用户名: 密码: 验证码:
辐射热力学的基础理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能作为辐射能的一种,与常见的热能的性质存在较大差别,最显著的差别就是辐射具有频率特性,辐射能的转换如光电转换具有频率选择特性。由于辐射热力学理论至今还不很完善,使得太阳能光伏光热利用长期以来多局限于热力学第一定律的热效率分析上,对太阳能的能量品位的有效利用缺乏根本性的理论指导。因此,加强太阳能非平衡辐射热力学的基础研究,可为提高太阳能利用效率,特别是有效能利用效率提供理论指导,为降低太阳能发电成本寻求更行之有效的途径。
     本文首先就光谱辐射的热力学问题开展研究,提出了表征光量子能量hv的品质的新参数一光谱等效温度T_λ,给出了T_λ与波长的关系式λT_λ=c_3=5.33016×10~(-3)m·K。根据光谱等效温度方程和光量子的能量表达式,导出了光量子熵常数s_λ=3.72680×10~(-23) J/K,并证明通过s_λ算出的黑体等效温度等于黑体辐射温度,验证了光量子熵常数结论的正确性。
     在此基础上,用T_λ和s_λ讨论了黑体光谱辐射力、平衡态空腔辐射能、开口系辐射流等的有效能、熵参数、焓参数的表征及光子气的状态变化过程的熵变化。通过光谱辐射有效能的分析,证明用光谱等效温度表示的适合光合作用的谱带的辐射能的有效能效率大于以太阳温度为高温热源的卡诺效率,从而解释了文献中出现的光合作用产生熵减的论点的产生原因。
     其次,以平行平板间的等热流非平衡辐射传热为例,对非平衡辐射热力学进行了研究,导出了非平衡辐射传热过程中的熵流、熵产、有效能和最大有效能传输效率时的最佳接收温度的计算式。在此基础上,讨论了辐射强度随传输距离不断减弱的非平衡辐射热力学问题,提出了辐射强度系数和当量辐射温度的概念,并以太阳能热接收转换器为例,导出了以当量辐射温度表征的辐射能接收转换热效率,熵增强度,有效能输出效率,最佳接收温度的计算式。这些计算式具有与等辐射强度的辐射传热模型导出的计算式相同的形式,辐射强度变化的影响通过辐射强度系数由当量辐射温度体现;而熵产(熵增)因子只与太阳表面温度和接收面温度有关;同时还考察了聚光度对提高太阳能接收器有效能输出效率的作用。
     再次,讨论辐射能转换器的辐射有效能不可逆损失的计算法,给出辐射能接收器的净辐射熵差的计算式。针对太阳能光伏发电,提出了光量子在光电转换中的能量效率的表示方法,给出了太阳电池光电转换的理论效率极限,以及太阳电池的理论最佳带隙和最佳截止波长。讨论了光电转换的驱动力,分析了光电跃迁的有效能的不可逆损失和熵增,给出了太阳电池中激发电子的有效能的表达式。
     对辐射强度随传递距离不断减弱的辐射传热的热力学研究结果表明,对于太阳能利用采取聚光方法,可以提高太阳能接收转换器的有效辐射密度,从而提高有效能输出效率。因此,开展了太阳能聚光光伏实验。设计制造了一个菲涅耳透镜聚光光伏发电系统,硅光电池板贴在散热铝板上采用被动式散热,系统几何聚光比为23,实际聚光比约为12.9。室外测试结果表明,外接负载时最大输出净效率为7.60%,与非聚光发电相比,相同电池面积的最大输出功率提高到5.6倍。
     基于提出的与辐射频率相关的辐射热力学基础理论,对太阳能聚光分频利用电热联产的机理进行了探讨,给出了太阳能光谱有效能函数以及太阳能二次反射聚光分频利用光伏/光热发电的设计方案,并对该系统进行了热力性能分析,发电投资和成本比较。结果表明,对30倍聚光分频的光伏/光热发电系统,光伏发电效率约0.095,热发电效率0.043,总发电效率为0.139;与普通光伏发电系统相比,单位面积硅光电池发电功率提高约16倍,投资成本和发电成本大大下降。
     为分析分频利用光伏/光热发电方案的特点,建立了平板固定式、数倍聚光式、抛物槽一次反射聚光式、碟形反射聚光分频式和菲涅尔透镜聚光式等五种光伏发电方式的光学系统和辐射能量转换器的热物理模型,进行了能量效率和有效能利用效率分析,给出了地面太阳光谱辐射有效能的计算式,分析表明在光电池许可的温度下适当提高聚光比可大幅减少光电池的使用面积。
     最后,介绍抛物面反射聚光分频电热联产实验的进展及相关的改进建议。针对太阳能二次反射聚光分频利用电热联产方案的缺点,提出几种改进的太阳能聚光分频利用方案,介绍相关的原理性实验。作为聚光分频利用电热联产方案的热利用的另一种方式,对聚光太阳能驱动的半导体热电堆的发电性能进行了实验研究,得出在冷端温度基本不变的情况下,半导体热电堆的性能参数随太阳入射光强的变化关系,比较了在不同聚光比下不同面积半导体热电片的发电性能,提出了改进半导体热电堆的发电性能的建议,初步探讨了半导体温差发电与太阳能光伏发电相结合的可行性。
Solar radiation,as one radiation form,is different from normal thermal energy. The most distinct difference is that the frequency characteristic of radiation.The conversion of radiation such as photovoltaic conversion is frequency-dependent. Since the thermodynamic theory of radiation is still not quite perfect until now,for a long time most of the analysises of solar photovoltaic(PV) and thermal utilization are only based on thermal efficiency of the first law of thermodynamics,and the effective utilization of exergy of solar energy lacks fundamental theoretical guidance. Therefore,it may be an effective way to improve the efficiency,expercially the exergy efficiency of solar energy utilization and to reduce the cost of solar power generation,by reinforcing the foundational research of non-equilibrium thermodynamics of solar radiation.
