用户名: 密码: 验证码:
不锈钢冶炼AOD炉烘烤新工艺过程数值仿真与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AOD炉是不锈钢生产的重要设备,其炉本体的烘烤质量将直接影响到能量的消耗和产品的质量。目前国内外的不锈钢生产厂家已开始探索先进的烘烤器和烘烤工艺,以便解决普遍存在的能耗大、效率低、烘烤温度不均匀的突出问题。在高温空气燃烧(HTAC)技术的基础上发展起来的蓄热式烘烤,近些年来,在钢包、中间包等冶金设备的烘烤方面得到了广泛的应用,但还没有在AOD炉中得到应用。AOD炉外型尺寸比较特殊,属于狭长型,能否成功应用此项先进的燃烧技术需要大量的研究和创新设计。因此,开展AOD烘烤过程的研究和新烘烤工艺的开发具有十分重要的现实意义。
     本论文对AOD烘烤技术的现状、HTAC技术的发展以及在AOD烘烤中应用的可行性、AOD烘烤过程的数值分析方法进行分析,在对120tAOD炉烘烤工艺现场研究的基础上,采用CFD数值模拟,对现有120tAOD烘烤器的烘烤过程及HTAC技术在AOD烘烤设备中的应用新工艺过程进行了数值仿真与优化研究,开展的主要研究工作和获得的结果如下:
     (1)对现有工艺烘烤AOD炉内的温度分布进行了测试,考察了AOD烘烤的温度均匀性及炉内的温度分布情况,同时测试废气成份,掌握在对AOD炉的烘烤过程中的天然气燃烧时的废气排放情况。为进一步开展对AOD的系统节能奠定了基础,为数值仿真模型的验证提供了参考。
     (2)利用商业软件STAR-CD,对现有AOD炉烘烤过程的炉衬温度分布及烘烤器的燃烧特性进行了数值模拟研究,计算模拟结果进行了实际验证。
     结果表明:烘烤结束时炉壁最高温度可达1380K,同一圆周方向上温度最大相差20K,靠近烟气出口一侧温度稍高;炉壁高度方向上温度最高相差56K,中下部温度高;炉内烟气流动速度小,温度低,导致炉壁加热不够均匀。目前的烘烤器烘烤效果不甚理想。模拟计算结果与实测结果吻合良好。
     (3)针对AOD炉体结构和烘烤过程的特点,设计了新型的蓄热式AOD烘烤装置,以新型分体式复合型蓄热式燃烧系统替代原燃烧系统,结合现场实际情况,制定了完整的蓄热式设备新方案。
     (4)为研究新型蓄热式AOD烘烤器的烘烤效果,对AOD炉烘烤过程的流动、燃烧、传热现象进行数值模拟研究,定量考察了空—燃比、空气预热温度、天然气流量等烘烤工艺参数对炉衬温度、炉内燃烧温度场及气氛中的02和NO浓度场的影响规律。同时对同一烘烤装置的燃料适应性进行了数值模拟研究,分析几种不同成分的燃料对温度场的影响,讨论用混合煤气等燃料替代天然气的可行性。
     结果表明:增加天然气流量和空气预热温度是提高炉壁温度的有效措施,空—燃比变化对温度的影响较小;应用此蓄热式AOD烘烤器,天然气流量在380~420Nm3/h范围内,空气预热温度1073K左右,空—燃比在10:1~12:1之间,天然气预热773K,在满足烘烤温度1373K的基础上,温差基本可以控制在50K以内,烘烤温度均匀性较好。燃烧后的炉内气氛中02浓度分布均匀;NO浓度比原系统稍高,由于一个炉次的烘烤时间比原系统大幅缩短,所以总的NO排放量并不大。几种燃料组分中使用天然气作燃料的烘烤效果较好,混合煤气的烘烤温度可达到烘烤要求,替代天然气作燃料是可行的。本文提出了供现场参考的烘烤工艺参数。
AOD (Argon and Oxygen Decarburization)furnace is one of the most important equipment for stainless steel-making. The baking quality of AOD furnace directly affects the product quality and energy consumption. At present, the exploration of advanced AOD baker and baking process are carried out in most of the stainless steel making plants at home and abroad to solve the outstanding problems such as high energy consumption, low efficiency and non-uniform baking temperature. Regenerative baking technique is developed on HTAC (high temperature air combustion) technique and is extensive applied to metallurgical equipment especially for the aspect of ladle and tundish baking, however it has not been applied to AOD baking process yet. The configuration of AOD furnace is relatively special because of its long-narrow type, so the application of the advanced combustion technology on AOD needs plenty of research work and innovative design. Therefore, it is very necessary to understand the baking process in AOD and to develop new baking technology.
