用户名: 密码: 验证码:
U形渠道圆柱体(筒)量水槽试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在Hager和Zohrab Samani等研究成果的基础上,提出了一种适用于圆弧底上切一直线段的U形渠道的圆柱体(筒)量水槽。该量水槽的测流原理是利用垂直安装在U形渠道轴线上的圆柱(筒)缩窄渠道过流断面产生足够的水面降落,使其测流断面产生临界水流状态,形成稳定的水位~流量关系,通过测量驻点水位计算渠道流量。试验研究中,采用理论分析和模型试验相结合的方法,推导出了U形渠道圆柱体(筒)量水槽的临界水深和理论流量计算公式,确定了量水槽的流量校正系数和自由出流条件下的流量计算经验公式,并进行了量水槽的性能分析。
     U形渠道圆柱体(筒)量水槽量测流量时,由于临界流断面的流速分布不均匀和流线弯曲的影响,计算的流量应乘以一个校正系数。对于圆弧底上切一直线段的U形渠道,当θ和r确定后,弦长L与渠道断面存在唯一对应关系,因此,其校正系数可以作为相对能量H/L的函数求得,其中H为上游能量,L为U形渠道的弦长。通过不同柱体直径和不同流量试验资料分析表明,相对能量(H/L)和相对流量(Qm/Qc)具有非常好的相关关系,其中Qm为实测流量,Qc为计算的理论流量。并利用试验数据建立了相对能量(H/L)和相对流量(Qm/Qc)的无因次关系式。
     采用9种不同圆柱体(筒)直径进行了试验研究,分析了U形渠道圆柱体(筒)量水槽的水位流量关系、圆柱体的直径(收缩比ε)选择范围、测流误差和临界淹没界限。根据试验数据分析,临界水深、上游水深和驻点水深相互之间均呈现良好的线性关系,驻点水深与实测流量和计算流量也呈现良好的线性关系。圆柱体直径是影响U形渠道圆柱体(筒)量水槽测流误差的一个重要参数,如果选择的柱体直径过大或过小,都会引起测流误差。但是,只要限定柱体直径在某一范围内,即量水槽收缩比ε在某一范围内,那么,由柱体直径的改变导致上游水位的变化所引起的测流误差将小于某一数值。通过试验数据分析得出,收缩比ε在0.57~0.69范围内时,测流误差较小,并且壅水高度较小(Δh≤0.1m)。因此,U形渠道圆柱体(筒)量水槽的柱体直径可在收缩比ε为0.57~0.69区间内进行选择。同时得出,量水槽的最大误差为3.78%,临界淹没度S为0.73~0.84。
     本论文的创新点为:①首次针对圆弧底上切一直线段的U形渠道进行了圆柱体(筒)量水槽试验研究,推导出了其理论流量计算公式,并得出了自由出流条件下的流量计算经验公式;②提出了U形渠道圆柱体(筒)量水槽计算流量应乘以一个校正系数,其校正系数可以作为相对能量H/L的函数求得,并利用试验数据建立了相对能量(H/L)和相对流量(Qm/Qc)的无因次关系式;③分析了驻点水深、临界水深和上游水深的关系,三者之间存在很好的线性关系,驻点水深与实测流量和计算流量也呈现良好的线性关系。因此,认为用驻点水深来计算理论流量是正确可靠的;④分析了U形渠道圆柱体(筒)量水槽圆柱体的直径(收缩比ε)选择范围、测流误差和临界淹没界限。
     U形渠道圆柱体(筒)量水槽具有结构简单,施工制作容易,成本低;对于小型U形渠道,可以移动使用,不产生淤积,管理使用方便;测量精度较高,根据试验结果,最大误差为3.78%,满足灌区量水要求;量水槽的断面收缩比为0.57~0.69,圆柱体(筒)直径选择范围较大;量水槽最大淹没度为0.84,具有较宽的自由出流范围,不易造成淹没出流等优点。
Based on the achievements of Hager and Zohrab Samani et al., a cylinder measuring water device was put forward for U-shape channel with a circular arc-shape bottom and tangent straight sides in this paper. The principle of this measuring water device was that using a cylinder vertically installed on the axis of U-shape channel to contract and narrow the water flowing section, produces enough water surface falling and forming the critical flow state. It can be obtained the stable correlation between water level and discharge. So the discharge could be measured only by water level at the stagnation point. In the experiment study, using the method integrated the theoretical analysis with the model testing, the calculating formulae of critical water depth with the discharge has been derived out. The adjustment factor for the discharge and the experiential calculating formula for the discharge under the condition of free outflow have been determined. Moreover, the performance of the measuring water device has been analysed.
