用户名: 密码: 验证码:
高速列车动力学参数影响度的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近半个世纪高速铁路理论、技术和经验的累积,不断创造着高速轮轨交通奇迹。世界高速列车发展循序渐进,具有较强技术继承性和延续性,因服役需求、环境和技术体系的差异形成了多派系车型技术。以高速转向架设计为例,不同速度等级结构特点不同,速度级越高,结构越简洁,各部件功能分工越明确,模块化设计越体现;结构决定功能,同速度级下转向架设计理念/方法具有共性,速度越高,转向架设计共识越多。结构选型越来越趋同的转向架,其性能进一步提升则必须依赖于参数,参数决定性能,悬挂系统刚度与阻尼的搭配和结构属性参数的确定,决定着转向架、车体以及列车振动特性。车辆设计性能的充分保证,除了设计值优选,还涉及服役中参数性能退化的控制,其中部件状态监控、部件功能维修是有效有段。参数范围决定着性能的变化范围,掌握参数影响特性和服役变化特性,并加以利用,是控制车辆动力学性能域的根本。
     围绕国家重点基础研究发展计划(973计划)——高速列车安全服役关键基础问题研究(2007CB714700)的子课题“高速轮轨系统的动态行为与性能演变规律”和“十
     五”国家科技支撑计划课题——中国高速列车关键技术研究及装备研制(2009BAG12A00)的子课题“高速列车共性基础及系统集成技术”和“高速转向架技术’等项目而开展研究,主要开展的研究工作如下:
     (1)对世界高速列车、高速转向架发展概况分别以不同国别和不同速度等级划分进行了描述,提取了高速转向架的设计共识;结合国内外高速列车运营维护、维修等现状,明确了车辆参数完备的设计特性和服役特性研究的意义。基于国内外控制车辆横、垂、纵三向运动的动力学参数的研究现状以及车辆服役过程中的参数偏差研究现状,确定了本文研究的基本框架、方向及内容。
     (2)基于多体动力学理论,建立了车轮、车辆和列车模型,明确了三大动力学性能和车辆振动频率的评价指标;将参数分类为结构参数和悬挂参数,利用正交试验设计法和全面试验法研究其对车辆直线和曲线动力学性能的影响。
     (3)利用敏感性分析、影响曲线拟合以及基于影响度的参数域确定方法,进行参数灵敏度对比。对于车辆稳定性,首先进行单个结构和悬挂参数的影响度分析,并结合部件的极端故障变化影响特性,提取对非线性临界速度的显著影响因子,如簧上质量Mc、等效锥度λ、抗蛇行阻尼Csx、横减阻尼Csy和一系纵向定位刚度Kpx;再对显著影响参数进行两结构参数(Mc-λe)、三悬挂参数(Cc-Csy-Kpx)、结构和悬挂参数组合(Mc-Csx-Kpx和λe-Kpx-Kpy)同时变化的影响度分析。并发现,多参数影响与单参数影响存在一定差别,既可加强稳定性,亦有减弱的趋势。利用二维曲线图表、三维域度分析方法,以车辆安全域为目标,直观地提出参数域选择以及进一步改进的方向。
     (4)将参数对稳定性的影响度研究思路,应用于参数对车辆安全性、平稳性以及振动频率特性的影响度分析中。车辆安全性和平稳性结合车辆直线和曲线通过性能共同描述,并研究了两个速度等级300km/h和350km/h的参数影响。簧下质量Mw,与Mc、Csx和k一并对减载率、脱轨系数和轮轴横向力等安全性指标的影响显著;Mc、Csc和Kpx是影响车辆横向平稳性的重要参数,而对垂向平稳性而言,空簧垂向刚度和阻尼是重要因子。结构和悬挂参数间交互作用的影响亦不容忽视。性能评价指标不再单一,这为参数域的确定增添了更多的约束条件。
     (5)对比分析了五种轨道不平顺下车辆位移和加速度的响应特性,提出对线路服役状态控制的必要性。车辆振动频率主要针对蛇行频率、悬挂自振频率而展开,将速度参数亦引为主要分析对象,特别对蛇行频率特性进行了仿真和台架试验研究。
     (6)研究了车辆参数设计域、服役域和维修域变化特性,调研了国内高速转向架检修特点和服役故障分布特点,结合参数对车辆性能的影响度研究结论,对车辆结构和悬挂参数的状态及其对应的车辆状态进行了讨论。
     (7)基于结构和悬挂参数对稳定性的影响度研究,提出了车辆稳定性的“开环”控制思路,清晰地描述了车辆稳定性的设计理念;再结合车辆的服役特性,引入“闭环”控制理念,添加了对服役失稳现象的快速调整策略。国内CRH系列不同速度级车型的升级设计实例充分验证了稳定性控制策略的正确性和工程意义。
     (8)基于结构和悬挂参数对平稳性的影响度研究,提出了车辆平稳性的“开环”控制思路,从“输入信号”开始控制,并对“系统特征”传递路径(中间过程)进行控制,以此保证最后优良的“输出结果”。平稳性控制思路同样亦在CRH系列不同速度级车型的升级设计实例中得到验证。
Based on accumulations of theory, technology and experiences of high-speed railway for nearly half a century, miracles of high-speed railway have been happening. High-speed trains are developed step by step, with strong technical inheritance and continuity. There are some technical architectures for high-speed trains in the world, due to different service demand, running environment and technology systems. Take a bogie design for example, structural characteristics at different speed grade bogie are not the same. For the higher speed bogie, it's more simple and contains components with clear division of work and modular designs. Systemic structure determines its function. Bogie design concepts or methods at the same speed grade have a lot in common. The higher the speed is, the more the common design views are. Further performance improvements of high-speed bogie with convergence structural characters must depend on its parameters. Systemic parameters values determine its performance. Vibration characteristics of bogie, carbody or trains are decided by the coordination between stiffness/damping parameters of suspension system and structural properties. Except for the preferred design values, performances are supported by limiting parameter performance degradation in service. Effective approaches are condition monitoring and maintenance. Range of parameters affects performance. Mastering effects of parameters and features of their deterioration in service, are basic terms to control vehicle dynamics performance domains.
     Funded by the subproject of National Basic Research Program of China(973)-Key Basic Problems Research of High-speed Train for Safety Operation (2007CB714700),'High-speed wheel/rail dynamic behavior and its performance evolvement rule', and the subprojects of National Science and Technology Pillar Program in the11th Five-year Plan Period-Key Technology Research and Equipment Development of High-speed Train(2009BAG12A00),'High-speed train generality foundation and its system integration technology'&'High-speed bogie technology', research works in this paper can be summarized as follows:
     (1) Developments of high-speed trains and bogies around the world are described according to different nationality and speed grade. Design consensus of high-speed bogie are extracted. Combining with practical operation and maintenance of high-speed trains, the significances to study features of vehicle complete parameters in the design and service period can be shown. In view of current researches related to dynamics parameters to control lateral, vertical, longitudinal movements of a high-speed vehicle and parameter performance degradation happened in the operation, skeleton of this study and main contents are determined.
     (2) Models for a wheel, a vehicle, and a train are built on the basis of the multi-body system dynamics theory. Indexes of vehicle three major dynamics performances and vehicle vibration frequency are pointed out. Vehicle parameters are classified as structural parameters and suspension parameters. Orthogonal experiment design method and the comprehensive experimental method are both used to study the effects on performances of the vehicle passing through the straight and curved tracks.
     (3) Sensitivity of parameters can be analyzed by sensitivity analysis, curve fitting and the method to determine parameter domain based on impacts. Effect of a single parameter is discussed firstly, combining with influences of extreme fault conditions on stability. And then, remarkable impact factors of nonlinear critical speed are found, such as sprung mass Mc, equivalent conicity λe.damping of anti-hunting damper Csx, damping of secondary lateral damper Csy, longitudinal stiffness of primary swing arm Kpx. Influences of multi-parameters combination, such as two structural parameters (Mc-λe), three suspension para.mcters(Csx-Csy-Kpx), and combination of structural and suspension parameters(Mc-Csx-Kpx&λe-Kpx-Kpy). are studied. Vehicle stability can either be enhanced or weakened by the simultaneous changing of multi-parameters, which is different from the influence of single parameter. Different expression methods are used to show the right range of parameters and the way for further improvement, such as two-dimension figures&tables and three-dimension domain method.
