用户名: 密码: 验证码:
无取向电工钢RH脱硫工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,攀枝花钢铁(集团)公司无取向电工钢的生产仅依靠铁水深脱硫、降低转炉回硫来控制硫含量,硫含量仅能控制在0.008%以下,已无法满足用户对无取向电工钢质量的要求。因此为满足客户对无取向电工钢质量日益增长的要求,攀钢急需开发高牌号的超低碳、超低硫无取向电工钢。
     本研究以攀钢现有生产条件为依据,确定了真空室直接加入脱硫剂的加入方法;并针对CaO-CaF2渣系的脱硫剂,对设备造成严重侵蚀以及对环境造成较大影响的问题,通过实验室钢渣试验,利用二次正交回归试验方法,筛选出了以CaO-Al2O3为基础渣系,优化了MgO、BaO、CaF2、Na2O等化学组分含量的RH用低氟脱硫剂配方:CaO/Al2O3值:2~2.2,MgO:6%~9%, BaO:13%~15%, CaF2:5%-8%, Na2O:适量。提高了脱硫效率、无取向电工钢成品硫含量降低了37.5%以上,并且减轻了RH脱硫过程中对设备的侵蚀以及环境的污染。
     通过在攀钢进行的工业试验,确定了脱硫处理时间、钢包顶渣组成以及钢包顶渣碱度等无取向电工钢RH脱硫的关键工艺控制条件:
     (1)RH进站钢包顶渣碱度要求在5以上;
     (2)钢包顶渣中的(FeO+MnO)含量要控制在12%以下;
     (3)RH处理过程中脱硫时间在10min以上;
     (4)钢包顶渣中Mg0含量控制在8-10%。
     在此基础上,开发出了适合攀钢现阶段生产实际的无取向电工钢RH脱硫工艺。
     工艺路线为:LF工序调整钢包顶渣碱度在5以上,(FeO+MnO)含量在10%以内;RH吹氧强制脱碳后自然脱碳15min。真空脱碳结束后,加入脱硫剂,真空循环10min。钢水处理完后对RH设备进行喷补。
     采用新工艺,攀钢无取向电工钢的硫含量成功降到0.005%以下,提高了攀钢无取向电工钢的质量,为开发更高级别无取向电工钢奠定了基础。
Currently, in Panzhihua Iron & Stell (Group) Co. the sulfur content in non-oriented electrical steel is controlled by deep desulfurization of iron and reducing the sulfur content of sulfur from converter, but the sulfur content just arrive at 0.008% or less,which is unable to meet the quality of non-oriented electrical steel. Therefore, there is an urgent need to research and develop high quality non-oriented electrical steel with ultra-low carbon, ultra low sulfur in Panzhihua Iron & Stell (Group) Co..
     In this paper, based on Panzhihua Iron & Stell (Group) Co.'s production equipments system and process, the auther have explored a desulfurization method of directly adding the desulfurization agent into the vacuum chamber of RH furnace. The use of CaO-CaF2 slag desulfurization equipment will cause severe erosion and the environment pollution, the auther haved experimented and selected a kind of low fluoride RH slags which is mixture of CaO,Al2O3,MgO, BaO, CaF2 and Na2O. By comprehensive consideration of physicochemical properties of slag in the study, the optimized composition of refining slag ought to be CaO/Al2O3 value:2~2.2, MgO:6%~9%, BaO:13%~15%, CaF2:5%~8%, Na2O: moderate. The use of new formulations sulfur content have decreased 37.5% in finished non-oriented electrical steel product,reduces the erosion of equipment and environmental pollution.
     We have determined the key process control conditions of RH desulfurization by the industrial study in Panzhihua Iron & Stell (Group) Co. for example the desulfurization processing time, ladle slag composition and ladle slag alkalinity.
     (1)The alkalinity of ladle slag is required not less than 5.
     (2)The (FeO+MnO) content in ladle slag should be controlled to below 12%.
     (3)RH desulfurization process should more than 10 minutes.
     (4)The MgO content in ladle slag should be controlled between 8% and 10%.
     On this basis, we identified a suitable non-oriented electrical steel RH desulfurization process at this stage Panzhihua Iron & Stell (Group) Co..
     Process route is:LF process should control the ladle slag alkalinity not less than 5 and the (FeO+MnO) content below 10%.It more than 10min of natural decatbutization after force decarbutization. The vacuum cycle time more than 10min after sorbent was added.when the end of desulfurization equipement should be maintenance.