     Firstly,the thermodynamic of spectral radiation is studied in this paper.A new parameter named spectral effective temperature T_λis proposed,which represents the thermodynamic quality of the photon.The relation between T_λand the wavelengthλ, is given asλT_λ= c_3=5.33016×10~(-3) m·K.Using the proved equation of spectral effective temperature T_λand the expression of the photon energy hv,the entropy constant of the photon is given as s_λ=3.72680×10~(-23) J/K.The effective blackbody temperature educed from s_λis proved to be equal to the blackbody radiation temperature,which confirms the validation of the concept of photon entropy constant.
     The exergy,entropy and enthalpy of the spectral blackbody radiation,the equilibrium cavity radiation,the radiation flux in open system are discussed by T_λand s_λ,as well as the entropy change in the process of the state transformation of photon gas.By analyzing the exergy of spectral radiation,the exergy efficiency of the spectral radiant energy available for photosynthesis,which is calculated by applying the cocept of spectral effective temperature,is proved to be higher than the Camot efficiency of heat source temperature being the sun's temperature.Thus the cause of the viewpoint in the literature that there is negative entropy production in photosynthesis can be explained.
     Secondly,taking nonequilibrium radiative heat transfer between two surfaces for example,the nonequilibrium thermodynamic of radiation is studied.The formulae of entropy flow,entropy generation,exergy flux and optimal temperature of absorbing surface for maximum exergy output are derived.Then,the nonequilibrium thermodynamic of diluted radiation whose intensity is weakened with the distance away from the radiation source is discussed.The concepts of radiation intensity coefficient and effective radiation temperature are introduced.Take solar thermal receiver and converter for example,the formulae of radiation-to-heat conversion efficiency,entropy generation,exergy output ratio and the optimal absorbing temperature of the receiver are established in terms of the effective radiation temperature.These formulae are the same in equation form with the corresponding formulae of constant-intensity radiative heat transfer.The influence of the variation of the radiation intensity is expressed by the effective radiation temperature in terms of the radiation intensity coefficient.The entropy generation factor is only related to the surface temperature of the radiation source and the absorbing temperature of the receiver.The influence of the solar concentration ratio n on the exergy output ratio of the solar receiver is also discussed.