     (4) Research ideas for stability are also applied to the study of parameters influences on vehicle safety, riding comfort and vibration frequency characteristics. Performances on straight and curved tracks are both simulated under two speed grades300km/h&350km/h. Unsprung mass Mw, along with the factors Mc, Csx and Kpx, affects safety indexes observably, which include wheel load reduction ratio, derailment coefficient and wheeset lateral force. Vehicle lateral Sperling index is related to parameters Mc, Csx and Kpx, while for vertical Sperling index, vertical stiffness and damping of air spring device are important. The interactions among structural and suspension parameters on vehicle safety and comfort can not be ignored. There are multi-indexes to evaluate vehicle safety and comfort, which can be considered as more constraints conditions for the determining of parameter range.
     (5) Five types of track random irregularities are introduced to analyze vehicle displacement and acceleration responses. It is necessary to control track regularity status in operation. Vehicle vibration frequency involves hunting frequency and suspension self-vibration frequency in this paper. Running speed is taken as one of the analysis objects and there are in-depth simulations and bench test studies on hunting frequency.
     (6) Actual design range of vehicle parameters, operating range and maintainance range are all discussed. Features of high-speed bogie maintenance and fault distribution in service are investigated. Combined with the conclusion about the effects, safety status of a vehicle and status of its structural and suspension parameters are discussed.
     (7) Based on effects of parameters on stability, a control idea is put forward, which is an open-loop control strategy and describes the design concept of vehicle stability clearly. Coupled with vehicle characteristics in service, a closed-loop control concept is introduced by adding some rapid adjustment strategies for unstable phenomenon in operation. Take speed-upgraded vehicles of CRH series as examples, validity of design improvements, which are conducted by the control strategy for stability, can be fully demonstrated by bench test and field test, so does the engineering significance of strategy.
     (8) A control idea for vehicle comfort is carried out on account of the effects. It is also an open-loop control method, which starts from the control of'inputs', and then controls transfer path of'system features'(intermediate processes), so that the good'output'can be gained. The control strategy is also verified by the speed-upgraded vehicles.
引文
[1]中华人民共和国铁道部.全国铁路工作会议报告[R],北京,2013.
    [2]金学松,张雪珊,张剑,等.轮轨关系中的力学问题[J].机械强度,2005,27(4):408-418.
    [3]臧其吉.德国高速列车技术的发展[J].机车电传动,2003(5):10-14.
    [4]Roderick A. Smith. Railway speed-up:A Review of its history, technical developments and future prospects[J].JSME International Journal(Series C),2004,47(2):444-450.
    [5]北方网.高铁:回归的现代速度符号[N],2008-05-10.网页http://news.enorth.com.cn/system/2008/05/10/003260176.shtml
    [6]Jouef Trains, SNCF co-co CC7107网页http://www.joueftrains.com/8445.htm
    [7]商务部.法国高速铁路安全管理模式简介网页http://www.mofcom.gov.cn/article/i/dxfw/jlyd/201202/20120207979255.shtml
    [8]魏庆朝,孔永健,时瑾.磁浮铁路系统与技术(第2版)[M].北京:中国科学技术出版社,2010.
    [9]Early TGV History网页http://www.trainweb.org/tgvpages/images/misc/index.html
    [10]中商情报网.中国高铁行业发展现状分析[N],2013-03-20.网页http://www.askci.com/news/201303/20/201740129201.shtml
    [11]腾讯网财经观察.民航能否抵挡高铁冲击波?[N],2013-04-01.网页http://finance.qq.com/zt2013/cjgc/hq.htm
    [12]一财网.高铁对民航有冲击,一定范围内冲击较大[N],2011-02-24.网页http://www.yicai.com/news/2011/02/690432.html
    [13]杨中平.新干线纵横谈——日本高速铁路技术(第二版)[M].北京:中国铁道出版社,2012.
    [14]李芾,傅茂海.高速客车转向架发展模式[J].交通运输工程学报,2002,2(3):7-14.
    [15]李艳,刘业博,张皓等.走进中国高速铁路(二)——探秘动车组(中).铁道知识,2010(2):60-65.
    [16]李瑞淳,王马矣.德国高速列车综述[J].国外铁道车辆,2005,42(6):1-6.
    [17]Weihua Zhang, Jing Zeng, Yan Li.A review of vehicle system dynamics in the development of high-speed trains in China[J].International Journal of Dynamics and Control,2013,1(1):81-97.
    [18]Maik Rubel,郑权.Gor(oo)litz型转向架系列75年发展史[J].国外铁道车辆,2000,37(1):1-5.
    [19]郭荣生.国外高速客车转向架的发展趋势[J].铁道车辆,1978(7):26-54.
    [20]虞大联.日本新干线动车组转向架研发历史回顾(待续)[J].国外铁道车辆,2012,49(5):1-7.
    [21]俞展猷.日本新干线高速列车的发展历程[J].机车电传动,2003(2):1-7.
    [22]严隽髦.车辆工程(第二版)[M].北京:中国铁道出版社,2004.
    [23]傅小日,李金森,程冰,等.我国铁路客车转向架技术发展的概述(待续)[J].铁道车辆,2005,43(8):1-9.
    [24]傅小日,李金森,程冰,等.我国铁路客车转向架技术发展的概述(续二)[J].铁道车辆,2005,43(10):8-15.
    [25]楚永萍,唐永明,黄振飞.“先锋”号电动车组转向架结构性能简析[J].铁道机车车辆,,2004(4):86-106.
    [26]虞大联.日本新干线动车组转向架研发历史回顾(续完)[J].国外铁道车辆,2012,49(6):1-11.
    [27]王焕章.无摇枕转向架的发展及研制[J].铁道车辆,1999,37(7):1-5.
    [28]百度文库:动车组概论3(转向架)网页:http://wenku.baidu.com/view/d71e5e61a45177232f60a23b.html
    [29]百度百科法国高速列车http://baike.baidu.com/view/1314901.htm
    [30]封全保,孙守光.“中华之星”高速动力车转向架研究[J].铁道机车车辆,2004,24(Suppl):10-12,48.
    [31]Minoru Ogasawara. Technical development for Shinkansen speed increases[J].JR East Technical Review-No.12,2008:4-7.
    [32]Murray Hughes,韩巍.法国AGV列车[J].国外铁道车辆,2008,45(5):8-10.
    [33]David Briginshaw,罗斌,周贤全.法国新一代高速列车AGV[J]国外铁道车辆,2001,38(4):25-27.
    [34]康高亮.高速铁路工务运营维护与管理[J].中国铁路,2010(12):29-33.
    [35]孙利,钟红,林皋.高速铁路地震预警系统现状综述[J].世界地震工程,,2011,27(3):89-96.
    [36]张光远.高速铁路行车安全机理及相关应用问题研究[D].成都:西南交通大学.2010.
    [37]国际重载协会.国际重载铁路最佳应用指南——轮轨关系[M].北京:中国铁道出版社,.2009.
    [38]苗宇,蒋大明.高速铁路安全保障体系初探[J].中国铁路,1998(12):14-16.
    [39]秦艳敏.列车安全监测系统关键技术的研究[D].成都:西南交通大学,2006.
    [40]张兵.列车关键部件安全监测理论与分析研究[D].成都:西南交通大学.2007.
    [41]董锡明.现代高速列车维修新进展[J].铁道机车车辆,,2008,,28(5):40-44.
    [42]董锡明.高速列车的维修制度[J].中国铁路,1999(7):35-38.
    [43]董锡明.近代铁道机车车辆维修现状与发展趋势[J].铁道机车车辆,2002(增刊):213-218.
    [44]王伯铭.动车组运用与检修[M].北京:中国铁道出版社,2011.
    [45]刘刚,王华胜,文礼.高速列车修程修制技术[J].中国铁路,,2010(12):62-66.
    [46]刘刚.高速列车修程修制技术[R].中国科协年会-高速列车创新与发展研讨会,福州,2010.
    [47]王福天.车辆系统动力学[M].成都:西南交通大学出版社,2007.