     The current status of AOD baking technology, the development of HTAC technique and the feasibility of the application of HTAC technique on AOD, the method of numerical simulation of the AOD baking process were reviewed in this thesis. Combined with research work in steelworks, CFD was employed to simulate the present 120 ton AOD baking process and the application of HTAC in AOD. Main research work and results are described as follows.
     (1) The distribution of temperature of AOD furnace with present baking process was measured and the temperature uniformity and the distribution in the furnace were obtained. As well as, the composition of off gas was measured, thus the exhaust gas emission during the baking process with natural gas combustion in AOD was understood. All these have provided the important data for the validation of numerical simulation and laid the base for the further system energy saving of AOD.
     (2) By means of commercial software STAR-CD, the temperature distribution of AOD furnace lining during the present baking process and the combustion characteristics of the baker were investigated with numerical simulation, and the predicted results were validated by actual measurements. The results show that the maximum temperature of AOD furnace lining after baking can reach 1380K, and the biggest temperature difference in the same circle direction is 20K. The temperature at the side close to the outlet is relatively high. The biggest temperature difference in height direction is 56K, and the temperature in the lower-middle part is relatively high. The small flow rate and lower temperature of the off gas in AOD lead to the non-uniform temperature of the wall. The present baking effectiveness is not satisfactory. The predictions are in good agreement with the measured.
     (3) According to the characteristics of AOD structure and baking process, the new type regenerative AOD baker was designed in order to replace the original combustion system. Combined with the actual situation on site, the complete reform scheme of regenerative equipments was established.
     (4) In order to study the effect of the new regenerative baker on the baking process in AOD, numerical simulation of gas flow, combustion and heat transfer in AOD during the baking process has been carried out. The influences of air-fuel ratio, preheated air temperature and nature gas flux on the lining temperature and combustion temperature field and distribution of O2/NO in AOD after baking were quantitatively analyzed. The influences of components of various fuels on temperature distribution were presented to investigate the fuel adaptability of the AOD baker. The feasibility of replacing nature gas with mixed gas and other fuels were discussed.
     Results show that raising the flux of nature gas and preheated air temperature are effective measures to increase the lining temperature, while the influence of air-fuel ratio on the lining temperature is relatively small. Using the regenerative AOD baker, with the flux of nature gas of 380~420Nm3/h and preheated air temperature of about 1073K and air-fuel ration of 10:1~12:1, the lining temperature can reach the desired temperature 1373K, and the temperature difference can maintain lower than 50K, that shows a good uniformity for the temperature. Distribution of O2 in furnace is uniform, and NO concentration is some higher than original baking system. But because the baking time of new system will shorter than before, the total amount of NO is not large. The heating effect of baker using nature gas as fuel is relatively better than other fuels. The heating temperature of mixed gas can also match the requirement of AOD baking, so replacing nature gas is feasible. In addition, the optimal baking parameters for the actual performance were presented in this paper.
引文
1.郭家祺,刘明生.AOD精炼不锈钢工艺发展[J],炼钢,2002,18(2):52-58.
    2.吴燕萍.AOD设备及工艺设计特点[J],中国冶金,2007,17(4):45-47.