     Thirdly,the method for calculating the irreversible loss of the exergy in radiant energy converters is presented.The formula for calculating the net entropy received by the receiver is also presented.For solar photovoltaic power generation,the expression of energy efficiency of the photon in the photovoltaic conversion is presented,the theoretical efficiency limit of photovoltaic conversion in the solar cell is derived,and the theoretical optimal band gap and cut-off wavelength of the solar cell are obtained.The driving force,the irreversible loss of available energy and the entropy increase in the photoelectric conversion are discussed and,the expression of available energy of the excited electron in the solar cell is presented.
     The results of the study of the nonequilibrium thermodynamic of diluted radiation whose intensity is weakened with the distance away from the radiation source indicate that,for solar energy utilization the incident radiosity of the solar receiver can be increased by solar concentration and then the exergy output ratio is increased.Therefore,experimental study of solar concentrating photovoltaic is developed.A Fresnel lens concentrator PV power system is designed and manufactured.Passive cooling is adapted by gluing the silicone cells onto an aluminum plate.The geometric concentration ratio is 23 and the real concentration ratio is 12.9.The outdoor test shows that,the maximum output efficiency is 7.60%. The maximum output power is 5.6 times compared with non-concentrating photovoltaic power gerneration by the same area solar cell.
     Based on the frequency-dependent theory of thermodynamic of radiation,the mechanism of utilization of spectrum splitting solar concentrating energy is discussed. The solar spectral availability function and the designed scheme of hybrid photovoltaic/photothermal(PV/T) power generation of two-stage reflective spectrum splitting solar concentrating energy are presented.The thermodynamic performance of the system is analyzed,and the generating investment and cost are compared. Theoretical analysis indicates that,for a PV/T spectrum splitting system at 30 suns concentration,the photovoltaic efficiency is about 0.095,the thermal power generation efficiency is 0.043,and the total power generation efficiency is 0.139. Compared with common PV systems,the electric power of unit area silicon cell increases to about 16 times,while the investment cost and the generating cost is significantly reduced.
     To analyze the characteristic of the scheme of PV/T power generation of spectrum splitting solar concentrating energy,the thermophysical models of five kinds of optical systems and radiant energy conversion devices are established,including fixed solar panels system,several times concentrating PV system,one-stage reflective parabolic concentrating system,reflective dish spectral beam splitting concentrating PV system and Fresnel lens concentrating PV system.The energy efficiencies and exergy efficiencies are analyzed.The formula for calculating the spectral solar radiation at Earth's surface is presented.The analysis indicates that area of solar cells can be significantly reduced by appropriately increasing the concentration ratio while the temperature of the solar cells is limited.
     Finally,the experiment of hybrid PV/T utilization of spectrum splitting parabolic reflective solar concentrating energy is presented and advices for improvement are proposed.To improve the scheme of the utilization of two-stage reflective spectrum splitting solar concentrating energy,several new schemes are introduced,and the related experiments and presented.As another choice of thermal using way of the hybrid PV/T utilization of spectrum splitting solar concentrating energy,the power generation performance of a solar-driven semiconductor thermoelectric generator is experimentally investigated.The relationship between the performance parameters and the solar radiation intensity are obtained,when the cold-side temperature is kept constant.The power generation performance of different area of semiconductor thermoelectric generator for different concentration ratio is compared.Advices to improve the power generation performance of semiconductor thermoelectric generator are presented and the feasibility of combination of thermoelectric generation and solar photovoltaic power generation is preliminary discussed.
     The work is financially supported by the National Natural Science Foundation of China(Grants No.50576092,50736005).
引文
1.BP statistical review of world energy 2008.
    2.安其霖,曹国琛,李国欣等。太阳电池原理与工艺。上海:科学技术出版社,1984,3-10
    3.UNDP,UNDESA,WEC.World Energy Assessment[R].2004.