    [48]W. Klingel. Ueber den Lauf der Eisenbahnwagen auf gerarder Bahn[J]. Organ Fortschr. Eisenb-wes., 1883.38:113-123.
    [49]F.W. Carter. Railway electric traction,1922,57 (Edward Arnold, London).
    [50]F.W. Carter. On the stability of running of locomotives[C]. Proc. Roy. SOC, Series A,1928 121. 585.
    [51]F.W. Carter. The running of locomotives with reference to their tendency to derail[J]. Znst. Civil Engrs Select. Engng Papers No.91,1930.
    [52]J.J. Kalker. Survery of wheel-rail rolling contact theory[J]. Vehicle system dynamics:International Journal of Vehicle Mechanics and Mobility,1979,8(4):317-358.
    [53]R.D. Davies, A.F. Cook. The motion of a railway axle[C]. Proceedings of Instn mech. Engrs,1948,158:426.
    [54]H. Heumann. Grundzuge der Fuhrung der Schienenfahrzeuge,1953,133 (Oldenbourg, Munchen).
    [55]De Posselr, Beautefojy. Papers awarded prizes in the competition sponsored by the Office of Research and Experiment of the International Union of Railways, Utrecht,1960.
    [56]C.T. Muller. Wo stehen wir in der Gleislauftechnik. Das Schlingerproblem', Glasers Annln Gewerbe Bauw.1958,82,31.
    [57]T. Matsudaira. Paper awarded prize in the competition sponsored by the Office of Research and Experiment of the International Union of Railways, Utrecht,1960.
    [58]N.A. Kovalev. The lateral oscillations of rolling stock, Transzheldorizdat, Moscow,1957.
    [59]E. Katz, A.D. De Pater. Stability of lateral oscillations of a railway vehicle', Appl. Sci. Res. A.1958, 7,393.
    [60]A. D. De Pater. The approximate determination of the hunting movement of a railway vehicle by the aid of the method of Krylov and Bogoljulov', Appl. Sci. Res. A.1961 10,205.
    [61]A.D. De Pater. Expose de la thkorie de l'interaction entre la voie et le vkhicule de chemin der fer. Mouvement sur une voie en alignment droit', Tech. Univ. Delft, Lab. Tech. Mech. Report No.220, 1962.
    [62]A.H. Wickens. Paper 1:The dynamics of railway vehicles on straight track:Fundamental considerations of lateral stability [C]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings,1965,180:29-44.
    [63]A. H. Wickens, A. O. Gilchrist, A. E. W. Hobbs. Suspension design for high-performance two-Axle freight vehicles[C]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings,1969,184:22-36.
    [64]Katsuya Tanifuji. The contact characteristics between the worn wheels of Shinkansen electric cars and rails(Analysis of the effective conicity in geometrical contact)[J]. Transactions of the Japan Society of Mechanical Engineers, Series C,1988,54(497):305-311.
    [65]Hans True, Jens Christian Jensen. Parameter study of hunting and chaos in railway vehicle dynamics[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility, 1994,23:S 1:508-521.
    [66]L. Mauer. The modular description of the wheel to rail contact within the linear multibody formalism[J]. Advanced Railway Vehicle System Dynamics, Wydawnictwa Naukowo-Techniczne, Warsaw.1991:205-244.
    [67]UIC. UIC Code 519 Method for Determining the Equivalent Conicity[S],1st ed., International Union of Railwavs, Paris.2004.
    [68]EN. EN 15302 Railway applications. Method for Determining the Equivalent Conicity[S], CEN, Brussels,2008.
    [69]A. Bonadero. Riesame dei problemi relativi a conicita equivalenti e velocita critiche per sale con cerchioni usurati[J]. Ing. Ferrov.,2003(9):769-787 (in Italian).
    [70]UIC. UIC Code 518 Testing and Approval of Railway Vehicles From the Point of View of Their Dynamic Behaviour-Safety-Track Fatigue-Ride Qualiry[S],3rd ed., International Union of Railways, Paris,2005.
    [71]Oldrich Polach, A. Vetter. Methods for running stability prediction and their sensitivity to wheel/rail contact geometry[C]. Extended Abstracts of the 6th International Conference on Railway Bogies and Running Gears, Budapest, September,2004:62-64.
    [72]Oldrich Polach. Influence of wheel/rail contact geometry on the behaviour of a railway vehicle at stability limit[C]. Proceedings ENOC-2005, Eindhoven University of Technology, August,2005: 2203-2210.
    [73]Oldrich Polach. On Non-linear Methods of Bogie Stability Assessment Using Computer Simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part F; J. Rail Rapid Transit.2006.220:13-27.
    [74]W.J. Chung, J.K. Shim. Influence factors on critical speed hysteresis in railway vehicles[J]. JSME Int. J. Ser. C,2003,46:278-288.
    [75]李艳,张卫华,池茂儒等.车轮踏面外形及轮径差对车轮动力学性能的影响[J].铁道学报,2010,32(1):104-108.
    [76]Yan Li, Weihua Zhang, Li Liu, et al. Vehicle stability region analysis based on the interaction between worn profile and primary positioning stiffness[C]. Proceedings of the international symposium on speed-up, safety and service technology for railway and maglev systems, September 2012, Seoul.Korea, S1:112-117.
    [77]Oldrich Polach. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2010,48(S1):19-36.
    [78]池茂儒,张卫华,曾京,等.轮径差对车辆系统稳定性的影响[J].中国铁道科学,2008,29(6):65-70.
    [79]王开云,翟婉明,蔡成标.两种类型踏面的车辆与轨道耦合动力学性能比较[J].西南交通大学学报,,2002,37(3):260-264.
    [80]梁树林,朴明伟,郝剑华,等.基于3种典型踏面的高速转向架稳定性研究[J].中国铁道科学,2010.31(3):57-63.
    [81]陈厚嫦,黄体忠,王群伟,等.轮对内侧距对机车车辆动力学性能影响的试验研究[J].中国铁道科学,,2006,,27(5):99-103.
    [82]Oldrich Polach. Wheel profile design for the targeted conicity and a wide contact spreading.8th International Conference on Contact Mechanics and Ware of Rail/Wheel Systems (CM2009), Firenze, Italy,2009.
    [83]Oldrich Polach. Comparability of the non-linear and linearized stability assessment during railway vehicle design [J] Journal of Vehicle System Dynamics,2006,44(S1):129-138.
    [84]Shevtsov 1 Y, Markine V L, Esveld C. Design of railway wheel profile taking into account rolling contact fatigue and wear [J]. Wear,2008,265:1273-1282.
    [85]Rainer Heller, E. Harry law. Optimizing the wheel profile to improve rail vehicle dynamic performance [J]. Vehicle System Dynamics,1979:116-122.
    [86]R.E. Smith, J. Kalousek. A design methodology for wheel and rail profiles for use on steered railway vehicles[C].Proceedings of the Third International Conference on Contact Mechanics and Wear of Rail/Wheel Systems,Cambridge,U.K.,1990.
    [87]Wu Huimin. Investigations of wheel/rail interaction on wheel flange climb derailment and wheel/rail profile compatibility[D].Chicago:The Graduate College of the Illinois Institute of Technology,2000.
    [88]Shevtsov I Y, Markine V L, Esveld C. One procedure for optimal design of wheel profile[C].Proceedings of the IQPC conference on Achieving best practice in Wheel/rail interface management, Amsterdam, Netherland,2002.
    [89]Shevtsov I Y, Markine V L, Esveld C. Optimization of railway wheel profile using Mars method[C].Proceedings of the 43ra AIAA/ASME/ASCE/AHS/ASC/Structures, Structural Dynamics, and Material Conference, Denver, USA,2002.
    [90]G. Shen, J.B. Ayasse, H. Choller. Prattl:Aunique design method for wheel profiles by considering the contact angle function[C]. Proeeedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2003,217:25-30.
    [91]Dabin Cui, Li Li, Xuesong Jin, et al. Optimal design of wheel profiles based on weighed wheel/rail gap[C]. Proceedings of 8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Firenze:2009:927-934.
    [92]崔大兵,李立,金学松.重载货车车轮踏面优化研究[J].铁道学报,2011,33(5):31-37.