    3.刘闯.不锈钢AOD精炼工艺的应用和发展[J],特殊钢,2007,28(1)44-46.
    4.徐匡迪.不锈钢精炼[M],上海:上海科学技术出版社,1985,117-119.
    5.冯军,林碧翠,李向东.AOD法中供气系统的分析与改进[J],冶金动力,1995,3:38-40.
    6.葛利红.AOD不锈钢冶炼过程连续测温系统开发[D],沈阳:东北大学,2005,1-5.
    7.王贵平,范红军.提高45 t AOD炉龄的工艺实践[J],特殊钢,2006,27(2):56-57.
    8.高家锐,高仲龙,张先棹.关于工业加热炉发展方向的探讨[J],工业炉,1996,3:3-6.
    9.代朝红,温治,朱宏祥等.高温空气燃烧技术的研究现状及发展趋势(上)[J],工业加热,2002,3:14-18.
    10.代朝红,温治,朱宏祥等.高温空气燃烧技术的研究现状及发展趋势(下)[J],工业加热,2002,4:11-15.
    11.吴道洪.蓄热式高温空气燃烧技术的应用[J],工业加热,2002,3:1-3.
    12.须藤淳,多田健.蜂窝型蓄热式燃烧系统的开发和应用[J],工业炉,1999,21(2): 50-53.
    13.蔡乔方.加热炉[M],北京:冶金工业出版社,1983.
    14.陈鸿复.冶金炉热工与构造[M],北京:冶金工业出版社,1990.
    15.郑兆平.蓄热式燃烧技术综述[J],钢铁研究,1999,6:48-51.
    16. Martin T. Regenerative ceramic burner technology and utilization [J], Industrial Heating,1988,55(4):12-15.
    17. John N N, Lexington K. High-Performance Heat Recovery with Regenerative Burners[J], Iron and Steel Engineer,1987,64(4):20-24.
    18. Suzukawa Y, Sugiyama S, Mori I. Heat Transfer Improvement and NOx Reduction in an Industrial Furnace by Regenerative Combustion System[A], Proc. IECEC Conference[C],1996,804-809.
    19. Yutaka Suzukawa. Regenerative Burner Heating System [A], High Temperature Air Combustion[C],1999,169-180.
    20. Sudo J, Hasegawa T. Advanced HRS technology and its industrial applications [A], 4th International Symposium on High Temperature Air Combustion and Gasification[C], 2001.
    21.#12
    22. Wunning J A, Wunning J G. Ten Years of Flameless Oxidation:Technical Applications and Potentials[A],4th International Symposium on High Air Combustion and Gasification[C],2001.
    23. Flamme M, Brune Konold U, et al. Optimization of the energy efficiency of industrial furnaces(ETA)[A],4th International Symposium on High Temperature Air Combustion and Gasification[C],2001.
    24. Bruce C, Robertson T, Newby J N. A review of the development and commercial application of the LNI technique[A],4th International Symposium on High Temperature Air Combustion and Gasification[C],2001.
    25. Katsuki M, Hasegawa T. The Science and Technology of Combustion in Highly Preheated Air [A], Proceeding 27th Symposium (Intl.) on Combustion[C],1999, 3135-3146.
    26.张世建,商桂梅,王世勇等.自身蓄热调温烧嘴的开发及在离线钢包烘烤系统上的应用[J],钢铁,2007,47(8):83-85.
    27. K.Kitagawa, N.Konishi, etl. Temporally resolved two-dimensional spectroscopic study on the effect of highly preheated and low oxygen concentration air on combustion[J], Transactions of the ASME,2003,125:326-331.
    28. Magnus Mortberg, Wlodzimierz Blasiak, etl. Experimental investigation of flow phenomena of a single fuel jet in cross-flow during highly preheated air combustion conditions[J], Transactions of the ASME,2007,129:556-564.
    29. Katsuki M, Hasegawa T. The science and technology of combustion in highly preheated air [A],27th Symposium(International)on Combustion[C],1998,3135-3147.
