用户名: 密码: 验证码:
稠油热采化学调驱复合体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过电喷雾质谱及高效液相色谱测定含有单及多极性基团混合阴离子表面活性剂平均相对分子质量,结合1H-NMR谱及元素分析表征混合阴离子表面活性剂的组成及分子结构。组成及分子结构表征表明,非极性基团为多芳环分子结构的分子中通常含有双或多极性基团,烷烃基支链的数量较多,支链的分子链较短,界面活性相对较低;但在水相中溶解性能好,通常对分子结构为单极性基团的成分具有增溶作用;而平均相对分子质量较大的活性组分,烷烃基侧链的平均甲基数多,在油水界面上疏水基覆盖率增加,碳氢链的排列紧密,耐温性能好,是作为热采驱油剂使用时降低油水界面张力的主要成分,但在水相中的溶解性能差,单独使用无法获得超低油水界面张力。混合驱油体系正是通过结构差异的互补,改善亲水亲油失衡,增加大分子结构表面活性剂在油水界面的分配等协同作用,从而使整个体系获得超低油水界面张力。这种协同作用对各组分的组成平衡变化较为敏感,矿场应用时由于存在矿物质对各组分的不平衡吸附以及各组分在多孔隙结构中的渗流性能差异等,均会对组成平衡造成破坏,从而使协同作用减弱甚至消失。在驱油体系中加入分子量低、水溶解性好的非离子表面活性剂,可通过对大分子组分的增溶作用减少其向固体表面的分配,通过竞争吸附作用降低在矿物质表面的吸附损耗,以及对高价阳离子具有分散及螯合作用从而减少沉降损失,通过上述作用实现驱油体系在流动过程中的保持组分平衡及组分间的协同效应,从而提高洗油效率。
     此外,稠油油藏的非均质性及驱油体系与稠油间极其不利的流度比,驱油体系对低渗透率层及高残余油饱和度层位的波及效率低,是造成驱油体系驱油效率较低的外在因素。本文研制的温度选择性膨胀树脂调堵体系,该体系基液为低粘度的液体,可实现在中、深部地层的调堵;低温下化学性质稳定,注入蒸汽后高温引发调堵体系稠化,并形成以固化树脂为连续相,气体为分散相的膨胀树脂,并通过氢键与矿物质表面形成较强的键合力,对大孔道地层具有很高的封堵效率,并可利用注入蒸汽后的温度场分布,实现对高渗层及大孔道层位的封堵。双管岩心模拟蒸汽驱替实验表明,驱油体系与调堵体系的复合技术可使低渗透率及高残余油饱和度岩心的采收率提高23.4%,具有很好的应用前景。
The mean molecular weight of mixture anionic surfactant is determined by using combination method of high pressure liquid chromatography (HPLC) and electrospray ionization mass spectra (ESI-MS), then the composition and molecular structure can be characterized by combining analysis of 1H-NMR spectrum and element. According to above results,there are di or poly-polar group exist in the molecule structure of the surfactant, especially for those which have more aromatic ring; The interfacial activity of the composition that has the more branched chain of alkyl group and the shorter molecular chain of branched chain is lower. However, it has outstanding dissolubility in water, therefore, it have excellent solubilization effect to the composition with mono-polar group; The active composition of macromolecule structure have more average number of methyl group, which will increase the coverage rate of hydrophobic group on oil aqueous interface, line hydrocarbon chain along closely, as well as the temperature tolerance is better than other composition, so which are the main composition on reducing interfacial tension as additive agents for thermal recovery; However, the main defect of these composition is low dissolubility in water, so the ultra-low interfacial tension can not be obtained when it used lonely. Therefore, the synergetic effect is very important to mixture flooding system, and the ultra-low interfacial tension can be obtained by means of complementation of molecule structure, improvement of the hydrophilic-lipophilic balance and increase the allocation of macromolecule on oil aqueous interface. However, the synergetic effect is sensitive to the composition balance, which will diminish or disappear for imbalance adsorption loss on rock and the difference of fluid flow ability through porous medium. Fortunately, the adsorption and precipitation loss of the mixture flooding system can decrease by means of adding small-molecule non-cloud point non-ionic surfactant, which have favorable water solubility and the chelation ability with multivalent cations, competitive adsorption with other composition, as a result, the adsorption site on surface of reservoir sand dramatically decrease, so the composition balance of flooding system can keep well, then enhanced oil recovery.