    [93]Persson I.,Iwniek S.D.. Optimization of railway profiles using a genetic algorithm[J].Vehicle System Dynamics,2004,41(suppl):517-527.
    [94]成槺,王成国,刘金朝.车轮踏面多目标优化设计研究进展[J].铁道机车车辆,2010,,30(4):5-11.
    [95]成槺.车轮型面多目标优化设计研究[D].北京:中国铁道科学研究院,2011.
    [97]A.H. Wickens. Steering and stability of the bogie:vehicle dynamics and suspension design[C]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and RapidTransit,1991,205:109-122.
    [98]A. H. Wickens. Comparative stability of bogie vehicles with passive and active guidance as influenced by friction and traction[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2009,47(9):1137-1146.
    [99]J.T. Pearson, R.M. Goodall, T.X. Mei, et al. Design and experimental implementation of an active stability system for a high speed bogie[C]. Proceedings of the 18th IAVSD Symposium, The Dynamics of Vehicles on Roads and on Tracks, Swets and Zeitlinger, Lisse,2003:43-52.
    [100]J.T. Pearson, R.M. Goodall. An active stability system for a high speed railway vehicle[J]. Electronic systems and control division reasearch,2003:11-14.
    [101]J.T.Pearson,孙珉堂等.高速铁道车辆的主动稳定性系统[J].国外铁道车辆,2006,43(5):12-15.
    [102]Koichi Sasaki, Yoshihiro Suda. A study on the new wheel and rail tangential force model for the high-speed railway vehicles[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2008,46(S1):737-750.
    [103]王开文.抗蛇行减振器阻尼特性参数分析[J].铁道车辆,1993(4):10-12.
    [104]戴焕云,严隽耄,王开文.250km/h高速客车转向架选型及动力学性能预测[J].铁道学报,1994,16(suppl):68-74.
    [105]卜继玲,樊友权.抗蛇行减振器对机车运行品质的影响[J].电力机车与城轨车辆,,2004,,27(6):6-8.
    [106]赵云生.油压减振器的安装刚度对车辆动力学性能的影响[J].铁道车辆,1997,,35(5):5-9.
    [107]马卫华,王自力,罗世辉.减振器安装刚度对径向转向架机车横向动力学性能的影响[J].铁道机车车辆,2005,25(4):10-13.
    [108]虞大联.轻轨车辆新型转向架的设计研究[D].成都:西南交通大学,2002.
    [109]虞大联,池茂儒,李芾,等.单轴转向架车辆动力学仿真[J].铁道学报,2005,27(4):47-53.
    [110]孟宏.提速机车车辆横向运动稳定性研究及应用[D].成都:西南交通大学,2009.
    [111]赵云生.转臂式轴箱定位的准高速客车动力学性能分析[J].铁道机车车辆,1995(3):24-28,52.
    [112]姚远,张红军,罗赞.转臂式轴箱定位节点位置对机车动力学性能影响分析[J].机车电传动,2007(3):27-29.
    [113]Wlodzimierz Choromanski, Andrzej Chudzikiewicz, Jerzy Kisilowski. Analysis of parametric sensitivity of the mathematical models that describe lateral dynamics of a railway vehicle[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1988,17(supl):77-85
    [114]曾京,邬平波.高速客车动力学性能的参数灵敏度分析[J].西南交通大学学报,1996,31(增刊):]86-198.
    [115]张曙光,池茂儒,刘丽.机车车辆动力学研究及发展[J].中国铁道科学,2007,28(1):56-62.
    [116]王新锐.高速客车转向架悬挂参数灵敏度及藕合关系探讨[J].铁道机车车辆,2000(2):13-18.
    [117]Joon-Hyuk Park, Hyo-In Koh, Nam-Po Kim. Parametric study of lateral stability for a railway vehicle[J]. Journal of Mechanical Science and Technology,2011,25(7):1657-1666.
    [118]张卫华,李艳,宋冬利.高速列车运动稳定性设计方法研究[J].西南交通大学学报,2013,48(1):1-9.
    [119]Berta Suarez, Jose Manuel Mera, Maria Luisa Martinez, et al. Assessment of the influence of the elastic properties of rail vehicle suspensions on safety, ride quality and track fatigue[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2013,51(2):280-300.
    [120]张学仁,孟凡平,赵枢钧.四轴机车一、二次蛇行运动的研究及计算结果分析[J].内燃机车,1981(10):10-21.9.
    [121]A.F.D' Souza, P.Caravavatna,汪廷椿.转向架蛇行运动的非线性分析[J].国外铁道车辆,1986(4):5-14.
    [122]沈志云.利用数学模型作机车横向振动的振型分析及参数研究[J].铁道科技动态,1981(5):1-9.
    [123]张洪.基于运行模态识别的铁路客车动力学特性研究[D].成都:西南交通大学,2005.
    [124]池茂儒,张卫华,曾京,等.铁道车辆振动响应特性[J].交通运输工程学报,2007,7(5):6-11.
    [125]周劲松,张洪,任利惠.模态参数在铁道车辆运行平稳性研究中的运用[J].同济大学学报(自然科学版),2008,36(3):383-387.
    [126]E. H. Law, R. S. Brand. Analysis of the nonlinear dynamics of a railway vehicle wheelset[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1973,95(1):28-35.
    [127]H. True. Dynamics of a Rolling Wheelset[J]. Applied Mechanics Review,1993,46 (7):438-444.
    [128]C. E. Bell, D. Horak, J.K. Hedrick. Stability and curving mechanics of rail vehicles[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1981,103(3):181-190.
    [129]D. Horak, C.E. Bell, J.K. Hedrick. A comparison of the stability and curving performance of radial and conventional rail vehicle trucks," Journal of Dynamic Systems. Measurement and Control, Transactions of the ASME,1981,103(3):191-200.
    [130]D. Horak, D.N. Wormley. Nonlinear stability and tracking of rail passenger trucks[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1982,104(3):256-263.
    [131]J. A. Richard. Stability of railway-car running at high speed[J]. Vehicle System Dynamics,1987,16(1):37-49.
    [132]I. Haque, J. Lieh. Study of parametric stability of railway vehicles[J]. International Journal of Vehicle Design,1993,14(2-3):246-260.
    [133]Y. Suda. High speed stability and curving performance of longitudinally unsymmetrical trucks with semi-active control[J]. Vehicle System Dynamics,1994,23(1):29-52.
    [134]S.Y. Lee, Y. C. Cheng. Nonlinear hunting stability analysis of high-speed railway vehicles on curves tracks[J].Heavy Vehicle Systems,2003,10(4):344-361.
    [135]王福天,朱昶基,陈健凡.客车转向架横向振动的理论计算和试验分析[J].铁道学报,1981,3(1):14-26.
    [136]Y. R. Yang. Limit Cycle Hunting of a Bogie with Flanged Wheels[J].Vehicle System Dynamics,1995,24(3):185-196.
    [137]Jing Zeng, Pingbo Wu. Stability analysis of high speed railway vehicles[J]. JSME International Journal, Series C,2004,47(2):464-470.
    [138]Yang Tsai Fan,Wenfang Wu. Stability analysis of railway vehicles and its verification through field test data[J]. Journal of the Chinese Institute of Engineers,2006,29(3):493-505.
    [139]N.K. Cooperrider, E. H. Law. A survey of rail vehicle testing for validation of theoretical dynamic analyses[J].ASME Journal of Dynamics System Measurement and Control,1978,100(4):
    [140]J. A. Young, T. A. P. S. AppaRao. Lateral dynamics of a rail transit vehicle:A comparison of experimental and theoretical results[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1981,103(1):39-48.
    [141]R. H. Fries, N. K. Cooperrider, E. H. Law. Experimental investigation of freight car lateral dynamics[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1981,103(3):201-210.
    [142]Y. Michitsuji, Y. Suda. Running performance of power-steering railway bogie with independently rotating wheels[J].Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2006,44(supl):71-82.
    [143]T. Miyamoto, M. Sogabe, T. Shimomura, et al. Real-size experiment and numerical simulation of dynamic behavior of railway vehicle against vibration[J]. Railway Technical Research Institute Report,2003,17(9):39-44.
    [144]张卫华.机车车辆动态模拟[M].北京:中国铁道出版社,2006.
