutterudite, antimonides electron crystals and phonon glasses. Physics Review B, 1997, 56, 15081-15089.
    
    56. B.C. Sales, Handbook on the physics and chemistry of the rare earths, ed. K.A. Gschneidner. Vol. 33. 2003, New York: Elsevier.
    
    57. G.S. Nolas, M. Kaeser, R.T. Littleton, T.M. Tritt, High figure of merit in partially filled ytterbium skutterudite materials. Applied Physics Letters, 2000, 77, 1855-1857.
    
    58. X.F. Tang, L.D. Chen, T. Goto, Effect of Ce filling frac tion and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_(4-x)Sb_(12). Journal of Materials Research, 2001,16,837-843.
    
    59. X. Tang, Q. Zhang, L. Chen, T. Goto, T. Hirai, Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite R_yM_xCo_(4-x)Sb_(12) (R:Ce,Ba,Y; M:Fe,Ni). Journal of Applied Physics, 2005, 97, 093712.
    
    60. J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X.F. Tang, T. Hirai, Thermoelectric properties of the n-type filled skutterudites Ba_(0.3)Co_4Sb_(12) doped with Ni. Journal of Applied Physics, 2002, 91, 3698-3705.
    
    61. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, E. Muller, High temperature transport properties of partially filled Ca_xCo_4Sb_(12) skutterudites. Journal of Applied Physics, 2004, 95, 4852-4855.
    
    62. H. Li, X.F. Tang, Q.J. Zhang, C. Uher, High performance In_xCe_yCo_4Sb_(12)thermoelectric materials with in situ forming nanostructured InSb phase. Applied Physics Letters, 2009, 94, 102114.
    63. H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, C. Uher, Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. Journal of Physics D-Applied Physics, 2009, 42, 145409.
    
    64. H. Li, X.F. Tang, Q.J. Zhang, C. Uher, Rapid preparation method of bulk nanostructured Yb_(0.3)Co_4Sb_(12+y) compounds and their improved thermoelectric performance. Applied Physics Letters, 2008, 93, 252109.
    
    65. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, G.D. Stucky, Large thermoelectric figure of merit -.... at high temperature in Czochralski-grown clathrate Ba_8Ga_(16)Ge_(30). Journal of Applied Physics, 2006, 99, 023708 -023712.
    
    66. G.S. Nolas, M. Beekman, J. Gryko, G.A. Lamberton, T.M. Tritt, P.F. McMillan, Thermal conductivity of elemental crystalline silicon clathrate Si-136. Applied Physics Letters, 2003, 82, 910-912.
    
    67. M. Beekman, G.S. Nolas, Inorganic clathrate-Ⅱ materials of group 14: synthetic routes and physical properties. Journal of Materials Chemistry, 2008,18, 842-851.
    
    68. J.H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka, H. Inui, High thermoelectric performance of type-Ⅲ clathrate compounds of the Ba-Ge-Ga system. Acta Materialia, 2006, 54,2057-2062.
    
    69. A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G.D. Stucky, B.B. Iversen, Thermal conductivity of thermoelectric clathrates. Physical Review B, 2004, 69,
    
    70. A. Bentien, E. Nishibori, S. Paschen, B.B. Iversen, Crystal structures, atomic vibration, and disorder of the type-I thermoelectric clathrates Ba_8Ga_(16)Si_(30), Ba_8Ga_(16)Ge_(30),Ba_8In_(16)Ge_(30), and Sr_8Ga_(16)Ge_(30). Physical Review B, 2005, 71,
    
    71. A. Bentien, V. Pacheco, S. Paschen, Y. Grin, F. Steglich, Transport properties of composition tuned a- and b-Eu_8Ga_(16-x)Ge_(30+x). Physical Review B, 2005, 71,
    
    72. V. Pacheco, A. Bentien, W. Carrillo-Cabrera, S. Paschen, F. Steglich, Y. Grin, Relationship between composition and charge carrier concentration in Eu_8Ga_(16-x)Ge_(30+x)clathrates. Physical Review B, 2005, 71,
    
    73. G. Madsen, K.H. Schwarz, P. Glaha, D.J. Singh, Electronic structure and transport in type-I and type-Ⅷ clathrates containing strontium,barium, and europium. Physical Review B, 2003, 68, 125212.1-125212.7.
    