    4.王炳忠。太阳能辐射资源太阳能应用[M]。北京:人民教育出版社,1995.
    5.Hu C M,White R M.Solar ceils:from basics to advanced systems.New York:McGraw-Hill Ino,1983,3-10,54-58
    6.Tabor H.Selective radiation L Wavelength discrimination:A new approach to the harnessing of solar energy[M].Bull.Res.Council Israel,1955,5A:119-134
    7.京特.莱纳,汉斯.卡尔著。太阳能的光伏利用。余世杰,何慧若译。合肥工业大学,1991,1-17
    8.王长贵,崔容强,周篁。新能源发电技术。北京:中国电力出版社,2003,19-20
    9.Hong H,Jin H G Ji J,et al.Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy.Solar Energy,2005,78(11):49-58
    10.周章。偏轴聚光轻型折叠太阳灶。实用新型专利,申请号:CN87216624,1987
    11.董元钦。偏焦式太阳灶。实用新型专利,申请号:CN03215428.3,2003
    12.颜开。薄钢板正抛物面轴外聚光太阳灶。发明专利,申请号:CN200710158100.7,2007
    13.庄肃。利用三圆作图法设计箱式聚光太阳灶。太阳能,1994,4:30-31
    14.李本成。提高转换效率及寿命是太阳能电池及组件研发重点。中国电子报,2009-02-04
    15.赵玉文,林安中。晶体硅太阳电池及材料[J]。太阳能学报,1999,(特刊):85-94
    16.Zhao J H,Wang A H,Green M A.19.8%efficient "honeycomb" textured multicrystalline and 24.4%monocrystalline silicon solar cells.Appl.Phys.Lett.,1998,73(14):1991-1993
    17.施正荣。晶体硅太阳能电池的现状与发展。中国第七届光伏会议,杭州,2002:350
    18.Planck M.The Theory of Heat Radiation.Philadelphia:B lakistons,1914.
    1.Planck M.The Theory of Heat radiation.Philadelphia:B lakistons,1914
    2.Vigier J P.Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional(wave and electromagnetic) solitons "piloted"(controlled) by corresponding solutions of associated linear Klein-Gordon and Schro|¨dinger equations.Found Physics,1991,21:125-148
    3.Kidd R,Ardini J,Anton A.Evolution of the modern photon.Am J Phys,1989,57:27-35
    4.Ito E,Komatsu T,Suzuki H.The entropy generation in visual-pigment system by the absorption of light.Biophys Chem,1998,74:59-70
    5.Williams P E.Mechanical entropy and its implications.Entropy,2001,3:76-115
    6.Kirwan J A D.Intrinsic photon entropy? The darkside of light.Int J Eng Sci,2004,42:725-734
    7.Shanks D.Monochromatic approximation of blackbody radiation.Am J Phys,1956,24:244-246
    8.Massa C.On the thermodynamics of Planck's radiation.Am J Phys,1986,54:754-755
    9.Zimmermann H W.Particle entropies and entropy quanta Ⅱ.The photon gas.Zeitschrift fur physikalisehe Chemie,2000,214(3):347-358
    10.Enk van S J,Nienhuis G.Entropy production and kinetic effects of light.Physical Review A,1992,46:1438-1448
    11.Duysens L N M.The path of light in photosynthesis.Brookhaven Symp Biol,1958,11:18-25
    12.Knox R S.Photosynthetic efficiency and excitation transfer and trapping,in:Primary Processes in Photosynthesis(ed Barber J),Amsterdam:Elsevier,1977,55-97
    13.Meszena G,Westerhoff H V.Non-equilibrium thermodynamics of light absorption.J Phys A:Math Gen,1999,32:301-311
    14.Meszena G.,Westerhoff H V,Somsen O.Reply to Comment on 'Non-equilibrium thermodynamics of light absorption'.J Phys A:Math Gen,2000,33:1301-1303
    15.Juretic D,Zupanovic P.Photosynthetic models with maximum entropy production in irreversible charge transfer steps.Comput Biol Chem,2003,27:541-553
    16.张纪庄,张学学,江世臣.光合作用的简单热力学分析.中国工程热物理学会第十一届年会论文集,工程热力学与能源利用,北京,2005.39-42
    17.Lavergne J,Joliot P.Thermodynamics of the excited states of photosynthesis,in:W.A.Cramer(Ed.),Energy Transduction in Membranes.Biophysical Society,2000,http://www.biophysics.org/education/lavergne.pdf[2006-05-29]