     Furthermore, the significant factor for low oil displacement efficiency in the formation of low permeability and high residual oil saturation is low sweep efficiency, which determined by seriously heterogeneity of heavy oil reservoir and the unfavorable mobility ratio between oil displacement system and heavy oil. The base solution of the new system used for profile control and blocking off is liquid with low viscosity liquid, so the aim of plugging off in mid-depth formation can be achieved; Latent curing agent used in the system is a kind of chemiacal agent which has steady chemical nature at reservoir temperature, however, it would be decomposed at higher temperature after steam injection, therefore, the condensation polymerization and densification of the system would be promoted, as a result, the temperature selectively blocking off can be achieved. At the same time, it strongly bonded with the surface of rock by hydrogen bond. At last, the swelling resin formed, in which hardened plastic is continual phase and gas is dispersion phase, so the efficiency of formation sealing to high capacity channel is higher.
     As is shown according to simulated experiment of steam flooding with multi-barrel, the recovery ratio has been enhanced 23.4% for the low permeability and high residual oil saturation formation with combination system of oil displacement and profile control.
引文
[1]刘尚奇,门存贵,钱家麟,等.世界稠油资源地质开发利用[M].北京:科学出版社,2002: 289-307.
    [2]胡常忠.稠油开采技术[M].北京:石油工业出版社,1983: 45-58.
    [3]李佳宁,刘琼.论稠油在21世纪能源中的地位[J].油气地面工程,200019, (4):4-6.
    [4]何德文,刘喜林,暴富昌.热采井高温调剖技术的研究与应用[J].特种油气藏,1996,3(3) :36-38.
    [5]徐家业,张群正,吴复雷,等.稠油热采添加剂现场蒸汽吞吐试验[J].西安石油学院学报, 1998,13(6): 25-27.
    [6]张锐等.稠油热采技术[M].北京:石油工业出版社,1999: 24-32.
    [7]吴林.裂缝性稠油油藏蒸汽吞吐开采与综合评价研究[D].西南石油学院:博士研究生毕业论文,2002:34-45.
    [8]姚凯,王志刚.蒸汽泡沫调剖技术在稠油开采中的试验研究及其应用[J].特种油气藏,1996, 3(3): 44-47.
    [9]绳德强.蒸汽/泡沫提高稠油采收率技术的试验研究[J].钻采工艺,1996, 19(4):29-33.
    [10]张勇,孙玉环,孙旭东.杜84断块超稠油蒸汽吞吐汽窜机理分析及防窜措施初探[J].特种油汽藏. 2002, 9(6): 45-48.
    [11]常毓文,张毅,胡用久.稠油热采技术新进展[M].北京:石油工业出版社,1977, 12-24.
    [12]刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997, 31-45.
    [13]刘文章.中国稠油热采现状及发展前景[J].世界石油工业,1998, 5(9): 36-38.
    [14]赵伟.蒸汽驱的工程技术新进展[J].国外油田工程,2001, 1: 2-4.
    [15]何艳青.蒸汽驱技术进展[J].世界石油工业,2000, 7(7): 45-46.
    [16]宋向华,蒲春生,肖曾利,等.稠油热/化学采油技术概述[J] .特种油气藏, 2004, 11(1): 1-3.
    [17] Keijzer P.P.M., Muijs H.M., Rosfnalen R. J.,et al. Application of Steam Foam in the Tia Juana Field, Venezuela:Laboratory Tests and Field Results[C]. SPE14905, 2-5.
    [18] Muijs H.M., Keijzer P.P.M., Wiersma R.J. Surfactants for Mobility Control in High-Temperature Steam-Foam Applications[C]. SPE17361, 3-5.
    [19]张绍东.以齐聚副产物制备耐高温泡沫剂[J].特种油气藏, 2001, 8(3): 74-77.
    [20]刘一江,王香增.化学堵水技术北京:石油工业出版社[M].1999, 2-4.
    [21]赵福麟.油田化学[M].东营:石油大学出版社, 1989, 139-158.
    [22]白宝君,刘翔鹗,李宇乡.调剖剂对非目的层伤害的防治办法[J].石油学报, 1998, 19(3): 61-66.
    [23]王小泉,马宝岐,何竹梅.碱法造纸废液化学改性法制高温堵剂的研究[J].西安石油学院学报,1991, 6(2): 62-64.
    [24]张贵才,何小娟,蒋平,等.腐殖酸高温堵水剂的制备及评价[J].石油与天然气化工2006, 35(4): 307-309.
    [25] Navratil M.Compositions and methods for reducing the permeability of underground strata[P]. U.S. 1987, Patent: 4663367.