     The sulfur content in non-oriented electrical steel is controlled to below 0.005% or more less by the new process, which increases non-oriented electrical steel quality and lays a foundation for the development of higher level of non-oriented electrical steel.
引文
[1]魏天斌.国外取向电工钢工艺发展新趋势[J].钢铁研究,2007,(1):55-56.
    [2]曹树卫.浅析电工钢的生产现状及技术发展[J].轧钢,2008,25(5):35-38.
    [3]徐跃民.我国电工钢的生产现状及发展趋势[C].第十届全国电工钢专业学术年会论文集,2008.
    [4]卢凤喜,我国电工钢产销分析与预测[J].冶金信息导刊,2006,(2):13-15.
    [5]荣光.冷轧硅钢的工艺生产概述[J].本钢技术,2008,(3):25-27.
    [6]赵宇.国外冷轧硅钢生产技术动向[C].第十届全国电工钢专业学术年会论文集,2008.
    [7]陈家祥.钢铁冶金学[M].北京:冶金工业出版社.1990.
    [8]徐曾啟主编.炉外精炼[M].冶金工业出版社,2002.
    [9]何忠治.电工钢[M].北京:冶金工业出版社.1997.
    [10]Rastogi P K. Energy Efficient Electrical Steels,Ed. by Marder A R and Stephenson E T, TMS-AIME 1980,184-191.
    [11]Soejima T,Sato T,Matsomoto H.,etal. Desulphurization of molten steel by flux addition in RH degasser[J]. Trans. Iron & Steel Inst.Japan,1985(25):144.
    [12]李敏.半工艺无取向电工钢的相关检测与研究[D],长沙:中南大学,2008.
    [13]高振宇.高效压缩机用冷轧电工钢的研制开发[D],沈阳:辽宁科技大学2007.
    [14]郑建忠,黄宗泽等.RH精炼过程深脱硫的试验研究[J].宝钢技术,1996,(6):33-36.
    [15]汪明东,杨素波.RH用脱硫剂实验室研究[J].钢铁钒钛,2001,22(1):48-52.
    [16]刘良田.RH真空深度脱硫[J].武钢技术,1990,28(1):16-20.
    [17]雄银成.重钢铁水喷粉脱硫工艺优化[D],重庆:重庆大学,2002,10.
    [18]陈浩.重钢铁水喷粉脱硫粉剂的研制及脱硫工艺参数的优化[D],重庆:重庆大学,2002,10.
    [19]许畅,张奉山,李小明等.武钢第一炼钢厂低硫钢冶炼过程回硫分析[J].钢铁研究.2006,1(34):41-43.
    [20]Mark S.Fenton Ronh.Merk. Blair A.Otterman. Stelco钢铁公司Lake Erie厂超低硫钢的生产[J].重钢技术,2006,49(1):16-21.
    [21]田野学,樱井荣司,古野好克,ほか.溶钢的取锅精炼[J].CAMP ISIJ,1995, (8):273-275.
    [22]松野英寿,菊地良辉,山田健三.环流式脱ガス炉にぉけゐ溶钢脱硫举动[J].铁と钢,1999,85(7):9-14.
    [23]罔田泰和.RH粉料顶吹精炼法的开发[J].世界钢铁,1995,(1),24-27.
    [24]桐原理,山口公治,加藤嘉英,ぱか.RH机能扩大にとゐ高纯度钢溶制プロセセの开发[J].CAMP-ISIJ,1993,85(6):142-145.
    [25]郭雷.RH法主要精炼工艺的发展与应用[J].上海金属,1995,17(1),21-25.
    [26]赵沛.炉外精炼及铁水预处理实用技术手册[M].北京:冶金工业出版社.2004.
    [27]汪明东,李扬州,仲剑丽.RH钢水真空处理技术现状[J].钢铁钒钛,1997,18(4):35-41.
    [28]艾立群,蔡开科.RH处理过程钢液脱硫[J].炼钢,2001,17(3):53-57.
    [29]战东平,姜周华,罗建江等.RH-KTB预熔渣深脱硫实践[J].钢铁,2005,(40)11:27-29.
    [30]时启龙.RH用少氟或无氟脱硫剂的开发[D].武汉:武汉科技大学,2006.
    [31]Hatakeyama T,Mizukami Y,Iga K.Development of a new secondary refining process using an RH vacuum degasser[J].Iron & Steelmaker,1989,16(7).23-29.
    [32]小岛政道,速藤公一.高级铜管ぉとてッ薄板にぉけゐ高纯度铜裂造技术[J].铁と鋼,1990,76(11):1948-1955.