    30. Gupta A K, Hasegawa T. High temperature air combustion:Flame characteristics, Challenges and Opportunities[A], Proceedings of Beijing Symposium on High Temperature air combustion[C],1999,10-28.
    31.祁海鹰,徐旭常.中国开发应用高温空气燃烧技术的前景[A],高温空气燃烧新技术讲座论文集[C],1999,192-205.
    32.蒋绍坚,彭好义,艾元方等.高温低氧气氛中气体燃料的火焰特性[J],中南工业大学学报,2000,31(3):228-231.
    33.祁海鹰,李宇红,由长福等.高温空气燃烧技术的国际发展动态[J],工业加热,2003,1:1-7.
    34.李洪宇.蓄热式热工特性及优化设计研究[D],昆明:昆明理工大学,2005.
    35. Gupta A. K. Bolz S. Hasegawa T.. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission[J].Journal of Energy Resources Technology,1999,121:209-216.
    36. Toshiaki Hasegawa, Ryoichi Tanaka, Takashi Niioka. In:High Temperature Air Combustion Contributing to Energy saving and Pollutant Reduction in Industrial Furnace[A].Proceedings of High Temperature Air Combustion[C]. Bejiing:The Federation of Engineering societies of China Association for Science and Technology, 1999,101-114.
    37. Masashi Katsuki, Oshika Hasegawa. In:The Science and Technology of Combustion in Highly Preheated Air [A], Twenty-seventh symposium (International) on Combustion [C]·The Combustion Institute,1998,3135-3146.
    38. M Nishimura, T Suzuki, R Nakanishi, et al. Low-NOx Combustion under High Preheated Air Temperature Condition in An Industrial Furnace[J], Energy Convers. Mgmt, 38(10):1153-1163.
    39.郭伯伟,张者一.工业炉发展与蓄热式燃烧器的应用[J],工业加热,2001,(3):5-9.
    40. H Klein, G Eigenberger. In Approximate solutions for metallic regenerative heat exchangers[J], International Journal of Heat and Mass Transfer,2001,44:3553-3563.
    41. F de Monte. Cyclic steady thermal response of rapidly switched fixed-bed heat regenerators in Counter flow [J], International Journal of Heat and Mass Transfer,1999, 42:2591-2604.
    42. Nabil Rafidi, Wlodimierz Blasiak. Experimental Study Thermal Performance of Ceramic Regenerative Heat Exchanges used in HiTAC Regenerative Burning Systems[A], 25th Topic oriented Technical Meeting[C],2003:87-94.
    43. Tanaka R, Kishimoto K, Hasegawa T. High efficiency heat transfer method with use of High temperature Pre-heated air and gas recirculation[J], Combust. Sci. Technology, 1999,1(4):264-273.
    44. A.K.Gupta. Thermal characteristics of gaseous fuel flames using high temperature air[J], Journal of engineering for gas turbines and power,2004,126:9-19.
    45. Nabil Rafudi, Ashwani K.Gupta. High-Temperature air combustion phenomena and its thermodynamics[J], Journal of engineering for gas turbines and power,2008,130:1-8.
    46. Yuan J, Naruse I. Effects of air dilution on highly preheated air combustion in a regenerative furnace[J], Energy and Fuels,1999,13(1):99-104.
    47. Yuan J, Naruse I. Modeling of combustion characteristics and NOx emission in highly preheated and diluted air combustion[J], International journal of Enemy Research,1998, 22(14):1217-1234.
    48. Girardi G, Giammartini S. Numerical and experimental study of Mild combustion of different fuels and burners [A],5th International Symposium on High Temperature Air Combustion and Gasification[C],2002, D201-D219.
    49. Wei D, Blasiak W. numerical modeling of highly preheated air combustion in a 580kW testing furnace at IFRF[A], The 3th CREST international Symposium[C],2000:E401-E412.
    50.包向军,蔡九菊,罗光前等.新型蓄热式垃圾热解技术[J],冶金能源,2003,22(3):44-48.