    74. M. Zhou, C.D. Feng, L.D. Chen, X.Y. Huang, Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds. Journal of Alloys and Compounds, 2005, 391, 194-197.
    
    75. S. Katsuyama, H. Matsushima, M. Ito, Effect of substitution for Ni by Co and/or Cu on the thermoelectric properties of half-Heusler ZrNiSn. Journal of Alloys and Compounds, 2004, 385, 232-237.
    
    76. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letter, 2001, 79, 4165-4167.
    
    77. S. Sakurada, N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 2005, 86, 082105.
    78.J.Yang,H.M.Li,T.Wu,W.Q.Zhang,L.D.Chen,J.H.Yang,Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties.Advanced Functional Materials,2008,18,2880-2888.
    79.S.R.Culp,S.J.Poon,N.Hickman,T.M.Tritt,J.Blumm,Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 ℃.Applied Physics Letters,2006,88,042106.
    80.H.W.Mayer,I.Mikhail,K.Schubert,Phases of ZnSb N and CdSb N mixtures.Journal of Less Commen Metals,1978,59,43-52.
    81.T.Caillat,J.P.Fleurial,A.Borshchevsky,Preparation and thermoelectric properties of semiconducting Zn_4Sb_3.Journal of Physics and Chemistry of Solids,1997,58,1119-1125.
    82.G.J.Snyder,M.Christensen,E.Nishibori,T.Caillat,B.B.Iversen,Disordered zinc in Zn_4Sb_3 with phonon-glass and electron-crystal thermoelectric properties.Nature Materials,2004,3,458-463.
    83.M.Tsutsui,L.T.Zhang,K.Ito,A.Yamaguchi,Effects of in-doping on the thermoelectric properties of b-Zn4Sb3.Intermetallics,2004,12,809-813.
    84.V.L.Kuznetsov,D.M.Rowe,Solid solution formation in the Zn_4Sb_3-Cd_4Sb_3 system.Journal of Alloys and Compounds,2004,372,103-106.
    85.F.Cargnoni,E.Nishibori,P.Rabiller,L.Bertini,G.J.Snyder,M.Christensen,C.Gatti,B.B.Iversen,Interstitial Zn atoms do the trick in thermoelectric zinc antimonide,Zn_4Sb_3:A combined maximum entropy method X-ray electron density and ab initio electronic structure study.Chemistry-α European Journal,2004,10,3861-3870.
    86.S.R.Brown,S.M.Kauzlarich,F.Gascoin,G.J.Snyder,Yb14MnSb11:New high efficiency thermoelectric material for power generation.Chemistry of Materials,2006,18,1873-1877.
    87.I.R.Fisher,S.L.Bud'ko,C.Song,P.C.Canfield,T.C.Ozawa,S.M.Kauzlarich,Yb_(14)ZnSb_(11):Charge balance in Zintl compounds as a route to intermediate Yb valence.Physical Review Letters,2000,85,1120-1123.
    88.S.M.Kauzlarich,S.R.Brown,G.J.Snyder,Zintl phases for thermoelectric devices.Dalton Transactions,2007,2099-2107.
    89.A.Akrap,N.Barisic,L.Forro,D.Mandrus,B.C.Sales,High-pressure resistivity and thermoelectric power in Yb14MnSb11.Physical Review B,2007,76,
    90.J.R.Sootsman,D.Y.Chung,M.G.Kanatzidis,New and Old Concepts in Thermoelectric Materials.Angewandte Chemic-International Edition,2009,48,8616-8639.
    91.S.Bhattacharya,A.L.Pope,R.T.Littleton,T.M.Tritt,V.Ponnambalam,Y.Xia,S.J.Poon,Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds,TiNiSn_(1-x)Sb_x.Applied Physics Letters,2000,77,2476-2478.
    92.C.Dames,G.Chen,Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires.Journal of Applied Physics,2004,95,682-693.
    93.H.Yu,P.C.Gibbons,W.E.Buhro,Bismuth,tellurium,and bismuth telluride nanowires.Journal of Materials Chemistry,2004,14,595-602.
    94. X. Sun, Z. Zhang, M.S. Dresselhaus, Theoretical modeling of thermoelectricity in Bi nanowires. Applied Physics Letters, 1999, 74, 4005-4007.
    