     When using the cylinder to measure the discharge in U-shape channel, due to the water velocity nonuniform distribution and the impact of crooked streamline at critical flow section, so the calculated discharge should be revised by an adjustment factor. For the U-shape channel with a circular arc-shape bottom and tangent straight sides, after the central angle (θ) and radius (r) of arc-shape bottom were given, there was unique correlation between the chord length (L) to the channel section. Therefore, the adjustment factor can be given by the function of relative energy H/L (ratio of upstream water head (H) to the chord length (L)). Through the analysis for the experiment data by the different diameters of the cylinder with the different discharges, have shown very good correlativity between the relative energy H/L and the relative discharge Qm/Qc (ratio of measured discharge (Qm) and the calculated theoretical discharge (Qc) ). Also using the experiment data, without dimension equations of relative energy H/L and relative discharge Qm/Qc have been established.
     Using the nine different diameters of cylinder to carry out the experiment in U-shape channel, the correlation between water level and discharge for the cylinder measuring water device, the cylinder diameter selecting range (which determines the shrinkage ratio), the measuring error and the boundary of critical submergence flow have been analyzed. According to the analysis for the experiment data, between the critical water depth, the upstream water depth and the stagnation-point water depth total have been shown the favorable linear correlation one another, also among the stagnation-point water depth, measured discharge and calculated discharge have shown the good linear relationship too. The diameter of cylinder was the important factor for affecting the measuring precision. If the diameter of the cylinder selected too big or too small, total will be caused the measuring error. However, only limited the diameter of the cylinder in a certain of range, i.e. the shrinkage ratio(ε) in a certain of range, well then the discharge measuring error could be acceptable. Through the analysis for the experiment data, have obtained when the shrinkage ratio(ε)was within 0.57 to 0.69, the measuring error will be rather small and the backwater level will be less than 0.1m. So the diameter of the cylinder should be selected within the shrinkage ratio from 0.57 to 0.69, the maximum absolute error was less than 3.78%, and the critical submergence degree was 0.73 to 0.84.
     The innovation points in this paper were:①Pointed to the U-shape channel with a circular arc-shape bottom and tangent straight sides to carry out the experiment and research on the cylinder water measuring device for the first time, has derived the calculation formula for the theoretical discharge and obtained the experienced calculation equation of discharge under the condition of free outflow;②Put forward the calculated discharge should be revised by an adjustment factor that could be determined by the function of relative energy H/L, Also using the experiment data, the without dimension equations of relative energy H/L and relative discharge Qm/Qc have been established;③The relationship between stagnation-point water depth and the critical water depth with the upstream water head have been analysed, between the three depths have shown rather good linear relations. Also the stagnation-point water depth with the measured discharge and calculated discharge have been shown good correlation too. Therefore, it was reliable that using the stagnation-point water depth to calculate theoretical discharge;④The selecting range of appropriate diameters of cylinder, the error of measuring discharge and the critical submergence degree have been analysed.
     The cylinder water measuring device has the advantages such as simple structure, easy construct and install with a low cost and high measuring precision, with a maximal absolute error of 3.78% to satisfy the water measuring requirement in irrigation district. It could be used from one place to other, and no sediment problem in the U-shape channel. The section shrink ratio of this device was from 0.57 to 0.69, therefore, the diameter range of cylinder could be chosen widely. The maximum submergence degree was 0.84, so with wide range of free outflow, and hardly to cause the submergence outflow and so on.
引文
[1]陈志恺.中国水资源的可持续利用问题[J].水文,2003,(1)1~5.
    [2]孙天华,李贵宝,傅桦.水环境标准与水资源的可持续发展[J].水资源保护,2006,(1)53~57.
    [3]国家发改委,科技部,水利部等. 中国节水技术政策大纲[S].2005.6.
    [4]蔡勇,周明耀.灌区量水实用技术指南[M] .中国水利水电出版社,2001.
    [5]陈梦华,韩克敏,宋向荣.灌区量水技术的研究进展[J].中国农村水利水电,2001,(9)44~45.