    51.蔡九菊,于娟,于庆波等.陶瓷球蓄热室传热特性的研究[J],钢铁,1999,34(2):54-58.
    52.李建芳.陶瓷球蓄热室阻力特性和换热特性的实验研究[D], 沈阳:东北大学,1998.
    53.王爱华,蔡九菊,王连勇等.新型高效蓄热式燃烧系统的设计研究[J],工业加热,2004,33(2):1-4.
    54.于娟.填充球蓄热室传热性的研究[D],沈阳:东北大学,1999.
    55.王力军,蔡九菊,邹宗树等.燃气喷射对高温空气燃烧室内流动影响的数值研究[J].东北大学学报,2003,24(3):276-279.
    56.王力军,蔡九菊,邹宗树等.高温空气燃烧炉内湍流混合特性的数值研究[J],计算物理,2004,21(3):357-361.
    57.王爱华,蔡九菊,谢国威.高温空气燃烧炉内燃烧特性的数值研究[J],中国冶金,2008,18(3):45-48.
    58.刘夏丹,于宏,周琦等.陶瓷蜂窝体的结构特性及其蓄热燃烧系统的应用[J],冶金能源,1999,18(4):28-31.
    59.黄恩民,陈作勇,王春凯.HATC技术的开发与应用[J],工业加热,2003,(2),57-58.
    60.欧俭平,彭好义,吴道洪等.蓄热式高温空气燃烧技术在燃气辐射管中的应用[J],工业加热,2003,(3):37-39.
    61.欧俭平,蒋绍坚,马爱纯等.高温空气燃烧技术用于钢包烘烤的节能效果[J],冶金能源,2003,22(6):30-32.
    62.蒋绍坚,艾元方,彭好义等.高温低氧燃烧技术及其高效低污染特性分析[J],中南工业大学学报,2000,31(4):311-314.
    63.欧俭平,蒋绍坚,吴创之等.蜂窝陶瓷蓄热体格孔壁面应力变化特性的数值研究[J],热能动力工程,2004,19(1):63-65.
    64.饶文涛,朱彤.高温空气燃烧NOx生成规律研究[J],工业炉,2003,25(4):1-4.
    65.杜军,饶文涛,李朝样等.陶瓷蓄热体阻办特性的试验研究[J],工业炉,2002,24(1): 6-9.
    66.饶文涛,杜军,张鹤声等.蓄热烧嘴结构优化数值模拟研究[J],工业炉,2002,24(2): 5-8.
    67.饶文涛,杜军,张鹤声.工业炉蓄热燃烧系统的开发[J],工业加热,2002,(4):42-46.
    68.饶文涛.高温空气燃烧特性及应用研究[D],上海:同济大学,2002.
    69.李伟,祁海鹰,李宇红等.几何结构与高温空气燃烧特性的关系[J],工业加热,2002,(6):14-16.
    70.李晓萍,朱彤,吴家正.高温空气燃烧中燃气/空气速度比对NOx生成的影响[J],工业加热,2004,33(4):1-8.
    71.朱彤,朱尚龙,曹甄俊等.高温空气燃烧NOx排放特性的试验研究[J],工程热物理学报,2006,27(5):894-896.
    72.朱尚龙,陈丽,朱彤等.矩形空气喷口长宽比对高温空气燃烧NOx排放的影响[J],Industrial Furnace,2005,27 (6):4-8.
    73.张福宝,罗永浩,段佳等.高温空气燃烧若干因素对NOx生成量的影响[J],热能 动力工程,2006,21(2):115-118.
    74.李欣,梁凯丽,冯俊小.蓄热式钢包烘烤器气体混合特性数值模拟[J],热科学与技术,2005,4(4):323-328.
    75. James D, Bowers. Experience with Regenerative Burners in Increasing Glass Melter Efficiency[J], Industrial Heating,1988,55(4):24-25.