    95. O. Rabina, Y.M. Lin, M.S. Dresselhaus, Anomalously high thermoelectric figure of merit in Bi_(1-x)Sb_x nanowires by carrier pocket alignment. Applied Physics Letters, 2001,79, 81-83.
    
    96. S.A. Sapp, B.B. Lakshmi, C.R. Martin, Template synthesis of bismuth telluride nanowires. Advanced Materials, 1999,11,402-404.
    
    97. N. Mingo, Thermoelectric figure of merit and maximum power factor in Ⅲ-Ⅴ semiconductor nanowires. Applied Physics Letters, 2004, 84, 2652-2654.
    
    98. J. Martin, S. Stefanoski, L. Wang, L.D. Chen, G.S. Nolas, Synthesis and thermoelectric properties of lead chalcogenide nanocomposites, in Thermoelectric Power Generation, T.P. Hogan, et al., Editors. 2008, 13-18.
    
    99. J. Martin, G.S. Nolas, W. Zhang, L. Chen, PbTe nanocomposites synthesized from PbTe nanocrystals. Applied Physics Letters, 2007, 90, 222112.
    
    100. X. Ji, B. Zhang, T.M. Tritt, J.W. Kolis, A. Kumbhar, Solution-chemical syntheses of nano-structured Bi2Te3 and PbTe thermoelectric materials. Journal of Electronic Materials, 2007, 36, 721-726.
    
    101. T.M. Tritt, B. Zhang, N. Gothard, J. He, X.H. Ji, D. Thompson, J.W. Kolis, New directions in thermoelectric materials research: Synthesis of nanoscale precursors for "bulk-composite" thermoelectric materials, in Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, J. Yang, et al., Editors. 2006, 53-63.
    
    102. X.H. Ji, J. He, P.N. Alboni, T.M. Tritt, J.W. Kolis, The study of solvothermal synthesis of nano-engineered CoSb_3 skutterudite thermoelectric materials, in Thermoelectric Power Generation, T.P. Hogan, et al., Editors. 2008, 3-11.
    
    103. P.N. Alboni, X. Ji, J. He, N. Gothard, T.M. Tritt, Thermoelectric properties of La_(0.9)CoFe_3Sb_(12)-CoSb_3 skutterudite nanocomposites. Journal of Applied Physics, 2008,103,
    
    104. X. Ji, J. He, P. Alboni, Z. Su, N. Gothard, B. Zhang, T.M. Tritt, J.W. Kolis, Thermal conductivity of CoSb_3 nano-composites grown via a novel solvothermal nano-plating technique. Physica Status Solidi-Rapid Research Letters, 2007,1, 229-231.
    
    105. W.X. Tian, R.G. Yang, Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Applied Physics Letters, 2007, 90, 263105.
    
    106. J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, M.G. Kanatzidis, Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb_(1-x)Sn_xTe-PbS. Journal of the American Chemical Society, 2007, 129, 9780-9788.
    
    107. H.L. Ni, X.B. Zhao, T.J. Zhu, X.H. Ji, J.P. Tu, Synthesis and thermoelectric properties of Bi_2Te_3 based nanocomposites. Journal of Alloys and Compounds, 2005, 397, 317-321.
    