    18.Jennings R C,Engelmann E,Garlaschi F,et al.Photosynthesis and negative entropy production.Bioehimica et Biophysica Acta(BBA)-Bioenergetics,2005,1709(3):251-255
    19.Brittin W,Gamow G.Negative entropy and photosynthesis.In:Proc Natl Acad Sci USA,1961,47:724-727
    20.Schrodinger E.What is life? The physical aspects of living cell.Cambridge:Cambridge University Press,1986
    21.Denis J Evans,E G D Cohen,G P Morriss.Probability of second law violations in shearing steady states.Phys.Rev.Lett.,1993,71(15):2401-2404
    22.Wang G M,Sevick E M,Mittag E,et al.Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales.Phys.Rev.Lett.,2002,89(5):050601-1-050601-4
    23.Engelmann E C M,Zucchelli G,Garlaschi F M,et al.The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid Photosystem Ⅱ.Biochim Biophys Acta,2005,1706:276- 286
    24.Vassiliev S,Lee C I,Brudvig G W,et al.Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged photosystem Ⅱ core complexes from Synechocystis.Biochemistry,2002,41:12236-12243
    25.Denis J Evans,Debra J Searles.Equilibrium microstates which generate second law violating steady states.Phys.Rev.E,1994,50(2):1645-1648
    26.Capek V,Bok J.Violation of the second law of thermodynamics in the quantum microworld.Physica A,2001,290:379-401
    27.Juretic D and Zupanovic P.The Free-Energy Transduction and Entropy Production in Initial Photosynthetic Reactions.A.Kleidon and R.D.Lorenz(Eds.):Non-equil.Thermodyn.,UCS 2,2005,167-171
    28.王存诚。辐射能热力学特性的研究。中国工程热物理学会工程热力学与能源利用会议。武夷山,1994,94-101
    29.Hill R,Rich P R.A physical interpretation for the natural photosynthetic process.In:Proc Natl Acad Sci USA,Biophysics,1983,80:978-982.
    30.Petela R.Exergy of undiluted thermal radiation.Solar Energy,2003,74(6):469-488.
    31.Spanner D C.Introduction to thermodynamics.London:Academic Press,1964.
    32.Jeter S M.Maximum conversion efficiency for the utilization of direct solar radiation.Solar Energy,1981,26(3):231-236
    33.Petela R.Exergy of radiation of a perfect gray body.Zesz Nauk Pol SI.,Energetyka(in Polish),1961,5:33-45
    34.Petela R.Exergy of heat radiation.Trans.ASME,J Heat Transfer,1964,2:187-192
    35.Buoncristiani A M.Thermodynamic limits to the conversion of blackbody radiation by quantum systems.J.Appl.Phys.,1982,53(8):5382-5386
    36.Press W H.Theoretical maximum for energy from direct and diffuse sunlight.Nature,1976,264:734-735
    37.Landsberg P T,Mallison J R.Thermodynamic constraints,effective temperatures and solar cells.CNES,Toulouse,Intern.Colloq.on Solar Electricity,1976,27-42
    38.Landsberg P T,Tonge G.Thermodynamics of the conversion of diluted radiation.J.Phys.A:Math.Gen.,1979,12:551-562
    39.Wright S E,Rosen M A,Scott D S,et al.The exergy flux of radiative heat transfer for the special case of blackbody radiation.Exergy,an International Journal,2002,2:24-33
    40.Parrott J E.Theoretical upper limit to the conversion efficiency of solar energy.Solar Energy,1978,21:227-229
    41.Wright S E,Rosen M A,Scott D S,et al.The exergy flux of radiative heat transfer with an arbitrary spectrum.Exergy,an International Journal,2002,2:69-77
    42.Wurfel P.Thermodynamic limitations to solar energy conversion.Physica E,2002,14:18-26
    43.Bejan A.Advanced engineering thermodynamics.New York:J Wiley & Sons,1988.
