用户名: 密码: 验证码:
铝酸钙预熔渣及其在转炉渣洗脱硫中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫对钢材的危害性很大。硫不仅能引起钢的热脆,而且对钢的热加工性能、力学性能、焊接性能、耐腐蚀性能、成型性以及冷镦性能都有很大的负面作用,所以脱硫一直是冶金工作者研究的重点之一。
     针对邯郸三炼钢100t BOF-130t LF脱硫生产现状,由于没有铁水预处理操作,出钢钢水硫含量高。单独采用LF精炼工艺,脱硫任务重,精炼周期长,冶炼低碳钢,特别是冶炼冷轧低碳钢时,LF炉在脱硫的同时,增硅增碳的现象较严重,影响了产品的最终性能和合格率。因此,在出钢过程中使用预熔渣并利用出钢动力学条件进行渣洗脱硫,将精炼炉的部分脱硫任务在出钢过程中完成,降低进LF钢水的硫含量,从而减轻了LF的脱硫负担。此外,使用的预熔渣经混冲后在LF精炼过程中所形成的精炼渣,还应具备较强的脱硫能力。
     在实验室配制铝酸钙预熔渣并进行脱硫实验。结果表明:该渣不添加CaF2脱硫效果更好。并得到该渣的成分最佳配比:CaO55%,Al2O340%,SiO23%,MgO2%。该渣系具有良好的脱硫效果,脱硫率达到85%。
     随后在邯郸三炼钢100t BOF-130t LF炉上进行预熔渣脱硫的工业试验。采用的预熔试验渣分为两种:预熔渣Ⅰ和预熔渣Ⅱ。结合现场生产数据,分析影响渣洗脱硫的因素,得到以下结论:
     (1)转炉终点钢水[C]含量直接影响终点钢水氧含量,终点钢水[C]含量高,有利于脱硫;
     (2)在相同的脱硫条件下,转炉终点[S]含量越高,渣洗脱硫率也越高;初始硫含量越低,渣洗过程脱硫也越困难;
     (3)预熔渣CaO含量对其本身的光学碱度和硫容量影响很大。在基本相同的加渣量下,预溶渣Ⅰ的CaO含量比预溶渣Ⅱ高出2%,平均渣洗脱硫率却从6.17%升高到16.79%;
     (4)增加渣洗用预熔渣量对提高渣洗脱硫率十分有利;
     (5)转炉出钢挡渣质量对渣洗脱硫产生影响;
     (6)LF出站渣光学碱度高、LF进站钢中[S]含量大和预熔渣加入量多均能提高LF精炼的脱硫效果。
Sulphur has large hurmfulness on the steel products.Not only it generate hot brittleness,also it can cause much negative impact on hot-working character, mechanical property,welding performance,resistant character, processability and cold- heading.So desulfurization is one of the study subject by metallurgists at all times.
     On 100t BOF-130t LF of Handan NO.3 steel works,with LF refining technology alone,for heavy desulfurization mission and long refining cyclic,the phenomenon of increasing silicium and carbon is much serious on refining low carbon steel specially the cold-rolling low carbon steel.The results impact the products’final performance and percent of pass.So applicating wash heat with premelting slag of high desulfurization efficiency and dynamics condition,part of desulfurization mission is completed on tapping process,the sulphur content of molten steel is decreased before entering LF,and the desulfurization mission is relieved on LF.Refining slag,which made of premelting slag must have great desulfurization capability on LF after wash heat.
     Calcium aluminate premelted slag is prepared for the desulfurization experiment. The result show that this slag’s desulfurization effect is better without CaF2. And its best component preparation as:CaO55%,Al2O340%,SiO23%,MgO2%. It has good desulfurization effect,and the desulfurization efficiency reaches 85%.
     The desulfurization commercial test is proceeded on 100tBOF-130tLF of Handan NO.3 steel works.The premelted slag is bifurcated asⅠandⅡ.The desulfurization infuence factor of wash heat is analysed combined the delivry data,and the conclusion is obtained as:
     (1) The carbon content affects the oxygen content in the molten steel of inconverter terminal. The larger the carbon content is, the more advantageous the desulfurization is.