    108. N. Gothard, X. Ji, J. He, T.M. Tritta, Thermoelectric and transport properties of n-type nanocomposites. Journal of Applied Physics, 2008,103,
    109.X.A.Fan,J.Y.Yang,Z.Xie,K.Li,W.Zhu,X.K.Duan,C.J.Xiao,Q.Q.Zhang,Bi_2Te_3 hexagonal nanoplates and thermoelectric properties of n-type Bi_2Te_3nanocomposites.Journal of Physics D-Applied Physics,2007,40,5975-5979.
    110.T.J.Zhu,F.Yan,X.B.Zhao,S.N.Zhang,Y.Chen,S.H.Yang,Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/nanocrystal hybrid structure.Journal of Physics D-Applied Physics,2007,40,6094-6097.
    111.X.Y.Zhao,X.Shi,L.D.Chen,W.Q.Zhang,S.Q.Bai,Y.Z.Pei,X.Y.Li,Synthesis of Yb_yCo_4Sb_(12)/Yb_2O_3 composites and their thermoelectric properties.Applied Physics Letter,2006,89,092121.
    112.Z.M.He,C.Stiewe,D.Platzek,G.Karpinski,E.Mueller,S.H.Li,M.Toprak,M.Muhammed,Nano ZrO_2/CoSb_3 composites with improved thermoelectric figure of merit.Nanotechnology,2007,18,
    113.J.E.Mahan,The potential of higher manganese silicide as an optoelectronic thin film material.Thin Solid Films,2004,461,152-159.
    114.M.I.Fedorov,V.K.Zaitsev,Thermoelectric porperties of transition Metal Silicides.Thermoelectrics Handbook,ed.D.M.Rowe.2005,New York:CRC Press.31.
    115.I.Kawasumi,M.Sakata,I.Nishida,K.Masumoto,Crystal growth of manganese silicide,MnSi_(1.73) and semiconducting properties of Mn_(15)Si_(26).Journal of Materials Science,1981,16,355-366.
    116.I.Kawasumi,M.Sakata,I.Nishida,K.Masumoto,Crystal growth and characterization of MnSi_(1.73).Journal of Crystal Growth,1980,49,651-658.
    117.T.Kojima,I.Nishida,M.Sakata,Crystal growth of Mn15Si26.Journal of Crystal Growth,1979,47,589-592.
    118.T.Nakajima,J.Schelten,Peculiarities of the band magnetism in the higher manganese silicide.Journal of Magnetism and Magnetic Materials,1980,21,157-166.
    119.H.Nowotny,The chemistry of extended defects in non-metallic solids,ed.L.Eyring and M.O'Keefe.1970,Amsterdam:North-Holland.
    120.V.K.Zaitsev,S.V.Ordin,K.A.Rakhimov,A.E.Engalychev,Characteristics of the crystal structure and thermoelectric power of the higher manganese silicide.Soviet Physics Solid State,1981,23,353-354.
    121.R.de Ridder,G.van Tendeloo,S.Amelinckx,Electron Microscopic Study of the Chimney Ladder Structures MnSi_(2-x) and MoGe_(2-x).Pphysica Status Solidi(a),1976,33,383-393.
    122.R.de Ridder,G.van Tendeloo,S.Amelinckx,Incommensurate superstructures in MnSi_(2-x).Pphysica Status Solidi(a),1976,30,K99.
    123.O.G.Kapinski,B.A.Evseev,Crystal structure of Mn_4Si_7.Izvestiya AN SSSR (Neorganicheskie Materialy),1969,5,525.
    124.O.Schwomma,A.Presinger,H.Nowotny,A.Wittman,Die Kristallstructur von Mn_(11)Si_(19) und deren Zusammenhang mit Disilicid Typen.Monatshefie f(u|¨)r Chemie,1964,95,1527-1537.
    125.H.W.Knott,M.H.Mueller,L.Heaton,The Crystal Structure of Mn_(15)Si_(26).Acta Crystallographica,1967,23,549-555.
    126.G.Zwilling,H.Nowotny,Die Kristallstruktur der Mangansilicide im Bereich von MnSi_(1.7).Monatshefie f(u|¨)r Chemic,1971,102,672.