    [6]郝树荣,任瑞英,郝树刚.灌区量水技术的发展与展望[J].人民黄河,2003,(11)41~43.
    [7]Herschy,RW.Stream flow measurement[M]. London: Elsevier Science Publishers,1985.
    [8]王智,朱风书.平底抛物线形无喉段量水槽试验研究[J].水利学报,1994,(7)12~23.
    [9]范家炎,史伏初,郑浩杰.灌区量水设备[M].北京:水利电力出版社,1987.
    [10]谢崇宝,高占义,朱嘉英.灌区量水技术与设备发展现状及趋势[J].节水灌溉,2003,(6) 24~26.
    [11]朱嘉英.灌区水量量测技术与节水[J].节水灌溉,1998,(5)28~30.
    [12]水利量测技术专业委员会.水利量测技术进展综述[J].中国水利,2004,(11)34~36.
    [13]朱风书,王智.灌溉渠系量水技术[J].山西水利科技,1996,(3)21~24.
    [14]朱嘉英.灌区水量量测技术与节水[J].节水灌溉,1998,(5)14~17.
    [15]张志昌.U 形渠道量水设施综述[J].西安理工大学学报,1995,11(3)214~219.
    [16]吴景社,朱风书,康绍忠等.U 形渠道适宜量水设施及标准化研究[J].灌溉排水,2004,(2)38~41.
    [17]马孝义,王文娥,吕宏兴等.U 形渠道量水槽的性能分析与筛选研究[J].农业工程学报,2002,18(4)44~49.
    [18]沈波,吉庆丰,程吉林.长喉道量水槽的设计新方法[J].排灌机械,2001(6)23~26.
    [19]W.H.Hager.Mobile flume for circular channel. Journal Irrigation and Drainge Engineering,1988.114(3)520~534.
    [20]Boiten W.Vertical Gates for Distribution of Irrigation Water[J].Agriculture Univ, W ageningen,Netherland.1992.
    [21]Smith C D.Open channel water measurement with the broad-crested weir.A Bull Int Commn Irrig Drain,1958.
    [22]陈健康,沈波.长喉道量水槽的应用研究[J].灌溉排水,2001(4)26~29.
    [23]吉庆丰,沈波.灌区量水设施研究开发进展[J].灌溉排水,2001,20(4)65~68.
    [24]M.G.Bos. Long-throated Flumes and Broad-crested Weirs[J].Martinus Nijhoff/Dr W.Junk.Publishers,1985.
    [25]Z.Samani,H.Magallanez. Simple flume for flow measurement in open channel[J].Journal Irrigation and Drainage Engineering,2000,126(2)127~129.
    [26]张志昌,张漫丽,王开民.U 形(圆底形)长喉道测流槽水力特性的研究[J].陕西水力发电,2000,16(2)5~8.
    [27]周明耀,陶长生主编.灌区管理工作手册[M].南京:河海大学出版社,1993.
    [28]熊运章,朱树人.灌区管理手册[M].北京:水利电力出版社,1994.
    [29]中国水利学会水利量测研究会灌区量测技术学组.灌区用水管理与量水技术论文集北京[C].北京:中国水利水电出版社,1997.
    [30]Ing.G.Garbrecht. Important water measurement in irrigation system. ICID Bulletin, January 1980, vol.29,no.1.
    [31]中国农科院农田灌溉研究所地面灌溉组.灌溉渠道上一种新型简易量水槽[J].1985,4(2)25~29.
    [32]尚民勇等,U 形长喉道量水槽的试验研究[J].陕西省水利科学研究所,1988,11~14.
    [33]沈波,吉庆丰,程吉林.长喉道量水槽的设计新方法[J].排灌机械,2001,(6)23~26.
    [34]沈波,吉庆丰,黄勇.即插式长喉道量水计的研究开发[J].农业工程学报,2003,19(6) 21~24.
    [35]吉庆丰,沈波,高峰.长喉道量水槽设计软件的研究开发[J].灌溉排水学报,2003,(2)31~35.
    [36]张志昌等编著.U 形渠道测流[M].西安:西北工业大学出版社,1997.
    [37]张志昌等.抛物线渠道长喉道测流槽的设计方法[J].西安理工大学学报,2003,19(1) 25~28.