    [26]谌凡更,侯玲,马宝岐.改性橡椀栲胶高温堵剂的制备[J].西安石油学院学报,1990,5(1): 68-72.
    [27] Hess P.P., Clark C.O., Haskin C. A. Chemical method for formation plugging[J]. SPE: 3045. 1971, 559-564.
    [28] Hess, P.P. One-step furfuryl alcohol process for formation plugging[J].Journal of Petroeum Technology. SPE: 8213, 1980, 1834-1842.
    [29] Fader P.D., Surles B.W., Littlefield B.A. New low cost resin system for sand and water control[J]. SPE: 24801, 1992, 259-264.
    [30]赵福麟.采油用剂[M].东营:石油大学出版社. 1997: 38-65.
    [31]周国华,曹绪龙等.表面活性剂在胜利油田复合驱中的应用研究[J].精细石油化工进展, 2002, 3(2): 5-9.
    [32]尉小明,刘喜林.稠油乳化降黏开采用表面活性剂的筛选[J].日用化学工业, 2002, 32(4): 40-42.
    [33]戴彩丽,冯德成,高恒达,等.高效洗油剂吞吐与油井堵水结合技术研究[J].油田化学, 2005, 22 (3): 248-251.
    [34]刘华,张禹负.表面活性剂增效碱驱中表面活性剂之间的协同效应[J].石油勘探与开发, 1995, 22(5): 70-73.
    [35]陈亮,黄宏度,吴一慧.石油羧酸盐与不同碳链结构磺酸盐复配体系的界面活性研究[J] .江汉石油学院学报, 2001, 23(2): 63-64.
    [36]康万利.大庆油田三元复合驱化学剂作用机理研究[D] .大庆石油学院:博士研究生毕业论文,2001, 90-98.
    [37] Arf T.G., Belle G.L., Klaus E.E. EOR With Penn State Surfactants[J]. SPE Reservoir Engineering, 1987, 2(2):166-176.
    [38]谭非,尉小明.超稠原油热敏性降粘剂的研制[J].浙江大学学报(理学版),2003, 30(4): 426-430.
    [39]王业飞,李继勇.高矿化度条件下应用的表面活性剂驱油体系[J].油气地质与采收率, 2001, 8(1): 67-69.
    [40]王业飞.醚羧酸盐及其与石油磺酸盐和碱的复配研究[J].油田化学,1998, 15(4): 340 -343.
    [41]王业飞,焦翠,赵福麟.羧甲基化的非离子型表面活性剂与石油磺酸盐的复配试验[J].石油大学学报(自然科学版), 1996, 20(4): 52-55.
    [42]谭忠良,袁向春.新型阴离子孪连表面活性剂的合成.精细化工, 2006, 23(10): 949-952
    [43] Zhu Y.P., Masuyama A., Okahara M. Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl groups[J]. J Am Oil Chem Soc, 1990, 67 (7): 459 - 463.
    [44] Blair C.M., Scribner R.E., Stout C.A. Persistent Action of Thin-Film Spreading Agents Used in Cyclic Steam Stimulation[J]. SPE: 11739, 1993, 683-684.
    [45]唐培忠.石油磺酸盐提高稠油开发效果技术研究[D].济南:山东大学,2007: 25-29.
    [46]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:中国石油化工科学研究院,2001: 5-9.
    [47]曹嫣镔,郭省学.伴蒸汽注化学剂提高稠油采收率的研究[J].油气采收率技术, 2000, 7(4): 16-19.
    [48]王述银,孙新表.环烷酸盐和石油磺酸盐在稠油开采中的应用研究[J].特种油气藏, 2001, 8(3): 98-100.
    [49]陆彬,李之平.玉门石油磺酸盐的色谱分离研究[J].油田化学,1991, 8(1): 37-41.
    [50]陈权生,李之平,韩炜.石油磺酸盐在多孔介质中的色谱效应[J].油田化学,2000, 17(4): 364-368.
    [51] Somasundaran P., and Hanna H.S. Adsorption/Desorption of sulfonates by reservoir rock minerals in solutions of varying sulfonate[J]. Soc. Pet. Eng. J., 1985, 25(3): 343-350.
    [52] Yang C.Z., Bazub B., and Labrid B. Reduction of surfactant with polyphosphates in surfactant flooding process[C]. International Meeting on Petroleum Engineering, Tianjin,China, 1988, 1-32.
    [53]蒋益民,赵国胜.三次采油用石油磺酸盐、制法及其应用[P].中国专利: 98101774, 1999.