    127.V.K.Zaitsev,Thermoelectric porperties of anisotropic MnSil.75.CRC Handbook of Thermoelectrics,ed.D.M.Rowe.1995,New York:CRC Press.299.
    128.I.Nishida,K.Masumoto,I.Kawasumi,M.Sakata,Striations and crystal structures of the matrix in the MnSi-Si alloy system.Journal of Less-Common Metals,1980,71,293-301.
    129.I.Aoyama,M.I.Fedorov,V.K.Zaitsev,F.Y.Solomkin,I.S.Eremin,A.Y.Samunin,M.Mukoujima,S.Sano,T.Tsuji,Effects of Ge Doping on Micromorphology of MnSi in MnSi_(1.7) and on Their Thermoelectric Transport Properties.Japanese Journal of Applied Physics,2005,44,8562-8570
    130.L.D.Ivanova,N.K.Abrikosov,E.I.Elagina,V.D.Khvostikova,Production and the study of properties of higher manganese silicide single crystals.Izvestiya AN SSSR (Neorganicheskie Materialy),1969,5,1933.
    131.L.M.Levinson,Investigation of the defect manganese silicide Mn_nSi2_(n-m).Journal of Solid State Chemistry,1973,6,126.
    132.B.K.Voronov,L.D.Dudkin,N.N.Trusova,Anisotropy of thermoelectric properties in single crystal of chromium disilicide and higher manganese silicide.Kristallografia,1967,12,1137.
    133.E.N.Nikitin,V.I.Tarasov,A.A.Andreev,L.N.Shumilov,Electrical properties of single crystal highest silicide of manganese.Soviet Physics Solid State,1969,11,2757.
    134.A.V.Vlasov,A.E.Engalychev,V.K.Zaitsev,I.V.Yu.,S.A.Ktitorov,Incommensurate structure and properties of the higher manganese silicide.Proceedings of the IOFAN(Silicides),1991,32,89.
    135.N.K.Abrikosov,Ivanova,L.D.,Murav'ev,V.G.,,Preparation and study of single crystals and solid solutions of higher manganese silicide with Ge and CrSi_2.Izvestiya AN SSSR(Neorganicheskie Materialy),1972,8,1194.
    136.N.K.Abrikosov,Ivanova,L.D.,Gromova,L.V.,Study of single crystals of the solid sulution of higher manganese silicide with FeSi_2.Izvestiya AN SSSR(Neorganicheskie Materialy),1974,10,1016.
    137.N.K.Abrikosov,Ivanova,L.D.,Petrova,L.I.,The system of MnSi_(1.72)-FeSi_2.Izvestiya AN SSSR(Neorganicheskie Materialy),1974,10,2226.
    138.V.K.Zaitsev,V.I.Tarasov,A.Adilbekov,Metal-nonmetal transition in compensated higher manganese silicide.Soviet Physics Solid State,1975,17,370.
    139.E.N.Nikitin,A.F.Sidorov,V.I.Tarasov,A.I.Zaslavskii,Higher manganese silicide doping according to the results of microprobe analysis.Izvestiya AN SSSR (Neorganicheskie Materialy),1970,6,604.
    140.N.K.Abrikosov,Ivanova,L.D.,Gromova,L.V.,Determination of the distribution of coefficients of Cr,Fe,and Ge in higher manganese silicide.Izvestiya AN SSSR (Neorganicheskie Materialy),1973,9,489.
    141.E.N.Nikitin,Tarasov,V.I.,Electrical properites of the solid solutions based on higher silicides of manganese.Soviet Physics Solid State,1971,13,2938.
    142.Z.M.Wang,Y.D.Wu,Y.J.He,Seebeck coefficients of Mn-Si materials prepared by spark plasma sintering.International Journal of Modern Physics B,2004,18,2279-2286.
    143.I.Itoh,M.Yamada,Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering.Journal of Electronic Materials,2009,38,925-929.
    144.M.Umemoto,Z.G.Liu,R.Omatsuzawa,K.Tsuchiya,Production and characterization of Mn-Si thermoelectric materials.Materials Science Forum,2000,342-346,918-923.