    [38]陕西省水利厅编.U 形渠道.北京:水利电力出版社,1986.
    [39]卫勇.抛物线型渠道的设计与特征水深的计算.甘肃水利水电技术,1993,(1)44~47.
    [40]Ackers P, etc. Weirs and Flumes for Flow Measurement[M]. John Wiley Sone Ltd,1978.
    [41]尚民勇.U 形长喉道量水槽的试验研究及其应用[J].陕西水利,1991,(3).
    [42]U 形渠道量水设施研究课题组.U 形渠道平底抛物线型量水槽的研究[J].陕西水利,1990, (4)16~19.
    [43]ISO 标准手册 16.明渠水流测量[M].北京:中国标准出版社,1986.
    [44]清华大学水力学教研组编.水力学[M].北京:高等教育出版社,1984.
    [45]刘润生,主编.水力学[M].南京:河海大学出版社,1992.
    [46]Harrison A J M. Bound Layer Displacement Thickness on Flatplates[J]. Proc.Arm.Soc.Civ.Engrs 93(HY4).79~91.
    [47]Giu M A. Flow Mensurement by Triangular Brood-crested Weir[J]. Water Power.1985,(8)47~49.
    [48]张志昌,刘亚菲,李建中.边界层方法在明渠测流槽水力设计中的应用[J].水利学报,1998,(5)18~23.
    [49]黄久林,王明星.V 型短顶堰及便携式巴歇尔水槽模型试验介绍[J].山东水利科技 1997,(3)28~30.
    [50]张志昌,刘亚菲.U 形渠道便携式测流槽[J].陕西水利,1995,(S1)31~33.
    [51]吕宏兴.明渠水力最佳断面的比较[J].人民长江,1994,(11)43~45.
    [52]吕宏兴,裴国霞,杨玲霞.水力学[M].北京:中国农业出版社,2002.
    [53]马孝义,朱晓群,王文娥等.U 形渠道抛物线形量水槽设计多媒体软件的研制[J].水土保持研究,2002,9(2)78~81.
    [54]吕宏兴,朱晓群,张春娟等.抛物线形喉口式量水与设计[J].灌溉排水,2001,20(2)55~57.
    [55]吕宏兴,朱风书,马孝义等.U 形渠道平底抛物线形无喉段量水槽流量公式的改进[J].灌溉排水.1999,(3)30~34.
    [56]朱风书,马孝义,朱晓群等.U 形渠道抛物线形移动式量水堰板研究[J].农业工程学报.2002,18(3)36~40.
    [57]吕宏兴,余国安,陈俊英.矩形渠道半圆柱形简易量水槽试验研究[J].农业工程学报.2004,19(6)81~83.
    [58]洪成,吕宏兴,张宽地.U 形渠道机翼形量水槽试验研究[J]. 灌溉排水学报.2005,15(1) 63~65.
    [58]Hagger W H. Modifield Venturi Channel[J].J Irrig Drain Eng,1985,111(1)19~35.
    [59]Samani Z,M agallanez H. Simple Flume for Flow Measurement in Open Channel [J]. J Irrig Drain Eng,2000,126(2)127~129.
    [60]Vito Ferro. Discussion of Simple Flume for Flow measurement in Open Channel by Zohrab Samani and Henry Magallanez[J]. J Irrig Drain Eng,2002, 128(2)129~ 131.
    [61]Z.Samani,H.Magallance. Hydraulic Characteristics of Cricular Flum [J]. Journai Irrigation and Drainge Engineering,1991,112(2)236~238.
    [62]W H Hager. Mobile Flume for Circular Channel[J]. Journai Irrigation and Drainge Engineering,1988,114(3)520~534.
    [63]马孝义,王文娥,于国丰等.U 形渠道量水槽的筛选研究[J].水土保持研究,2002,9(2) 30~34.
    [64]崔岩,郝红科,张志昌.U 形渠道自动测流仪原理的研究[J].西北农林科技大学学报(自然科学版),2004,21(3)89~91.
    [65]Herschy,R W. Stream Flow Measurement[M].London: Elsevier Applied Science Publishers,1985.
    [66]川田裕郎编.流量测量手册[S].罗凑等译,北京计量出版社,1982.
    [67]张志昌.U 形渠道直壁式量水堰流量系数和流速系数的探讨与计算[J].陕西机械学院学报,1993, (6)56~59.