    44.Chen Z S,Mo S P.Effective temperature and exergy of monochromic blackbody radiation.Prog in Nat Sci,2007,17(10):1250-1254
    45.Shockley W,Queisser H J.Detail balance limit of efficiency of p-n junction solar cells.J Appl Phys,1961,32(3):510-519
    46.苏长荪,谭连城,刘桂玉。高等工程热力学。北京:高等教育出版社,1987,175-177
    47.陈则韶,莫松平。辐射热力学中光量子的熵和光子气的熵。工程热物理学报,2007,28(2):193-195
    1.Petela R.Exergy of undiluted thermal radiation.Solar Energy,2003,74(6):469-488
    2.Petela R.Exergy of radiation of a perfect gray body.Zesz Nauk Pol SI.,Energetyka(in Polish),1961,5:33-45
    3.Petela R.Exergy of heat radiation.Trans.ASME,J Heat Transfer,1964,2:187- 192
    4.Spanner D C.Introduction to thermodynamics.London:Academic Press,1964.
    5.Jeter S M.Maximum conversion efficiency for the utilization of direct solar radiation.Solar Energy,1981,26(3):231-236
    6.Zhang Z M,Basu S.Entropy flow and generation in radiative transfer between surfaces.International Journal of Heat and Mass Transfer,2007,50:702-712
    7.杨世铭,陶文铨。传热学,第四版。北京:高等教育出版社,2006.
    8.Chen ZeShao,Mo SongPing,Hu Peng.Recent progress in thermodynamics of radiation-exergy of radiation,effectiv temperature of photon and entropy constant of photon. Science in China Series E:Technological Sciences,2008,51(8):1096-1109
    9.Petela R.An approach to the exergy analysis of photosynthesis.Solar Energy,2008,82:311 —328
    10.Gueymard C A.The sun's total and spectral irradiance for solar energy applications and solar radiation models.Solar Energy,2004,76 (4):423-453
    1.Shockley W,Queisser H J.Detailed Balance Limit of Efficiency of p-n Junction Solar Cells.J.Appl.Phys.,1961,32(3):510-519
    2.Landsberg P T,Nussbaumer N,Willeke G.Band-band impact ionization and solar cell efficiency.J.Appl.Phys,1993,74:1451-1452
    3.Werner J H,Kodolinski S,Queisser H J.Novel optimization principles and efficiency limits for semiconductor solar cells.Phys.Rev.Lett.,1994,72:3851-3854
    4.Luque A,Marti A.Entropy production in photovoltaic conversion.Phys.Rev.B,1997,55:6994-6999
    5.张季熊.光电子学教程.广州:华南理工大学出版社,2001.234
    6.傅竹西.固体光电子学.合肥:中国科学技术大学出版社,1999.145-146
    7.王忠和,张光寅.光子学物理基础.北京:国防工业出版社,1998.444-473
    8.Kolodinski S,Werner J H,Wittchen T,et al.Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells.Appl.Phys.Lett.,1993,63:2405-2407
    9.Green M A,Zhao J,Wang A,Wenham S R.45%efficient silicon photovoltaic cell under monochromatic light.IEEE Electron Device Letters,1992,13:317-318
    10.Olsen L D,Huber D A,Dunham G,et al.High efficiency monochromatic GaAs solar cells.In:Proceedings of 22-nd IEEE Photovoltaic Specialists Conference.New York:Institute of Electrical and Electronics Engineers,1991.419-424
    11.陈则韶,莫松平,李志宏,等.太阳能分频利用电热联产初步研究。工程热物理学报,2008,29(1):13-15
    12.陈则韶,莫松平.光量子等效温度和黑体辐射光谱有效能.自然科学进展,2007,17(5):687-691
    13.陈则韶,莫松平.辐射热力学中光量子的熵和光子气的熵.工程热物理学报,2007,28(2):193-195