    145.S.Okada,T.Shishido,M.Ogawa,F.Matsukawa,Y.Ishizawa,K.Nakajima,T.Fukuda,T.Lundstroem,MnSi and MnSi_(2-x) single crystal growth by Ga flux method and properties.Journal of Crystal Growth,2001,229,523-536.
    146.Q.R.Hou,W.Zhao,Y.B.Chen,D.Liang,X.Feng,H.Y.Zhang,Y.J.He,Thermoelectric properties of p-type higher manganese silicide films prepared by solid phase reaction and reactive deposition.Pphysica Status Solidi(a),2007,204,3429-3437.
    147.Q.R.Hou,W.Zhao,Y.B.Chen,D.Liang,X.Feng,H.Y.Zhang,Y.J.He,Thermoelectric properties of higher manganese silicide films with addition of chromium.Applied Physics A,2007,86,385-389.
    148.Q.R.Hou,W.Zhao,H.Y.Zhang,Y.B.Chen,Y.J.He,Thermoelectric properties of p-type higher manganese silicide films with addition of carbon.Pphysica Status Solidi (a),2006,203,2468-2477.
    149.E.Gross,M.Riffel,U.Stoehrer,Thermoelectric generators made of b-FeSi_2 and HMS:Fabrication and measurement.Journal of Materials Research,1995,10,34-40.
    150.H.Kaibe,I.Aoyama,M.Mukoujima,T.Kanda,S.Fujimoto,T.Kurosawa,H.Ishimabushi,K.Ishida,L.Rauscher,Y.Hata,S.Sano,Development of thermoelectric generating stacked modules aiming for 15%of conversion efficiency,in 24th International Conference on Thermoelectrics(ICT),2005,Clemson,SC.
    151.I.Aoyama,H.Kaibe,L.Rauscher,T.Kanda,M.Mukoujima,S.Sano,T.Tsuji,Doping effects on thermoelectric properties of higher manganese silicides(HMSs,MnSi_(1.74)) and Characterization of thermoelectric generating module using p-type(Al,Ge and Mo)-doped HMSs and n-type Mg_2Si_(0.4)Sn_(0.6) legs.Japanese Journal of Applied Physics,2005,44,4275-4281.
    152.L.I.Petrova,L.D.Dudkin,M.I.Fedorov,F.Y.Solomkin,V.K.Zaitsev,I.S.Eremin,Physicochemical interaction at the contact of higher manganese silicide with chromium.Technical Physics,2002,47,550-554.
    153.L.I.Petrova,L.D.Dudkin,M.I.Fedorov,F.Y.Solomkin,V.K.Zaitsev,I.S.Eremin,Diffusion processes at the MnSi_(1.75)/Cr contact.Inorganic Materials,2004,40,558-562.
    154.http://ite.cv.ukrtel.net/genmods.htm.
    155.http://www.hi-z.com/.
    156.D.M.Rowe,CRC Handbook of Thermoelectric.D.M.Rowe,Ed.ed.1995:CRC Press,Boca Raton,FL.
    157.R.Yang,G.Chen,M.S.Dresselhaus,Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction.Physics Review B,2005,72,125418.
    158.Z.He,C.Stiewe,D.Platzek,H.Chen,G.Karpinski,E.M(u|¨)ller,Processing and Characterization af Nano-Ceramic-Dispersed Thermoelectric Materials,.in Proceedings of the 25th International Conference on Thermoelectrics,2006,Vienna,Austria.
    159.T.J.Zhu,Y.Q.Liu,X.B.Zhao,Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes.Materials Research Bulletin,2008,43,2850-2854.
    160.D.L.Decker,High-Pressure Equation of State for NaCl,KCl,and CsCl.Journal of Applied Physics,1971,42,3239-3244
    161.D.Platzek,G.Karpinski,C.Stiewe,P.Ziolkowski,C.Drasar,E.Muller,Potential-Seebeck-Microprobe(PSM):Measuring the spatial resolution of the Seebeck coefficient and the electric potential,in 24th International Conference on Thermoelectrics(ICT),2005,Clemson,SC.