    [54]程国柱,谢荣才.一种稠环芳烃混合磺酸盐型表面活性剂[P].中国专利: 93107820, 998.
    [55]陈咏梅,焦丽梅,李之平.石油磺酸盐中极性组分的协同效应[J].石油学报, 1999, 20(2): 73-77.
    [56]李庆莹,霍晓梅,杨天瑞.玉门石油磺酸盐及其组分的相行为和协同效应[J] .油田化学, 1987, 4(1): 49-54.
    [57] Klaus E.E., Janes J.H., and Nagarajan R. Generation of ultralow tentions over a wide EACN ranges using Pennsylvania State U [J]. surfactants. Soc. Pet. Eng. J., 1981, 23(1): 73-80.
    [58]蒋怀远,饶福焕,蒋宝源.驱油用石油磺酸盐成分分析[J].油田化学, 1985, 2 (1): 75-82.
    [59] Yu, F., Fan, W.Y., and Duan, Y.Z. Study on adsorption of NPS petroleum sulfonate on gudao reservoir sand[J]. Oilfield Chemistry, 1997, 24(4): 347-349.
    [60]程斌,张志军,梁成浩.三次采油用石油磺酸钠的组成和结构分析[J].精细石油化工进展,2004, 5(6): 14-19.
    [61] Brewer P. I. The Determination of Oil-soluble Sulphonates by Two-Phase Titration[J]. J. Inst. Pet., 1972, 58(559): 41-46.
    [62]刘有邦.高效液相色谱法快速分析驱油用石油磺酸盐[J].油田化学,1987, 4(4): 305-311.
    [63] Sandvik E.I., and Gale W.W. Characterization of petroleum sulfonates[J]. Soc. Pet. Eng. J., 1977, 17(3): 184-192.
    [64] Gale W.W., and Sandvik E.I. Tertiary surfactant flooding: petroleum sulfonate composition–efficacy studies[J]. Soc. Pet. Eng. J., 1973, 13(4): 191-199.
    [65] Zornes D.R., Willhtte G.P., and Michnic M. J. An experimental investigation into the use of high-Pressure liquid chromatographic chromatography for the determination of petroleum sulfonates[J]. Soc. Pet. Eng. J., 1978, 18(3): 207-218.
    [66]陈茂齐,吕祖芳.十二烷基苯磺酸钠及石油磺酸钠的GC/MS分析[J].油田化学,1987, 4(3): 214-219.
    [67]苏志远,严正泽.高碱值石油磺酸钙的烃基结构及其对产品性能的影响[J].石油炼制与化工, 1995, 26(7) : 38-41.
    [68]沈钟,王国庭.胶体与表面化学[M].北京:化学工业出版社,1997: 64-65.
    [69] GB/T 18609-2001,原油酸值的测定(电位滴定法)[S].北京:中国标准出版社,2002.
    [70] GB/T 2540-81,石油产品密度测量法(比重瓶法)[S].北京:中国标准出版社,1998.
    [71] GB/T 11137-89,深色石油产品运动粘度测定法和运动粘度计算法[S].北京:中国标准出版社,1998.
    [72] GB/T 510-83,石油产品凝点测定法[S].北京:中国标准出版社,1998.
    [73]杨翠定,顾侃英,吴文辉.石油化工分析方法(RIPP试验方法)[M].北京:科学出版社,1990: 31-33.
    [74] GB/T 11132-89,液体石油产品烃类测定法(荧光指示剂吸附法)[S].北京:中国标准出版社,1993
    [75] Zana R. Feature article: dimeric surfactants: effect of the group on the association behavior in aqueous solution[J]. Journal Colloid and Interface Science, 2002, 248(2): 203-220.
    [76] Edward A.k, Marvin L.N, and James B.C. Petroleum sulfonate utilization in enhanced oil recovery systems[C]. SPE Annual Fall Technical Conference and Exhibition, New Orleans, Louisiana, 1976, 1-8.
    [77]刘长,曹嫣镔,宋丹,等.石油磺酸盐复合体系在稠油热采领域的应用研究[J].钻采工艺,2006, 29(2): 73-77.
    [78] Meyers O.K and Salter S.J. The effect of oil brine ratio on surfactant adsorption from microemusions[C].. SPE Annual Technical Conference and Exhibition, Dallas, Texas, 21-24 September, 1980, 1-17.
    [79]尉小明,刘喜林.稠油乳化降黏开采用表面活性剂的筛选[J].日用化学工业, 2002, 32(4): 40-42.