    [145]牵引动力国家重点实验室.京津城际高速铁路科学研究试验报告[R].成都:西南交通大学,2009.
    [146]Yan Li, Weihua Zhang, Yang Tang, et al. The effect of mass of high-speed railway vehicle and its distribution on vehicle dynamics performance. Proceeding of 3rd international conference on transportation engineering, July 2011.Chengdu, China:2592-2599.
    [147]Berta Suarez, Jesus Felez, Joaquin Maroto,et al. Sensitivity analysis to assess the influence of the inertial properties of railway vehicle bodies on the vehicle's dynamic behaviour[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2013,51(2):251-279.
    [148]池茂儒,张卫华,曾京,等.空重车混编对列车稳定性的影响[J].交通运输工程学报,2007,7(2):10-13,,35.
    [149]A.H.Wickens. Fundamentals of Rail Vehicle Dynamics:Guidance and Stability[M], s.I., Swets & Zeitlinger, Lisse.2003.
    [150]S. Stichel, Limit cycle behaviour and chaotic motions of two-axle freight wagons with friction damping, Multibody Syst. Dyn.8 (2002), pp.243-255.
    [151]Nicholas Wilson, Huimin Wu, Harry Tournay,et al. Effects of wheel/rail contact patterns and vehicle parameters on lateral stability[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2010,48(S1):487-503.
    [152]R.M. Goodall, R.A. Williams, A. Lawton, et al. Railway vehicle active suspensions in theory and practice[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1981,10(2-3):210-215.
    [153]R.M. Goodall, W. KORTUM. Active contorls in ground transportation-a review of the state-of-the-art and future potential[J],Vehicle system dynamic,1983,12(4-5):225-257.
    [154]J. K. Hedrick. Railway vehicle active suspensions[J].Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1981,10(4-5):267-283.
    [155]Anneli Orvnas, Sebastian Stichel, Rickard Persson. Ride comfort improvements in a high-speed train with active secondary suspension[J]. Journal of mechanical systems for transportation and logistics,2010,3(1):206-215.
    [156]陈春俊.高速列车横向主动、半主动悬挂控制研究[D].成都:西南交通大学学报,2006.
    [157]徐涛,曾京,戴焕云,等.主动悬挂高速客车动力学性能研究[J].铁道机车车辆,1996(4):30-33.
    [158]徐涛.具有主动悬挂的高速客车动力学性能研究[J].西南交通大学学报,1997,32(2):193-197.
    [159]张开林,金鼎昌.采用主动控制技术提高铁路车辆横向平稳性[J].西南交通大学学报,1997,32(4):413-418.
    [160]乔英忍.世界铁路动车组的技术进步、水平和展望(待续)[J].国外铁道车辆,2007,44(2):1-7.
    [161]Masakazu Adachi, Takayuki Shimomura. Research on Semi-active control for equivalent conicity[J].Transactions of the Japan Society of Mechanical Engineers.C,2007,73 (726):428-436(in Japanese).
    [162]Albin Johnsson, Viktor Berbyuk, Mikael Enelund. Optimized bogie system damping with respect to safety and comfort[C]. Proceedings of the 21st International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 09), Stockholm, Sweden, August 2009, Paper 167,12 pp.
    [163]Albin Johnsson, Viktor Berbyuk, Mikael Enelund. Vibration dynamics of high speed train with Pareto optimized damping of bogie suspension to enhance safety and comfort[C]. Proceedings of the ISMA2010 International Conference on Noise and Vibration Engineering including USD2010, Leuven, Belgium, September 2010:3477-3488.
    [164]Albin Johnsson, Viktor Berbyuk, Mikael Enelund. Pareto optimization of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2012,50(9):1379-1407.
    [165]Young-Guk Kim, Chan-Kyoung Park, Hee-Soo Hwang, et al. Design optimization for suspension system of high-speed train using neural network[J]. JSME International Journal(Series C),2003,46(2):727-735.
    [166]龚利.高速电动车组动力学性能的深化研究[D].北京:中国铁道科学研究院,2003.
    [167]刘建新,王开云.抗蛇行减振器对机车运行平稳性的影响[J].交通运输工程学报,,2006,6(4):1-4.
    [168]罗赟,陈康,金鼎昌.280动力车踏面外形对悬挂参数选配的影响[J].铁道学报,2004,26(5):26-30.
    [169]罗赞,陈康,金鼎昌.减振器卸荷特性对280动力车动力学性能的影响[J].西南交通大学学报,2004,39(5):648-652.
    [170]B. Diedrichs, M.Berg, S. Stichel, et al. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels[J]. Proceedings of The Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit,2007,221(4):527-545.
    [171]R. Illingworth. The mechanism of railway vehicle excitation by track irregularities[D]. Ph.D. Dissertation, University of Oxford,1973.
    [172]王开云,翟婉明,刘建新,等.线路不平顺波长对提速列车横向舒适性影响[J].交通运输工程学报,2007,7(1):1-5.
    [173]全顺喜.高速道岔几何不平顺动力分析及其控制方法研究[D].成都:西南交通大学,2012.
    [174]杨吉中.考虑空气动力效应时高速列车运行安全平稳性研究[D].成都:西南交通大学,2009.
    [175]崔涛.高速列车流固耦合振动及运行安全性研究[D].成都:西南交通大学,2011.
    [176]李田.高速列车流固耦合计算方法及动力学性能研究[D].成都:西南交通大学.2012.
    [177]H.A. List. An evaluation of recent developments in railway truck design[J]. ASME paper 71-RR-1,April 1971.
    [178]R. Liechty. Das bogenlaeujige Eisenbahn-Fahrzeug,1934, p.21 (Schulthess, Zurich).
    [179]Z.Y. Shen, J.M. Yan, J. Zeng, et al. Dynamical behaviour of a forced-steering three-piece freight car truck[C]. Proc.10tn IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks,1987,407-418.
    [180]U. Schwanck. Wheelset steering for bogies of railway vehicles[J]. Rail Engineering International,1974,4(8):352-359.
    [181]A.H. Wickens. Static and dynamic instabilities of steered and articulated railway vehicles[C]. Proceedings of Second ASME Symposium on Transportation,1990.
    [182]P. Losa. The pendolino body tilt control [J]. Energia Elettrica,1987,64(1):33-34.
    [183]A. Alexandersson, T. Nilstan. The development of advanced high-speed vehicles in Sweden[C]. Proceeding of Instn Mech. Engrs, Part D,1984,198(D15):229-237.
    [184]Akira Nakagawa. The latest pendulum EMU train (series 383)[J]. Japanese railway Engineering,1995,35(2):21-25.
    [185]J. T. Pearson, R. M. Goodall, I. Pratt. Control system studies of an active anti-roll bar tilt system for railway vehicles [C]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1998,212:43-60.
    [186]Rickard Persson, Roger M. Goodall, Kimiaki Sasaki. Carbody tilting-technologies and benefits[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility, 2009,47(8):949-981.
    [187]UIC. First report on tilting train technology. State of the art, UIC, High-Speed Division, Paris,1998.
    [188]UIC. Second report on tilting train technology. State of the art,Working Draft, UIC, High-Speed Division, Paris,2005.
    [189]Rickard Persson. Tilting Trains:A description and analysis of the present situation:a literature suty[M].Sweden:Swedish National Road and Transport Research Institute (VTI) 2007.
    [190]Anon. Tilting Train. Available at http://en.wikipedia.org/wiki/Tilting train, history.
    [191]Masayuki Miyamoto, Yoshihiro Suda. Recent research and development on advanced technologies of high-speed railways in Japan[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2003,40(l-3):55-99.
    [192]A.C. Zolotas, R.M. Goodall, G.D. Halikias. Recent results in tilt control design and assessment of high-speed railway vehicles [C]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2007,221:291-312.
    [193]A. Conde Mellado, C. Casanueva, J. Vinolas, et al. A lateral active suspension for conventional railway bogies[J].Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2009,47(1):1-14.
    [194]Katsuya Tanifuji, Mitsuru Saito, Hitoshi Soma,et al. Vibration suppression of car-body tilting vehicle using air springs with antiroll damper[J]. Journal of mechanical systems for transportation and logistics,2009,2(2):192-203.