    162.A.V.Morozkin,V.A.Stupnikov,V.N.Nikiforov,N.Imaoka,I.Morimoto,Thermoelectric properties of the solid solutions based on ThSi_2-type CeSi_2 compound.Journal of Alloys and Compounds,2006,415,12-15.
    163.V.K.Zaitsev,K.A.Rakhimov,A.E.Engalychev,Applied Solar Energy(English translation of Geliotekhnika),1989,25,15.
    164.I.Yonenaga,T.Akashi,T.Goto,Thermal and electrical properties of Czochralski grown GeSi single crystals.Journal of Physics and Chemistry of Solids,2001,62,1313-1317.
    165.E.N.Nikitin,A.F.Sidorov,V.I.Tarasov,A.I.Zaslavskii,Higher manganese silicide doping according to the results of microprobe analysis.Izvestiya AN SSSR (Neorganicheskie Materialy),1970,6,604.
    166.D.B.Migas,V.L.Shaposhniko,A.B.Filonov,V.E.Borisenko,Ab initio study of band structures of different phases of higher manganese silicides.Physics Review B,2008,77,075205.
    167.Y.Miyazaki,D.Igarashi,K.Hayashi,T.Kajitani,K.Yubuta,Modulated crystal structure of chimney-ladder higher manganese silicides MnSig(g-1.74).Physical Review B-Condensed Matter and Materials Physics,2008,78,214104-8.
    168.R.Justin Joseyphus,A.Narayanasamy,N.Sivakumar,M.Guyot,R.Krishnan,N.Ponpandian,K.Chattopadhyay,Mechanochemical decomposition of Gd_3aFe_5O_(12)gamet phase.Journal of Magnetism and Magnetic Materials,2004,272-276,2257-2259.
    169.A.J.Heron,G.B.Schaffer,Mechanical alloying of MoSi2 with ternary alloying elements:Part 1:Experimental.Materials Science and Engineering A,2003,352,105-111.
    170.L.Liu,K.Cui,Mechanical alloying of refractory metal-silicon systems.Journal of Materials Processing Technology,2003,138,394-398.
    171.K.S.Venkataraman,K.S.Narayanan,Energetics of collision between grinding media in ball mills and mechanochemical effects.Powder Technology,1998,96,190-201.
    172.B.Kaampfe,F.Luczak,B.Michel,Energy dispersive X-ray diffraction.Particle and Particle Systems Characterization,2005,22,391-396.
    173.V.K.Zaitsev,S.A.Ktitorov,A.E.Kalyazin,N.D.Marchuk,S.V.Ordin,Thermal expansion in higher manganese silicide.Soviet Physics Solid State,1992,34,1389-1391.
    174.D.S.Kanibolotskii,V.V.Lesnyak,Thermodynamic Properties of Mn-Si Alloys.Russian Metallurgy(Metally),2006,2006,199-205.
    175.T.Inagaki,K.Miura,H.Yoshida,R.Maric,S.Ohara,X.Zhang,K.Mukai,T.Fukui,High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte Ⅱ.La(Sr)CoO_3 cathode.Journal of Power Sources,2000,86,347-351.
    176.G.Briceno,H.Chang,X.Sun,P.G.Schultz,X.D.Xiang,Science,1995,270,273-275.
    177.F.Wang,S.Leppavuori,Properties of epitaxial ferroelectric PbZr_(0.56)Ti_(0.44)O_3heterostructures with La_(0.5)Sr_(0.5)CoO_3 metallic oxide electrodes.Journal of Applied Physics,1997,82,1293-1298.
    178.C.H.Chen,H.J.M.Bouwmeester,R.H.E.v.Doom,H.Kruidhof,A.J.Burggraaf,Oxygen permeation of La_(0.3)Sr_(0.7)CoO_(3-d).Solid State Ionics,1997,98,7-13.
    179.H.J.M.Bouwmeester,A.J.Burggraaf.Fundamentals of Inorganic Membrane Science and Technology,ed.A.J.Burggraaf and L.Cot,Amsterdam:Elseviers Science.pp.435-528.
    180.K.R.Kendall.C.Navas,J.K.Thomas,H.C.zurLoye,Recent developments in oxide ion conductors:Aurivillius phases.Chemistry of Materials,1996,8,642-649.