    [68]张志昌,刘亚菲.有坎缺口式量水槽的流量系数和水力计算[J].陕西水力发电,1993,9(3)43~49.
    [69]张志昌,刘亚菲.U 形渠道便携式测流槽[J].西安理工大学学报,1995,(3)31~33.
    [70]肖宏武,毛兆民,刘永宏等.U 形渠道直壁式量水槽过渡段曲面的设计[J].西安理工大学学报,2004,20(3)302~305.
    [71]郭晓科.U 形渠道直壁式量水槽的设计[J].西北水利发电,2004,20(1)50~51.
    [72]Ing.G.Garbrecht. Important Water Measurement in Irrigation System. ICID Bulletin,January 1980,Vol.29,No.1.
    [73]Dong Z,Ding Y.Turbulance Characteristics in Smooth Open Channel Flows[J].Science in China,1990,33(2).
    [74]Z.Samani,H.Magallanez. Hydraulic Characteristics of Circular Flume[J].Journal Irrigation and Drainage Engineering.1991,117(4)558~566.
    [75]Herschy R W.Stream flow measurement[M].Elsevier Applied Science Publishers, London UK,1985.
    [76]Boiten W.Vertical Gates for Distribution of Irrigation Water[J].Agriculture Univ,Wageningen,Netherland,1992.
    [77]J.Mohan Reddy. Local Optimal Control of Irrigation Canals[J].Journal of Irrigation and Drainage Engineering,ASCE,Vol.116,1990,(5)616~631.
    [78]J.Mohan Reddy,Amadou Dia,Ahmed Oussou. Design of Control Algorithm for Operation of Irrigation Canals[J]. Journal of Irrigation and Drainage Engineering, ASCE,Vo1.118,1992,(6)852~867.
    [79]Jose Rodellar,Luis Bonet.Manuel Go mez,Luis Bonet. Control Method for on-demand Operation of Open-channel Flow[J].Journal of Irrigation and Drainage Engineering, ASCE,Vo1.119,1993,(2)225~241.
    [80]Maurizio Venutelli. Stability and Accuracy of Weighted Four-point Implicit Finite Difference Scheme for Open Channel flow[J].Journal of Hydraulic Engineering, ASCE,Vol.128,2002,(3)281~288.
    [81]Nezu.I,Azuma.R.Turbulance Characteristics and Interaction Between Panticles and Fliud in Particl-Laden Open-Channel Flows[J].Hydraulic Engineering,2004,130(10).
    [82]P.Garcia-Navarro etal. 1-D Open Channel Flow Simulation Using TVD-Mccormack Scheme[J].Journal of Hydraulic Engineering, ASCE, Vol. 118,1991,(10)1359~1372.
    [83]J.S.Strock,G.R.Sands,D.J.Krebs. Design and Testing of A Paired Drainage Channel Research Facility[J].Applied Engineering in Agriculture,2005,21(1)63-69.
    [84]Pierre-Olivier Malaterre, David C.Rogers,and Jan Schuurmans. Classification of Canal Control Algorithms[J].Journal of Irrigation and Drainage Engineering, ASCE,Vol.124, No.l,1998,(1)3~10.
    [85]Prabhata K. Swamee. Sluice-gate Discharge Equations[J].Journal of Irrigation and Drainage Engineering,ASCE,1992, Vol.118(1) 56~60.
    [86]Quang Kim Nguyen and Hiroshi Kawano. Simultaneous Solution for Flood Routing in Channel Networks [J].Journal of Hydraulic Engineering,ASCE,Vol.121,1995,(10)744~750.
    [87]Rahman H.Khatibi. Sample Size Determination in Open-Channel Inverse Problems[J]. Journal of Hydraulic Engineering,ASCE,Vol.127,2001,(8) 678~688.
    [88]Shazy Shabayek,Peter Steffler,Faye Hicks.Dynamic Model for Subcritical Combining Flows in Channel Junctions[J].Journal of Hydraulic Engineering, ASCE,Vol,128,2002,(9)821~828.
    [89]吴高巍,周子奎.柱形量水槽的研制及应用[J].灌溉排水,1991,10(3)16~19.
    [90]中国农科院农田灌溉研究所地面灌溉组.灌溉渠道上一种新型简易量水槽[J].1985,4(2)25~29.