    [33]黄志勇,颜根发.含BaO渣系“渣洗”脱硫工艺的试验研究[J].安徽冶金科技职业学院学报.2009,19(2):1-4.
    [34]郭上型,王建军等.RH用低氟型CaO+Al2O3基溶剂深脱硫工业试验[J].钢铁钒钛,2009,30(2):46-49.
    [35]Sosinsky DJ,Sommerville ID.The Composition and Temperature Dependence of The Sulfide Capacity of Metallurgical Slag[J].Metal.Trans.1986,17B:331-337.
    [36]黄希祜编.钢铁冶金原理[M].北京:冶金工业出版社,2000.
    [37]Duffy J D, Ingram M D. Use of Optical Basicity Concept for Determining Phosphorus and Sulfur Slag Metal Partitions[J].Inorg.Nucl.Chem,1975,37:1203.
    [38]棍冈博幸著,李宏译.炉外精炼[M].北京:冶金工业出版社,2002.
    [39]Young R W,Duffy J A,Hassall G J,etal.Use of Optical Basicity Concept for Determining Phosphorus and Sulfur Slag Metal Partitions [J].Iron making and steelmaking,1992,119(3):201-219.
    [40]万真雅,郭上型.LF(钢包炉)固体合成渣脱硫工业性试验研究[J].钢铁,1995,30 (9):14-18.
    [41]Wu G S.Sulfur Absorption Rate of Some Pre-melted Fluxes during Heating Period[J].Ironmaking and Steelmaking,1987,14(6):291.
    [42]白增玉.钢包精炼炉发展动向[J].大连特殊钢,1994,(1):11-17.
    [43]周宏,吴晓春,崔崑.硫在CaO-Al2O3熔渣与钢液间的分配率比[J].钢铁,1995,30(6):14-17
    [44]马杰.BaO, CaO钢液脱硫的实验研究与分析[J].上海金属,1998,20:40-45.
    [45]祝贞学,李桂荣.BaO, B203对CaO基精炼渣熔化性能及脱硫能力的影响[J].北京科技大学学报,2006,28(8):724-727.
    [46]翁宇,王忠东.利用光学碱度计算含CaF2脱硫剂脱硫能力的研究[J].炼钢,1999,15(1):25-28.
    [47]陆钢,成国光,宋波等.含BaO, Na20渣系渣钢间硫平衡研究[J].包头钢铁学院学报,2001,20(3):280-284.
    [48]王建明.钢铁脱硫技术(一)[J].机械工人.热加工,2005,(8):68-70.
    [49]刘浏.超低硫钢生产工艺技术[J].特殊钢,2000,21(5):29-33
    [50]李素琴.极低硫钢精炼脱硫动力学模型[J].北京科技大学学报,2004,26(3):244-246.
    [51]朱卫民.RH真空脱硫的热力学研究[J].上海金属,1990,12(6):19-22.
    [52]Ishii A,Tare M,Ebisawa T.The ladle refining process for alloyed oil country tubular goods steels at Nippon Kokan K[J].Iron and Steelmaker,1983,12(7): 35-42.
    [53]Sundberg Y.Mechanical Stirring Power in Molten Metal in Ladles Obtained by Induction Stirring and Gas Blowing[J].Scan.J.of Metallurgy,1978,70:81-87.
    [54]高艳宏.LF含Ba精炼渣的研制与应用[D].东北大学,2005.
    [55]Assocition of Germanysteel. Slagmaps[M].Metallurgical Industry Press,1989.
    [56]吕庆,尹海生COREX工艺中高MgO炉渣性能的研究[J].河北理工学院学报.1996,(4):21-23.
    [57]Turkdogen E T. Physical Chemistry of high Temperature Technology. New York: Academic Press,1980.
    [58]茂森弘靖.新日铁八幡厂改用Mg-CaO脱硫剂进行铁水脱硫[J].材料とプロセス,1996(1):223.
    [59]Filippose Patsiogiannis,Uday B.Pal and Robert S.BOGAN.Laboratory Scale Refining studies on low carbon aluminium killed steels using synthenic fluxes.ISIJ International.1994,2(34):140-149.
    [60]Kishida T, Yajima T, Ukai A. Recent developments of ladle furnace(LF) process in Japan[A],7th ICVM,Tokyo,1982,1148-1162.
    [61]吴晓春.硫在CaO-Al2O3熔渣与钢液间的分配率[J].钢铁,1995,(6):14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700