    [195]王娜娜,罗世辉,马卫华.轮径差对车辆动态曲线通过的影响[J].铁道机车车辆,2010,30(2):47-49,64.
    [196]S. Simson, C. Cole. Simulation of curving at low speed under high traction for passive steering hauling locomotives[J].Vehicle System Dynamics.2008,46(12):1107-1121.
    [197]柳拥军,丁莉芬,佟关林.车辆间减振器参数的探讨[J].铁道车辆,2002,40(12):3-5.
    [198]刘珺,文彬,黄欣,等.高速列车车端减振装置的研究[J].铁道机车车辆,2003,23(Suppl.2):32-34.
    [199]陈凯,陈海.铁道车辆车端阻尼装置[J].国外铁道车辆,2004,41(4):5-12.
    [200]李刚,王勇,黄彩虹,等.高速动车组车间减振器对动力学性能的影响研究[J].铁道机车车辆,2012,50(11):6-10.
    [201]周劲松,钟廷修,任利惠,等.高速列车车间悬挂对运行平稳性影响的研究[J].中国铁道科学,2003,24(6):10-14.
    [202]刘伟.车端连接装置对高速列车运行平稳些的影响[J].铁道车辆,2008,46(3):8-10.
    [203]文彬,王悦明,黄强.列车横向平稳性与车间阻尼减振研究[C].铁道科学技术新进展——铁道科学研究院55周年论文集,北京,中国,2005:297-313.
    [204]利光隆志,蔡千华.利用车体间横向减振器改善高速列车的舒适性[J].国外铁道车辆,2009,46(1):8-15.
    [205]G.R.M. Mastinu, M.Gobbi, G.D. Pace. Analytical formulae for the design of a railway vehicle suspension system [C]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2001,215:683-698.
    [206]Y. He, J. McPhee. A design methodology for mechatronic vehicles:application of multidisciplinary optimization, multibody dynamics and genetic algorithms[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2005.43 (10):697-733.
    [207]J. Hu, Y.H. Peng, G.L. Xiong. Multi-disciplinary robust coordination for algebraic and differential constraints and its application to parameter design of bogies [C]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science 2008,222::2147-2161.
    [208]R. Enblom. Two-level numerical optimization of ride comfort in railway vehicles [C]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2006,220:1-11.
    [209]Yoshiki Sugahara, Akihito Kazato, Tadao Takigami, et al. Suppression of vertical vibration in railway vehicles by controlling the damping force of primary and secondary suspensions[J]. QR of RTRI,2008,49(1):7-15.
    [210]Yoshiki Sugahara, Tadao Takigami, Akihito Kazato. Suppressing vertical vibration in railway vehicles through air spring damping control[J]. JSME Journal of System Design and Dynamics, 2007,1(2):212-223.
    [211]Yoshiki Sugahara, Tadao Takigami, K. Sakanoue,et al. Running test of vertical semi-active suspension for railway vehicle[C], Proceedings of JSCE JRail2002:155-156(in Japanese).
    [212]Yoshiki Sugahara, Nobuyuki Watanabe, Tadao Takigami, et al. Vertical vibration suppression system for railway vehicles based on primary suspension damping control-system development and vehicle running test results [J]. QR of RTRI,2011,52(1):13-19.
    [213]Takayoshi Kamada, Kazuyuki Hiraizumi, Masao Nagai. Active vibration suppression of lightweight railway vehicle body by combined use of piezoelectric actuators and linear actuators[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2010,48(S1):73-87.
    [214]李芾,付茂海,黄运华,等.车辆空气弹簧动力学参数特性研究[J].中国铁道科学,2003,24(5):91-95.
    [215]李芾,付茂海,黄运华.空气弹簧动力学特性参数分析[J].西南交通大学学报,2003,38(3):276-281.
    [216]刘增华,李芾,傅茂海,等.铁道车辆空气弹簧系统最优控制策略及方法研究[J].铁道学报,2006,28(1):26-30.
    [217]张洪,吕任远,王志春,等.空气弹簧转向架减振形式分析[J].铁道车辆,2006,44(8):1-6.
    [218]戴焕云.铁道车辆液压减振器卸荷速度选取方法[J].交通运输工程学报,2008,8(4):11-15.
    [219]Dirk Thomas, Mats Berg, Sebastian Stichel (2010):Measurements and simulations of rail vehicle dynamics with respect to overturning risk[C]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2010,48(1):97-112.
    [220]董黎生,程迪.线路不平顺对货车车辆直线脱轨的影响[J].电力机车与城轨车辆.2004,27(5):.
    [221]周进雄,刘增杰,赵国堂.直线段货车脱轨原因的仿真研究[J].铁道学报.2000,22(suppl):.
    [222]关庆华.列车脱轨机理及运行安全性研究[D].成都:西南交通大学,2010.
    [223]向俊.列车脱轨机理与脱轨分析理论研究[D].长沙:中南大学,,2006.
    [224]蓝建中,舒适,刘向,等.国外高铁的安全保障[J].劳动保护,2011(9):107-109.
    [225]郭浩,何光辉,陈金祥.铁道车辆脱轨检测装置的设计[J].铁道车辆,2007,45(10):32-34.
    [226]李仲才.防止列车脱轨的新型护轨[J].铁道建筑,1996(3):6-9.
    [227]李仲才.“防止列车脱轨的新型护轨装置”通过铁道部技术鉴定[J].铁道建筑,1998(3):24.
    [228]熊学政,林栋材,欧阳荣庆.铁路防脱减磨新型护轮轨装置[J].武钢技术,,2003,41(1):24-27,30.
    [229]邵丙衡,刘友梅.我国高速铁路最高运行速度的探讨[J].机车电传动,1992(1):32-37.
    [230]陈明韬,王文健,彭亮,等.钢轨滚动接触磨损研究[J].润滑与密封,,2008,33(3):40-42,47.
    [231]魏先祥.根据接触应力分析轴重与轮径的关系及货车轮径的选择[J].铁道车辆,1992(7):6-10.
    [232]王勇,罗仁,池茂儒.大轴重货车转向架轮轨动力作用和磨耗研究[C].实践开拓创新——2008年快速重载车辆转向架与轮轴学术研讨会论文汇编,中国湖北,,2008:222-229.
    [233]孙翔.我国机车车辆的传统技术急需突破[J].内燃机车,1990(7):1-7.
    [234]李日曰.论线路年通过总重和平均轴重对钢轨伤损的影响[J].中国铁路,1990(7):14-17.
    [235]A. Ekberg. Rolling contact fatigue of railway wheels-a parametric study. Wear,1997 (211):280-288.
    [236]R.S. Ponter, A.D. Hearle, K.L. Johnson. Application of the kinematical shakedown theorem to rolling and sliding point contacts[J]. Journal of the Mechanics of Physics and Solids,1985,41: 487-505.
    [237]李霞,温泽峰,金学松.重载铁路车轮磨耗和滚动接触疲劳研究[J].铁道学报,2011,33(3):28-34.
    [238]杨振祥.关于机车轮(轴)重偏差的分析与研究[J].铁道机车车辆,1997(3):59-61.
    [239]崔培兴.地铁车辆轮重分布问题研究[J].铁道车辆,1997,35(1):14-18.
    [240]严晓明,杨军,胡伟,等.地铁车辆轮重调整问题研究[J].城市轨道交通研究,2008,11(3):35-38.
    [241]池茂儒,张卫华,曾京,等.偏载对转臂定位转向架运行安全性的影响[J].中国铁道科学,2009,30(3):81-85.
    [242]中华人民共和国铁道部.GB/T 7928-2003地铁车辆通用技术条件[S].北京:中华人民共和国铁道部.2003.
    [243]中华人民共和国铁道部.GB/T 3317-2006电力机车通用技术条件[S].北京:中华人民共和国铁道部,2006.
    [244]中华人民共和国铁道部.GB/T 3314-2006内燃机车通用技术条件[S].北京:中华人民共和国铁道部,2006.
    [245]国际电工委员会.IEC 1133 1992-11电力牵引-机车车辆-电力机车车辆和电传动热力机车车辆制成后投入使用前的试验方法[S].1992.