    [91]Z.Samani and H.Magallanez.梯形渠道简易量水槽[J].灌溉排水,1991,117(4).
    [92]Samani Z,Magallanez H. Measuring water in trapezoidal canals[J].J of Irrigation and Drainage Engineering,1993,119(1)181~18.
    [93]蔡勇,李同春,吉庆丰等. 梯形渠道圆柱形量水槽的试验研究[J].中国农村水利水电,2005,(8)63~66.
    [94]T.S.Strelkoff and H.T. Falvey.Numerical methods used to model unsteady canal flow[J].Journal of Irrigation and Drainage Engineering,ASCE,Vol.119,1993,(4) 637~662.
    [95]T.S.Strelkoff,J.L.Deltour, C.M.Burt,A.J.Clemmens,and J.P.Baume. Influence of Canal Geometry and Dynamics of Controllability [J].Journal of Irrigation and Drainage Engineering,ASCE,Vol.124,1998,(1)15~22.
    [96]The ASCE task committee on Irrigation Canal System Hydraulic Modeling, Unsteady-flow modeling of irrigation canals[J].Journal of Irrigation and Drainage Engineering,ASCE,Vo1.119,1993,(4)615~630.
    [97]V.M.Ruiz-Carmona,A.J.Clemmens,and J.Schuurmans.Canal Control Algorithm Formulations[J].Journal of Irrigation and Drainage Engineering,ASCE,Vol.124, 1998,(1)31~39.
    [98]Xavier Litrico.Nolinear diffusive wave modeling and identification of open channels[J].Journal of Hydraulic Engineering,ASCE,Vol.127,2001,(4)313~320.
    [99]Z.Samanl,S.Jorat and M.Yousat.Hydraulic Characteristics of Circule Flume [J]. Journal of Irrigation and Drainage Engingeering,1991,117(4).
    [100]Z.Samani,H.Magallance. Hydraulic Characteristics of Cricular Flum.Journai Irrigation and Drainge Engineering [J],1991,112(2)236~238.
    [101]吴持恭.水力学[M]. 北京:高等教育出版社, 1984.
    [102]王正中.准梯形及 U 形渠道临界水深计算公式[J].河海水利,1999, (3)13~14.
    [103]华东水利学院.水工设计手册[M].北京:水利电力出版社,1986.
    [104]孙建,李宇.圆形和 U 形断面明渠临界水深直接计算公式[J].陕西水力发电,1996,12(3)38~41.
    [105]吕宏兴.马蹄形过水断面临界水深的迭代计算[J].长江科学院院报,2002,19(3)10~12.
    [106]王正中,陈涛,张新民等.城门洞形断面隧洞临界水深的近似算法[J].清华大学学报(自然科学版),2004,44(6)812~814.
    [107]王正中,陈涛,万斌等. 明渠临界水深计算方法总论[J]. 西北农林科技大学学报(自然科学版),2006,34(1)155~161.
    [108]WANG Zhengzhong. Formula for Calculating Critical Depth of Trapezoidal Open Channel[J]. J Hydr Engrg,1998,124(1)90~92.
    [109]Prabhata K S,Wu S, Katopodis C. Formula for Calculating Critical Depth of Trapezoidal Open Channel[J]. J Hydr Engrg, 1999, 125(7)785~786.
    [110]禹华谦.驼峰堰临界淹没度(hs/H0)cr 计算探讨[J]. 西南交通大学学报,1996,31(1)105~108.
    [111]王长德,崔玉炎,柳树票等. 活动堰测流水力计算原理及实验研究[J].武汉大学学报(工学版)2001,34(2)1~5.
    [112]Marinus GBOS. Discharge Measurement Structures[M]. P. O.Box 45 Wageningen the netherlands ,1976.
    [113]Marinus G BOS,John A Replogle. Albert J Clemmens.Flow Measuring Flumes for Open Channel Systems [M].A Wily-interscience Publication,1984.
    [114]陈烔新等编.灌区量水工作手册[M].北京:水利电力出版社,1983.
    [115]陕西省水利水保厅编.U 形渠道[M].北京:水利电力出版社,1986.
    [116]徐宝林, 崔丽杰. 巴歇尔槽测验精度研究[J].吉林水利,2004,264(8)15~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700