    181.Y.Teraoka,H.M.Zhang,K.Okamoto,N.Yamazoe,Mixed Ionic-Electronic Conductivity of La_(1-x)Sr_xCo_(1-y)FeyO_(3-d) Perovskite-Type Oxides.Materials Research Bulletin,1988,23,51-58.
    182.A.Mineshige,M.Kobune,S.Fujii,Z.Ogumi,M.Inaba,T.Yao,K.Kikuchi,Metal-insulator transition and crystal structure of La_(1-x)Sr_xCoO_3 as functions of Sr-content,temperature,and oxygen partial pressure.Journal of Solid State Chemistry,1999,142,374-381.
    183.M.A.Senaris-Rodriguez,J.B.Goodenough,LaCoO_3 Revisited.Journal of Solid State Chemistry,1995,116,224-231.
    184.M.A.Senaris-Rodriguez,J.B.Goodenough,Magnetic and Transport Properties of the System La_(1-x)Sr_xCoO_3.Journal of Solid State Chemistry,1995,118,323-336.
    185.A.Mineshige,M.Inaba,T.Yao,Z.Ogumi,Crystal Structure and Metal-Insulator Transition of La_(1-x)Sr_xCoO_3.Journal of Solid State Chemistry,1996,121,423-429.
    186.J.Androulakis,P.Migiakis,J.Giapintzakis,La_(0.95)Sr_(0.05)CoO_3:An efficient room-temperature thermoelectric oxide.Applied Physics Letters,2004,84,1099-1101.
    187.K.Berggold,M.Kriener,C.Zobel,A.Reichl,M.Reuther,R.Muller,A.Freimuth,T.Lorenz,Thermal conductivity,thermopower,and figure of merit of La_(1-x)Sr_xCoO_3.Physical Review B,2005,72,
    188.K.Takahata,Y.Iguchi,D.Tanaka,T.Itoh,I.Terasaki,Low thermal conductivity of the layered oxide(Na,Ca)Co_2O_4:Another example of a phonon glass and an electron crystal.Physics Review B,2000,61,12551-12555.
    189.I.Terasaki,Y.Ishii,D.Tanaka,K.Takahata,Y.Iguchi,Thermoelectric properties of NaCo_(2-x)Cu_xO_4 improved by the substitution of Cu for Co.Japanese Journal of Applied Physics Part 2-Letters,2001,40,L65-L67.
    190.T.Okuda,K.Nakanishi,S.Miyasaka,Y.Tokura,Large thermoelectric response of metallic perovskites:Sr_(1-x)La_xTiO_3(0 < x < 0.1).Physics Review B,2001,63,113104.
    191.X.Zhang,X.M.Li,T.Lai Chen,L.Dong Chen,Thermoelectric and transport properties of La_(0.95)Sr_(0.05)CoO_3.Journal of Crystal Growth,2006,286,1-5.
    192.A.J.Zhou,X.B.Zhao,T.J.Zhu,S.H.Yang,T.Dasgupta,C.Stiewe,R.Hassdorf,E.Mueller,Improved Thermoelectric Performance of Higher Manganese Silicides with Ge-addition,in 28th International Conference on Thermoelectrics.2009:Freiburg,Germany.
    193.G.J.Snyder,Thermoelectric power generation:Efficiency and compatibility.Thermoelectrics Handbook,ed.D.M.Rowe.2005,New York:CRC Press.9.
    194.G.J.Snyder,T.S.Ursell,Thermoelectric efficiency and compatibility.Physical Review Letters,2003,91,148301.
    195.E.Mueller,G.Karpinski,L.M.Wu,S.Walczak,W.Seifert,Separated effect of 1D thermoelectric material gradients,in 25th International Conference on Thermoelectrics,2006,Vienna,AUSTRIA.
    196.W.Seifert,E.Mueller,S.Walczak,Generalized analytic one-dimensional description of non-homogeneous TE coller and generator elements based on compatibility apprach.in 25th International Conference on Thermoelectrics,2006,Vienna,Austria.
    197.高敏,张景韶,D.M.Rowe,温差电转换及其应用.1996,北京:兵器工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700