    [246]赵建伟.浅议高速机车的几个技术问题[J].内燃机车,2000(5):7-13.
    [247]陈伯施.关于2E轴货车转向架轮径选择的几点看法[J].铁道车辆,1988(9):1O-14.
    [248]Masakuki Miyamoto,高建敏,张雷.日本高速列车先进技术的近期研究与发展-待续[J].国外铁道车辆.2004,41(2):1-8.
    [249]中华人民共和国铁道部.TB/T 2562-95铁道客车用车轮静平衡轮对动平衡试验方法[S].北京:中华人民共和国铁道部,1995.
    [250]杜利.轮对动平衡检测及校正方法[J].哈尔滨铁道科技,1999(3):12-14.
    [251]陶素娟.铁道车辆车轮的动平衡[J].铁道车辆,1993(5):15-18,14.
    [252]叶信仁.机车轮对动、静平衡的试验与分析[J].铁道机车车辆工人,1993(11):1-3.
    [253]康凤伟.铁道车辆轮对动平衡新工艺研究[D].成都:西南交通大学,2004.
    [254]杨良澍.客车轮对动平衡[J].铁道车辆,1995,33(9):37-40.
    [255]王伯铭,张红军.高速动力车轮对的动平衡[J].内燃机车,1995(9):24-27.
    [256]龚积球.对机车车轮运用中的几个问题的分析及对策[J].内燃机车,1996(6):1-4.
    [257]谭绍军.GB/T7928-2003《地铁车辆通用技术条件》介绍[J].现代城市轨道交通,2004(4):33-36,3.
    [258]肖彦君,吴茂杉.交流传动城轨动车轮径允差问题的探讨[J].铁道机车车辆.2004,24(1):6-8.
    [259]中华人民共和国铁道部.铁路客车轮对和滚动轴承轴箱组装及检修规则(第一版)[M].北京:中国铁道工业出版社,1990.
    [260]中华人民共和国铁道部.铁路动车组运用维修规程(暂行)[M].北京:中国铁道出版社,2007.
    [261]贺兵一.东风_4型机车轮径差与轮缘偏磨关系分析及解决偏磨的方法[J].内燃机车,1994(6):38-39.
    [262]李艳,张卫华,周文祥.车轮型面磨耗对车辆服役性能的影响[J].西南交通大学学报,2010,45(4):549-554.
    [263]刘文辉.高铁车辆安全稳定裕度可调控性研究[D].大连交通大学,2012.
    [264]朴明伟,梁树林,方照根,等.高速转向架非线性与安全稳定性裕度[J].中国铁道科学,2011,32(3):86-92.
    [265]朴明伟,梁树林,孔维刚,等.高速转向架非线性稳定性及安全裕度对策[J].振动与冲击,2011,30(8):161-168.
    [266]R. D. Frohling. Analysis of asymmetric wheel profile wear and its consequences[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,2006,44(supl):590-600.
    [267]Bu-Byoung Kang, Chan-Woo Lee. The influences of the wheel profiles on the wheel wear and vibrational characteristics of the passenger cars running on the Seoul-Pusan conventional line[J]. JSME International Journal (Series C),2004,47(2):477-481.
    [268]藤沢孝之,张孝仁.车轮踏面管理与计划饭修经济漩修[J].国外机车车辆工艺,1995(4):13-17.
    [269]奥山雅贵,彭惠民.车轮踏面镟修量判定的研究[J].国外机车车辆工艺,2009(1):14-18,40.
    [270]Kevin J. Sawley. Wheel/rail profile maintenance[R].Transportation Technology Center, Inc., Pueblo, Colorado,Identification No.461.
    [271]李秋泽,孙守光,谵亮,等.XP55-28经济型镟修踏面外形设计及动力学性能验证[J].铁道学报,,2013,35(1):19-24.
    [272]BSI. BS EN13715, Railway applications-wheelsets and bogies-wheels-wheels tread[S],London: BSI Publication,2006.
    [273]中华人民共和国铁道部.TB/T 449机车车辆车轮轮缘踏面外形[S].北京:中华人民共和国铁道部,2003.
    [274]董孝卿,王悦明,王林栋,等.高速动车组车轮踏面镟修策略研究[J].中国铁道科学,2013,34(1):88-94.
    [275]王卫东,李金森.转向架轴距误差对车辆直线动力学性能影响的分析[J].中国铁道科学,1995,16(4):103-110.
    [276]王卫东,李金森.转向架装配误差对车辆动力学性能影响的分析[J].铁道机车车辆,1996(1):11-16.
    [277]池茂儒,张卫华,金学松,等.轮对安装形位偏差对车辆系统稳定性的影响[J].西南交通大学学报,2008.43(5):621-625.
    [278]池茂儒,张卫华,金学松,等.轮对安装误差对铁道车辆行车安全性的影响[J].西南交通大学学报,2010,45(1):12-16.
    [279]沈钢,曹志礼,赵惠祥.交叉支撑式转向架形位偏差的动力学性能影响[J].同济大学学报,2002,30(12):1503-1507.
    [280]Cesar A. Grau. A parametric study of the lateral dynamics of a nonlinear four-wheel road-vehicle model[D].Department of mechanical, Industrial and Nuclear Engineering of the College of Engineering, University of Cincinnati,2002.
    [281]Gregory Kendall Watkins. The dynamics stability of fully faired single track human powered vehicle[D].Mechanical Engineering, University of North Carolina at Charlotte,2002.
    [282]Christopher Ryan Spivey. Analysis of ride quality of tractor semi-trailers[D].Mechanical Engineering, Graduate school of Clemson University,2007.
    [283]Paul S. Fancher. The static stability of articulated commercial vehicles[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1985,14(4-6):201-227.
    [284]赵永翔,高庆,张斌,等.轨道车辆轮对的关键力学问题及研究进展[J].固体力学学报,2010,31(6):716-730.
    [285]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [286]宋学谦,罗晓玉.广义Ruzicka隔振系统的随机振动隔离研究.郑州轻工业学院学报(自然科学版),2003,Vol.18,No.1:17-20.
    [287]曾京.车辆系统的蛇行运动分又及极限环的数值计算[J].铁道学报,1996.18(3):13-19.
    [288]牵引动力国家重点实验室.转向架动力学台架试验分析报告[R].成都:西南交通大学,2010.
    [289]中华人民共和国铁道部.GB5599-85铁道车辆动力学性能评定和试验鉴定规范[S].北京:中华人民共和国铁道部,1985.
    [290]UIC. UIC513 Guidelines For Evaluating Passenger Comfort In Relation To Vibration In Railway Vehicles[S].1st ed., International Union of Railways, Paris,1994.
    [291]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.
    [292]道客巴巴,研究生课件“正交试验设计方法”网页http://www.doc88.com/p-91773457861.html
    [293]侯化国,王玉民.正交试验法[M],长春:吉林人民出版社,1985.
    [294]R.A.Fisher,The Design of Experiments[M],Oliver & Boyd, London,1935.
    [295]豆丁网“正交试验设计”网页http://www.docin.com/p-259486427.html
    [296]田口玄一.実験计画法[M](第3版、上册、下册).束京:丸善株式会社,1976,1977.
    [297]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2010.
    [298]马希文.正交设计的数学理论[M].北京:人民教育出版社,1981.
    [299]维基百科"Sensitivity analysis"网页http://en. wikipedia.org/wiki/Sensiti vity_analysis#cite_note-Primer-0
    [300]MBA智库百科“敏感性分析法” 网页http://wiki.mbalib.com/zh-tw/%E6%95%8F%E6%84%9F%E5%88%86%E6%9E%90
    [301]蒋太才.技术经济学基础[M].北京:清华大学出版社,2006.
    [302]程金良.多参数灵敏度分析在水泥厂规模决策中的应用[J].武汉工业大学学报,1989(4):521-526.
    [303]付宏渊.基于灵敏度分析的地基沉降反演参数优化[J].长沙理工大学学报(自然科学版),2006,3(2):24-28.
    [304]张义民.基于灵敏度的振动传递路径的参数贡献度分析[J].机械工程学报,2008,44(10):168-171.
    [305]胡坤,刘滨涛.基于参数灵敏度分析的航天器毁伤效能研究[J].计算机仿真,2011,28(10):52-56.