     (2) Under the identical desulfurization condition,the larger the sulphur content is,the higher the desulfurization efficiency of wash heat is,and the fewer the sulphur content is,the more difficult the desulfurization is.
     (3) The slag’s optical alkalinity and sulphur capability is influenced badly by the CaO content. Compared slagⅠandⅡ,with the CaO content is increased by 2% ,the average desulfuri- zation efficiency rises from 6.17% to 16.79%.
     (4) Large quantity of slag is advantageous on increasing desulfurization efficiency of wash heat.
     (5) Desulfurization of wash heat is influenced by the skimming quality on converter tapping.
     (6) Desulfurization effect on LF is increased with the high optical alkalinity of exit-station, large sulphur cotent of enter-station and large quantity of refining slag.
引文
[1] 赵志玲.铁水脱硫工艺开发的新进展[J].包钢科技,2001,27(4):16~18.
    [2] 李凤喜,喻承欢等.KR 法与喷吹法两种铁水脱硫工艺的探讨[J].炼钢,2000,16(1):47~50.
    [3] 王维邦.耐火材料工艺学[M].北京:冶金工业出版社,1983.
    [4] 蒋光义,吴德昭.加热炉[M].北京:冶金工业出版社,1978.
    [5] 牛四通,成国光,张鉴等.埋弧渣精炼技术的应用[J].特殊钢,1996,17(2):47~51.
    [6] 张发.钢包喂 B-Fe 芯线工艺研究[J].黑龙江冶金,1999(2):6~8.
    [7] 张发.齿轮钢包中喂钛铁芯线工艺研究[J].黑龙江冶金,1998(4):1~3
    [8] 王金钟.钢包喂稀土芯线工艺[J].钢铁,1993,28(11):24~27.
    [9] 牛四通,杨德华等.LF埋弧渣技术的开发及其应用[J].钢铁,1997,(3):21.
    [10] 牛四通,杨德华等.埋弧渣精炼技术的应用[J].特殊钢,1996,17(2):47.
    [11] 蒋仲乐.炼钢工艺及设备[M].北京:冶金工业出版社,1981.
    [12] 黄钢汉,牛四通,李士琦等.新冶金渣系的开发及其应用闭[J].包头钢铁学院学报,1999,18(增刊):398~400.
    [13] E.T.Turkdogan,et al.Ironmaking and Steelmaking,1985,112(2):132~143.
    [14] 陈俊峰,李广田,李文献等.LF 预熔精炼渣成分优化的研究[J].材料与冶金学报,2003,2(3):173~176.
    [15] Gilbert S,Mons G G,Turkdogan J T.Ladle refining of steel using an exothermic synthetic slag[J].Steelmaking conference proceedings, 1988, 9(4):29.
    [16] 李文献.LF 炉预熔精炼渣的研究与应用.东北大学硕士论文[D],2003:31~32.
    [17] 张东力等.LF精炼渣发泡性能的实验研究[J].钢铁研究报,2003,15(6):12~15.
    [18] 兰杰,丁文江,姜周华,丙树森.精炼渣系起泡性能与炉渣物理性质的关系[J].特殊钢, 1999,20(1):15~17.
    [19] 兰杰,姜周华,黄宗泽等.CaO-A1203-CaF2-SiO2-MgO五元精炼渣系的起泡性能[J].钢铁研究学报,1999,11(2):14~18.
    [20] 袁伟霞,邹阳,桂美文等.LF炉埋弧渣的开发及应用研究[C].中国金属学会炼钢学会编,第9届全国炼钢学术会议论文集,广州:1996.423.
    [21] 乐可襄等.CaO-SiO2-MgO-Al2O3渣的脱硫性能[J].特殊钢,1998,(3):25~271.
    [22] 1551 IVANP RACHEV.Behavior of Sulphurin BaO-BaF2 Slags.Metallurgical Transaction. 1993(81):438.
    [23] J.A.Duffy and M.D.Ingram,Journal of the chemistry society Farady Trans,1978, 74(6):1410.
    [24] 张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社,1993.
    [25] Riboud P V,Gallier C. New products:What should be done in secondary steehnaking?[J], Ironmaking and Steelmaking,1985,12(2):79~86.