    [80]曹嫣镔,宋丹,刘冬青,等.石油磺酸盐复配体系在胜利油田稠油热采中的应用研究[J] .油气采收率技术, 2000, 7 (4): 16-19.
    [81]于芳,范维玉,南国枝,等.一种驱油用石油磺酸盐的制备及评价[J].石油炼制与化工, 2007, 38(4): 6-11.
    [82] Gale, W.W., and Sandvick, E.I. Tertiary surfactant flooding: Petroleum sulfonate composition-efficacy studies [J]. Soc Pet Eng J, 1973, 13(4): 191-199.
    [83]唐凯,俞稼镛.阴离子表面活性剂的测定方法—混合指示剂程序加入法[J].兰州大学学报(自然科学版),2000, 36(4): 61-65.
    [84]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001: 221-225.
    [85]姜小明,张路,梁成浩,等.多烷基苯磺酸钠水溶液的表面性质[J].物理化学学报,2005, 21(12): 1426-1430.
    [86]程斌,张志军,梁成浩.三次采油用石油磺酸钠的组成和结构分析[J].精细石油化工进展,2004, 5(6): 14-19.
    [87]王琳,宫清涛,王东贤,等.支链烷基苯磺酸钠的合成、表征及其结构对表面性质的影响[J].石油化工, 2004, 33(2): 104-108.
    [88]陈咏梅,焦丽梅,李之平.石油磺酸盐中极性组分的协同效应[J] .石油学报,1999, 20(2): 73-77.
    [89]孙怀静,李庆莹.石油磺酸盐的协同效应及相规律研究[J].油田化学, 1989, 6(4): 322-326.
    [90] Hill H.J., Reiberg J., and Stegemeier G.L. Aqueous surfactant systems for oil recovery [J] Soc. Pet. Eng. J., 1973, 25(2):186-194.
    [91] Bae J.H., and Petrick C.B. Adsorption/retention of petroleum sulfonates in Berea cores [J]. Soc. Pet. Eng. J., 1977, 17(5): 353-357.
    [92] Zhang, L., Somasundaran, P., Maltesh, C. Adsorption of n-dodecyl-β-maltoside on solids [J]. J. Colloid Interface Sci. 1997, 191-202.
    [93] SY/T 5523-92,油田水分析方法[S].北京:石油工业出版社,1993.
    [94] Somasundaran, P., and Zhang, L. Adsorption of surfactants on minerals for wettability in improved oil recovery processes [J]. J. Pet. Sci. Eng., 2006, 52: 198-212.
    [95] Willson P.M, Murphy C.L, Foster W.R. The Effects of Sulfonate Molecular Weight and Salt Concentration on the Interfacial Tension of Oil-Brine-Surfactant Systems[J]. 1976, SPE5812, 201-207.
    [96] Adkins, J.D, Field results of adding surfactant to cyclic steam wells [J]. 1983, SPE12007, 1-5.
    [97]陈咏梅,焦丽梅,李之平.石油磺酸盐中极性组分的协同效应[J].石油学报,1999, 20(2): 73-77.
    [98] Liu Q., Dong M.Z., and Zhou W. Improved oil recovery by adsorption–desorption in chemical flooding, J. Pet. Sci. Eng., 2004, 4(3): 75– 86.
    [99] Blair C. M. Micellar Solutions of Thin Film Spreading Agents [P], 1982, U.S. Patent:4,309,306.
    [100] GB/T 15046-94,脂肪酰二乙醇胺[S].北京:中国标准出版社,1995.
    [101] Rosen M. J., Zhu B. Y. Synergism in binary mixtures of surfactants: III. Betaine- containing systems[J]. Journal of Colloid and Interface Science, 1984, 99(2): 427-434.
    [102] Bavelere M., Ruaux E., and Difives D. Sulfonate retention by kaolinite at high pH- effect of inorganic anions[J]. Soc. Pet. Eng. Reservoir Engineering., 1993. 8(2): 123-127.
    [103] Krumrine P.H., Falcone J.S., and Campbell T. C. Surfactant flooding 1: the effect of alkaline additives on IFT, surfactant adsorption, and recovery efficiency[J]. Soc. Pet. Eng. J., 1982, 22(4): 503-513.
    [104]吴松,牛瑞霞,李柏林.用于驱油的脂肪酸烷醇酰胺的制备[J].大庆石油学院学报, 2005, 29(2): 51-53.