    [306]蒋先平.汽车主要总成参数关于操纵稳定性的灵敏度分析及优化[D].吉林大学,2005.
    [307]吴吟.基于轨迹灵敏度分析的TCSC阻尼控制器参数优化设计[D].:江苏南京:河海大学,2006.
    [308]P.M.Frank. Introduction to system sensitivity Theory[M]. Academic Press,1978.
    [309]松田郁夫,多目的计画間题のシステム論的研究[R].电子技术综合研究所研究报告,第827号,p1-96,1982-08(昭和57年)
    [310]E.J. Haug, R. Wehager, N.C. Bannan.Design sensitivity analysis of Planar mechanism and dynamics[J].ASEM J.MeehanicalDesign,1981,103:560-570.
    [311]Peter Bemllard, F. Dignath. Control optimization of multibody systems using point-and piecewise defined optimization criteria[J].Eng.Opt,2000,32:417-438.
    [312]Francis Galton. Natural Inheritance[M]. London, Macmillan,1889.
    [313]耿修林.商务经济统计学[M].北京:科学出版社,2003.
    [314]J.K. Hedrick, D.N. Wormley, et al. Performance limits of railway vehicle stability/curing trade-offs and model validation[J]. Dot/Ost/P-34/85-014 of U.S. Dep. of Transportation,1981,10.
    [315]牵引动力国家重点实验室.CRH380AL动车组动力车和非动力车滚动振动试验台动力学型式试验报告[R].成都:西南交通大学,2012.
    [316]Devendra P. Garg. Describing function techniques for the non-linear analysis of the dynamics of a rail vehicle wheelset[R]. Volpe Center Technical Report&Presentations, DOT-TSC-FRA-75-06,1975.
    [317]A.F.D'Souza等.轮轨踏面形状对蛇行运动的影响[J].国外铁道车辆,1990(3):32-40.
    [318]金新灿.货车转向架参数匹配对车辆横向稳定性的影响(下)[J].铁道车辆.1995,33(5):27-31.
    [319]宋晓文,马卫华,罗世辉.缓和曲线长度对车辆曲线通过性能的影响[J].电力机车与城轨车辆,2007,30(4):5-8.
    [320]陈光雄,鲍维千.缓和曲线上周期性线路不平顺对车辆脱轨的影响[J].铁道车辆,2000,38(4):1-5.
    [321]王小文.准高速、高速铁路缓和曲线线型选择研究[J].铁道学报,,2001,23(2):81-85.
    [322]张建全,黄运华,李芾.缓和曲线线型对铁道车辆动力学性能的影响[J].交通运输工程学报,2010,10(4):39-44.
    [323]刘鑫,刘增杰.秦沈客运专线高速试验段线路缓和曲线动力学仿真分析[J].铁道学报,2004,26(1):82-87.
    [324]李成辉.轨道[M].成都:西南交通大学出版社,2005.
    [325]中华人民共和国铁道部.新建时速300~350公里客运专线铁路设计暂行规定暂规[S].北京:中华人民共和国铁道部.2007.
    [326]刘兴文.铁路轨道[M].成都:西南交通大学出版社.2011.
    [327]曾京.车辆非线性振动课件——平稳性.成都,2008.
    [328]中华人民共和国铁道部.高速铁路无砟轨道线路维修规则(试行)[S].北京:中华人民共和国,2011.
    [329]陈宪麦.轨道平顺时频域分析及预测方法的研究[D].北京:中国铁道科学研究院,2006.
    [330]练松良,刘扬,杨文忠.沪宁线轨道不平顺谱的分析[J].同济大学学报,2007,35(10):1342-1346.
    [331]张曙光,康熊,刘秀波.京津城际铁路轨道不平顺谱特征分析[J].中国铁道科学,2008,29(5):25-30.
    [332]姜常珍.信号分析与处理[M].天津:天津出版社,2004.
    [333]中国铁道科学研究院.武广客运专线联调联试及综合试验总报告(上册)--武广客运专线联调联试及运行试验总报告[R].北京:中国铁道科学研究院,2009.
    [334]高速列车系统集成国家工程实验窒(南方).国内高速列车转向架技术分析总报告——附件2:转向架动力学性能数值分析报告[R].青岛:南车青岛四方机车车辆股份有限公司,2010.
    [335]中国铁道科学研究院.京津城际铁路高速列车系统动力学试验研究报告[R].北京:中国铁道科学研究院,2009.
    [336]中华人民共和国铁道部运输局装备部.高速动车组[R].北京:中华人民共和国铁道部,2008.
    [337]李东义,邵立鹏,王明海.油压减振器性能检测系统[J].铁道车辆,2010,,48(4):32-34.
    [338]杨国桢,王福天.机车车辆油压减振器[J].北京:中国铁道出版社,2003.
    [339]荆楚网论坛东湖社区:全国四大动车检修基地网页http://bbs.cnhubei.com/thread-2626185-1-1.html
    [340]中国动车组检修基地的部属和简介网页http://bbs.railcn.net/viewthread.php?tid=519226
    [341]探访武汉动车检修基地网页http://hb.qq.com/a/20100119/001803.htm
    [342]广州动车基地今天挂牌成立网页http://www.railcn.net/Article/2009/200907/2009-07-22/20090722090308_200072.html
    [343]陈文芳.CRH2动车组运用故障分析及对策[J].铁道技术监督,2007,35(8):10-12.
    [344]刘立志,王华胜.CRH5动车组运用故障统计分析[J].铁道机车车辆,2009,29(6):62-63.
    [345]梅桂明.受电弓一接触网系统动力学研究[D].成都:西南交通大学,2010.
    [346]周宁,张卫华.双弓作用下弓网动力学性能[J].西南交通大学学报,2009,44(4):552-557.
    [347]武汉动车检修基地.动车组三级修参数检修报告[R].武汉:动车检修基地,2012.
    [348]中国铁道科学研究院机车车辆研究所.CRH动车组试验研究报告[R].北京:中国铁道科学研究院,2008.
    [349]牵引动力国家重点实验室.“时速200公里动车组”拖车转向架滚动振动试验台动力学试验报告[R].成都:西南交通大学,2006.
    [350]牵引动力国家重点实验室.300EMU动车组头车和中间车滚动振动试验台动力学试验报告[R].成都:西南交通大学,,2008.
    [351]牵引动力国家重点实验室.CRH2高速动车组引进消化吸收研究工作总结报告——动力学部分[R].成都:西南交通大学,2008.
    [352]牵引动力国家重点实验室CRH380AL动车组非动力车滚动振动试验台动力学型式试验报告[R].成都:西南交通大学,2012.
    [353]南车青岛四方机车车辆股份有限公司.时速250公里转向架动力学性能线路试验报告(06SF301-01-1001-YB07-(A)) [R]青岛:南车青岛四方机车车辆股份有限公司,2007.
    [354]南车青岛四方机车车辆股份有限公司.时速350公里转向架动力学性能线路试验报告(06SF301-01-1001-YB10-(A)) [R].青岛:南车青岛四方机车车辆股份有限公司,2008.
    [355]沈志云.7月起全国高铁限速300公里[N].华西都市报,2011-05-21(4)
    [356]邱宣怀.机械设计[M].4版.北京:高等教育出版社,2004.
    [357]高淑英,沈火明.线性振动教程[M].北京:中国铁道出版社,2003.
    [358]Yang Tang, Shihui Luo, Yan Li.et al. Effect of lateral stop parameters on vehicle dynamics performance[C]. Proceeding of 3rd international conference on transportation engineering,July 23-25,2011,Chengdu, China:2600-2606.
    [359]中华人民共和国铁道部运输局装备部.CRH380A高速动车组转向架[R].北京:中华人民共和国铁道部,2010.
    [360]南车青岛四方机车车辆股份有限公司.CRH2型新一代高速列车系统优化设计汇报[R].青岛:南车青岛四方机车车辆股份有限公司,2009.
    [36]]高速列车系统集成国家工程实验室(南方).“和谐号"380转向架技术创新报告汇编:转向架结构参数阈值分析与优化报告(报告4-18)[R].青岛:南车青岛四方机车车辆股份有限公司,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700