    14.钱佑华,徐至中.半导体物理.北京:高等教育出版社,1999.231-233
    15.季振国.半导体物理。杭州:浙江大学出版社,2005.60-61,155
    1.Whitfield G R,Bentley R W,Weatherby C K,et al.The development and testing of small concentrating PV systems.Solar Energy,1999,67(1-3),23-34
    2.Luque A.Quasi-optimum pseudo-Lambertian reflecting concentrators:an analysis.Applied Optics,1980,19(14):2398-2402
    3.Feuermann D,Gordon J M.High-concentration photovoltaic designs based on miniature parabolic dishes.Solar Energy,2001,70:423-430
    4.Lorenzo E,Luque E.Fresnel lens analysis for solar energy applications.Applied Optics,1981,20(17):2941-2945
    5.陈维,李戬洪。太阳能利用中的跟踪控制方式的研究[J]。能源工程,2003,03:18-21
    6.王志辉,史红霞,任超。太阳自动跟踪装置计算机控制系统。机械制造,2008,46(11):20-22
    7.Lorenzo E,Luque E.Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.Applied Optics,1982,21(10):1851-1853
    8.Boes E C.Photovoltaic concentrator technology development[A].21st IEEE PVSC[C].Kissimmee,1990:944-950
    9.RYU K,RHEE J G,PARK K M,KIM J.Concept and design of modular Fresnel lenses for concentration solar PV system.Solar energy,2006,80(12):1580-1587
    1.Borden P G.Gregory P E,Moore O E,et al.A 10-unit dichroic filterspectral splitter module,in:Proceedings of the 15th IEEE Photovoltaic Specialists Conference,Florida:Kissimmee,1981,311-316
    2.Spring K H.Direct Generation of Electricity.New York:Academic Press,1965,353-355
    3.Converse A K.Refractive spectrum splitting optics for use with photovoltaic cells:a research plan and qualitative demonstration,in:McConnell R D(Ed.),Future Generation Photovoltaic Technologies:First NREL Conference,AIP Conference Proceedings,Denver,CO,1997,404:373
    4.Chendo M A C,Jacobson M R,Osborn D E.Liquid and thin-film filters for hybrid solar energy conversion systems,Sol.Wind Technol.,1987,4(2):131-138
    5.Sabry M,Gottschalg R,Betts T R,et al.Optical filtering of solar radiation to increase performance of concentrator systems,in:Proceedings of the 29th IEEE Photovoltaic Specialists Conference,New Orleans,LA,2002,1588- 1591
    6.邵瑞芝,范本尧。长寿命通信卫星的可靠性研究。中国空间科学技术,1996,4:24-33
    7.施钰川,黄国华。太阳电热联产装置。中国,发明专利,CN200410025990.0.2005.01.12
    8.蔡小舒。一种太阳能热、电利用装置。中国,发明专利,CN02111105.7.2003.10.01
    9.吴玉庭,马重芳。复合抛物面聚光热电综合利用装置。中国,实用新型,CN03245455.4.2004.04.28
    10.Hong Hui,Jin Hongguang,Ji Jun,et al.Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy.Solar Energy,2005,78(11):49-58
    11.Imenes A G.,Mills D R.Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:a review.Solar Energy Materrials & Solar Cells.2004,84(1-4):19-69
    12.泉久雄。经分离太阳射线为长波长射线和短波长射线的发电和加热的混合型太阳能聚集器。中国,CN95195538.1(已公告但撤消).1997.09.24
    13.陈则韶,莫松平。光量子等效温度和黑体辐射光谱有效能。自然科学进展,2007,17(5):687-691
    14.Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5:Direct Normal and Hemispherical for a 37 Tilted Surface,American Society for Testing and Materials,West Con shohocken,PA.http://rredc.nrel.gov/solar/spectra/aml.5/