    [105] Folmer B.M., Nyden M., and Holmbergy K. Micellization and adsorption of a series of fatty amide ethoxylates[J]. Journal of Colloid and Interface, 2001, 24(2): 404–410.
    [106] Chiwetelu C., Wale G.., and Horncf D. Effects of addition of lignosulfonates on oil recovery efficacy of petroleum sulfonates[J]. 1979, SPE 8786: 1-33.
    [107] Li D.S., Lu S.L., and Liu Y. The effect of biosurfactant on the interfacial tension and adsorption[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects., 2004, 24(4): 53–60.
    [108] Hong S.A, and Bae J.H. Field experiment of lignosulfonate preflushing for surfactant adsorption reduction[J]. Soc. Pet. Eng. Reservoir. Engineering, 2004, 5(4): 467-474.
    [109] Littlefield B.A., Fader P.D., Surles B.W. Case histories of new low-cost fluid isolation technology[J]. SPE: 24802, 1992, 376-382.
    [110]李建章.改性尿醛树脂胶的研制[J].化学与粘合,1995,13(3): 145-151.
    [111]庞金兴.常温固化耐高温酚醛树脂胶粘剂的研制[J].武汉工业大学学报,2000, 22(3):6-8.
    [112]宋显民.酚醛树脂防砂与改性树脂固砂[J].石油钻探工艺,2002, 24 (6): 57-61.
    [113]张恩天.室温固化环氧结构胶粘剂的现状及发展[J].化学与粘合,1996, 12(4):221- -223.
    [114]曾庆坤,金千欢,王巧玲.酚醛树脂涂层砂外固化剂的研究与应用[J].石油钻采工艺,1997, 19(2): 84-87.
    [115]陈应淋,郑碧锁,王兆水.适用于高含水出砂油井的脲醛树脂固砂剂[J].油田化学,1994, 11(4): 296-299.
    [116]王任芳,李克华,赵修太,等.新型防砂堵水剂的研制与应用[J].石油勘探与开发. 2002. 29(6): l00-102.
    [117]郑延成,李克华,周爱莲.硅氧烷糠醇树脂固砂剂的作用机理及应用[J] .石油勘探与开发. 2004, (31)5: 123-125.
    [118] Friedman R.H., Surles B.W., Kleke D.E. High temperature sand consolidation [J]. 1988, SPE14093, 167-168.
    [119] Ma C.C., Yin M.S., Han J.L. Pultruded fibre-reinforced furfuryl alcohol resin composites: 2. Static, dynamic mechanical and thermal properties[J]. Composites Manufacturing, 1995, 6(1): 53-58
    [120] Bertarione S., Bonino F., and Cesano F. Furfuryl alcohol polymerization in H-Y confined spaces: reaction mechanism and structure of carbocationic intermediates [J]. J. Phys. Chem. B., 2008, 112(9): 2580-2589.
    [121]腾雅娣,苏显英.糠醇树脂聚合工艺的研究[J].辽宁化工,1998, 27(3): 154-155.
    [122] Friedman R.H., Surles B.W., and Kleke D.E. High temperature sand consolidation[J]. 1988, SPE14093, 167-168.
    [123]许长清.合成树脂及塑料手册[M].北京:化学工业出版社. 1991, 619-620.
    [124]谢明师,蒋乃隆.呋哺树脂自硬砂实用技术[M].北京:机械工业出版社.1995, 116-120
    [125]李宗猛,潘振华,毛协民,等.呋喃树脂硬化过程中呋喃环反应行为的研究[J].铸造,1997, 7(1): 12-15.
    [126] Hess P.P., Clark C.O., Haskin C.A. Chemical method for formation plugging [J]. 1971, SPE3045, 559-564.
    [127] Paflar M., Ali S.A., and Hoss R. New chemistry and improved placement practices enhance resin consolidation: case histories from the gulf of mexico [J]. 1998, SPE39435, 179-188.
    [128] Roger F.R. Sand consolidation re in their stability in hot brine[J]. 1982, SPEl840, 74-79.
    [129] Ahmad M.A. Application of low-toxicity crosslinking systems in production of thermally stable gels[J]. 1994, SPE27826, 483-491.
    [130]赵福麟,王家印,张贵才,等.化学剂吞吐与油井堵水的结合技术[J].石油大学学报(自然科学版).2001, 25(6): 61-64.
    [131]才程,岳湘安,赵福麟,等.化学剂吞吐与油井堵水结合技术研究[J].石油学报,2006, 27(3): 70-74.
    [132]赵福麟.EOR原理[ M].东营:石油大学出版社.2001: 51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700