    [26] Fruehan R J. The thermodynamics and processd ynamics of ladle furnace refining process[J],ISS Transactions,1985,6(2):43~49.
    [27] King T B.Kinetics of steelmaking reactions[J], Electric Furnace Steelmaking, Iron and Steel Society,Inc,Warrendale,PA,1985:337.
    [28] 陈家样.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984:636.
    [29] 赵玉祥,沈颐身.现代冶金原理[M].北京:冶金工业出版社,1993:484~487.
    [30] 战东平.钢的二次精炼过程预熔渣深脱硫理论与工艺研究[D].东北大学,2003.
    [31] 姜周华.UHP电弧炉兑铁水及LF炉精炼埋弧渣冶炼工艺理论及应用[D].沈阳:东北大学,2000.
    [32] 张荣生.钢铁生产中的脱硫[M].冶金工业出版社,1986.
    [33] 战东平,姜周华,梁连科等.150tEAF-LF 预熔精炼渣脱硫实验研究[J].炼钢,2003, (2):48~50.
    [34] 顾文兵,刘晓,杨宝权.宝钢电炉纯净钢生产实践[J].钢铁,2000,35(3):16~18 .
    [35] 崔健,朱立新,郑贻裕.宝钢 IF 钢、管线钢冶炼技术进展[A].中国钢铁年会论文集[C],北京:中国金属学会,2001,564~569.
    [36] Gilbert S,Mons G G,Turkdogan J T.Laddle refining of steel using an exothermic slag[J].Steelmaking conference proceedings,1988,9(4):29.
    [37] S L De Souza Costa,A Estevao,H N De Oliveira Barros.Clean Steel Practice at USIMINAS,Proceedings of the 3rd International Conference on Clean Steel,BALATONURED, HUNGARY,on 2~4 June 1986:289~295.
    [38] Franz Oeters. Metallurgy of Steelmaking,1994 Verlog Stahleisen mbH, Dusseldorf: 84.
    [39] 金山同,邹明金.预熔型保护渣。点。熔和。体。熔的行为[J].北京科技大学学报, 1989,11(6):515~524.
    [40] 黄书谋,周宗辉.关于 CA·CaF 稳定性的研究[J].四川建材学院报,1992,7(3):47~50.
    [41] 王书桓等.12CaO·7A12O3型精炼合成渣物性与脱硫试验[J].河北理工学报,2001,23(3):9~13.
    [42] 周燕.光学碱度在冶金中的应用[J].钢铁研究学报,1996,8(1):53~56.
    [43] 陈兆平,姜茂发,李殷泰.光学碱度在钢铁冶金中的应用[J].钢铁研究,1993(3):3~6.
    [44] 赵和明,谢兵. LF 炉精炼渣冶金性能的研究现状[J].钢铁钒钛,2002,23(4):53~58.
    [45] 战东平等. CaO-Al2O3-CaF2-MgO-SiO2五元预熔渣系钢水深脱硫实验研究[M].炼钢,2002,18(6):33~36.
    [46] Simeonov S R.et al.SIJ International.1991,31(12):1396.
    [47] 田乃媛.薄板坯连铸连轧[M].北京:冶金工业出版社,1998.
    [48] 赵国华. 薄板坯连铸连轧机组轧制技术简介(上)[J].一重技术,2003,95(1):4~8.
    [49] 赵国华. 薄板坯连铸连轧机组轧制技术简介(下)[J].一重技术,2003,96(2):1~6.
    [50] W.Bald,G.Kneppe,D.Rosenthal,P.Sudau.Innovative technologies for st- rip production,5th World Steel Conference,London March,1999.
    [51] 徐静波,佟溥翘.复吹转炉在溅渣下的长寿复吹效果[J]. 炼钢,2002,18(3):6~9,14.
    [52] Franz Oeters. Metallurgy of Steelmaking, 1994, Veriog Stahleisen mbH, Dusselderf: 69~85.
    [53] 吴铿,梁志刚.包钢 LF 精炼过程脱硫工业实验研究[J].钢铁,2001,36(8):16~18,15.
    [54](德)F.奥特斯著;倪瑞明等译.钢冶金学[M].冶金工业出版社,1997.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700