    15.陈则韶,卢保罗,王海千,等。可自散热的太阳能聚集型光伏发电装置。中国,专利号:200610088176.2
    16.Vander Plas H A,Moon R L,James L W,et al.Operation of multi-bandgap concentrator cells with a spectrum splitting filter,in:Proceedings of the Second European Photovoltaic Solar Energy Conference,Berlin,1979,507-514
    17.Moon R L,James L W,Vander Plas H A,et al.Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight,in:Proceedings of the 13th IEEE Photovoltaic Specialists Conference,Washington DC,New York,1978,859-867
    18.Borden P G,Gregory P E,Moore O E.Design and demonstration spectrum splitting photovoltaic concentration module,Sandia Report SAND 82-7120,November 1982
    19.Fraas L M,Daniels W E,Muhs J.Infrared photovoltaics for combined solar lighting and electricity for buildings,in:Proceedings of the 17th European Photovoltaic Solar Energy Conference,Munich,Germany,2001,836
    20.Muhs J D,Earl D D.Adaptive,full spectrum solar energy system,World Patent 3,038,348,2003
    21.Yehezkel N,Appelbaum J,Yogev A.Photovoltaic conversion in a common solar concentrating and spectrally splitting system,in:Proceedings of the IEEE First World Conference on Photovoltaic Energy Conversion,Waikoloa,Hawaii,1994,1811-1813
    22.Lasich J B,Cleeve A,Kaila N,et al.Closed-packed cell arrays for dish concentrators,in:Proceedings of the IEEE First World Conference on Photovoltaic Energy Conversion,Waikoloa,Hawaii,1994
    23.Ma W B,Deng S M.Theoretical analysis of low-temperature hot source driven two-stage LiBr/H2O absorption refrigeration system.International journal of refrigeration,1996,19(2):141-146
    24.陈滢,朱玉群,耿玮,等。低温热源驱动的单效/双级(SE/DL)吸收式制冷循环。太阳能学报,2002,23(1):102-107
    25.陈光明,冯仰浦,飞原英治,等。一个用太阳能驱动的新型吸收制冷循环。低温工程,1999,1:50-54
    26.Riffat S B,Ma X.Thermoelectrics:a Review of Present and Potential Applications.Appl Therm Eng,2003,23:913-935
    27.沈辉,曾祖勤。太阳能光伏发电技术.北京:化学工业出版社,2005.79-80
    28.刘祖平。一种跟踪和聚光的全新理论—陈应天在太阳能利用研究领域的重大创新。中国科学技术大学学报,2006,36(12):1245-1256
    29.陈则韶,莫松平,李志宏,等。太阳能分频利用电热联产初步研究。工程热物理学报,2008,29(1):13-15
    30.黄文雄。太阳能之应用及理论。台北:协志工业丛书出版股份有限公司,1978,118-119
    31.Chen Z S,Mo S P.Effective temperature and exergy of monochromic blackbody radiation.Prog in Nat Sci,2007,17(10):1250-1254
    32.唐晋发。现代光学薄膜技术[M]。杭州:浙江大学出版社,2006
    33.Sullivan B T,Dobrowolski J A.Implementation of a numerical nee dle method for thin film design[J].Applied Optics,1996,35(28):5484-5492
    34.陈金灿,严子俊。半导体温差发电器性能的优化分析。半导体学报,1994,15(2):123-129
    35.Chen J.Thermodynamic analysis of a solar-driven thermoelectric generator.Journal of Applied Physics,1996,79(5):2717-2721
    36.Xi H,Luo L,Fraisse G.Development and applications of solar-based thermoelectric technologies.Renewable and Sustainable Energy Reviews,2007,11:923-936
    37.张华俊,陈浩,王俊,等。冷,热端温度对半导体热电堆发电性能影响的初步研究。太阳能学报,2001,22(2):148-152
    38.林比宏。太阳能半导体温差发电器的输出功率。泉州师范学院学报(自然科学),2002,20(6):20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700