    76.侯长连,胡和平,董为民等.高效蓄热式工业炉的开发与应用[J],钢铁,2002,(1):65-67.
    77.赵丹.多股射流相干高温空气燃烧的数值模拟[D],上海:东华大学,2007.
    78.侯长连,杨晓音,胡和平等.高效蓄热式长坑均热炉[J],钢铁,1996,31(7):60-63.
    79.侯长连,杨晓音,陈荣璋等.高效蓄热罩式退火炉的研制与应用[J],工业炉,1997,19(2): 14-16.
    80.蒋绍坚,曹小玲,艾元方等.高风温无焰燃烧锅炉原理探讨[J],工业锅炉,2001,(4): 11-13.
    81.熊家政,汪洋洋,柳楷玲.高温低氧燃烧锅炉传热特性研究[J],工业炉,2002,24(1): 10-13.
    82.李士琦,吴光亮,郭汉杰等.高温低氧燃烧技术在钢包烘烤装置上的应用研究[J],河南冶金,2003,11(4):9-15.
    83.李淑芬.钢包烘烤装置的发展[J],冶金能源,2003,22(3):37-39.
    84.欧俭平,詹树华,萧泽强.蓄热式钢包烘烤器钢包内衬温度分布数值分析[J],矿冶,2003,12(4):40-43.
    85.欧俭平,詹树华,萧泽强.蓄热式钢包烘烤的数值模拟[J],钢铁研究学报,2005,17(1):19-25.
    86.欧俭平,蒋绍坚,马爱纯等.蓄热式钢包烘烤过程中包内高温低氧特性的数值模拟[J],过程工程学报,2004,4(3):215-220.
    87.杨卫宏.数值模拟在工业炉窑研究与开发中的应用[D],长沙:中南大学,2000.
    88.欧俭平.高温空气燃烧技术在冶金热工设备上的应用及数值仿真和优化研究[D],长沙:中南大学,2004.
    89.曹娜.高拉速板坯连铸结晶器内钢/渣界面行为的数值仿真[D],沈阳:东北大学,2008.
    90.张会强,陈兴隆,周力行等.湍流燃烧数值模拟研究的综述[J],力学进展,1999, 29(4):567-572.
    91.王应时,范维澄,周立行,徐旭常.燃烧过程数值计算[M],北京:科学出版社,1986,1-10.
    92.赵坚行.燃烧的数值模拟[M],北京:科学出版社,2002,5-200.
    93.范维澄,陈义良,洪茂玲.计算燃烧学[M],安徽科学技术出版社,1987.
    94.范维澄,万跃鹏.流动及燃烧的模型与计算[M],中国科学技术大学出版社,1992.
    95.岑可法,樊建人.燃烧流体力学[M],水利电力出版社,1991.
    96.E.E.卡里尔.燃烧室与工业炉的模拟[M],科学出版社,1987.
    97.张毅勐.采用高温空气燃烧技术的加热炉蓄热式燃烧器的数值模拟及热态模化试验[D],上海,同济大学,2003.
    98.魏小林,徐通模,惠世恩.用改进的离散坐标法计算炉内三位辐射传热[J],燃烧科学与技术,2000,6(2):140-145.
    99.周桂娟,毛羽,江华等.延迟焦化炉内流动、燃烧和传热过程数值模拟[J],石油学报,2007,23(1):77-81.
    100.周桂娟,毛羽,江华.燃油加热炉内燃烧过程的三维数值模拟[J],工业炉,2004,26(6): 38-44.
    101.王爱华,蔡九菊,谢国威.高温空气燃烧炉内燃烧特性的数值研究[J],中国冶金,2008,18(3):45-48.
    102. Gou H, K LU W. Mathematical modeling of reversed flow and heat transfer in the combustion chamber of the LB furnace [J], ISIJ International,1993,33(11):1159-1167.
    103. Viskanta R, Menguc M P. Radiation Heat Transfer in Combustion System [J], Progress in Energy and Combustion Science,1987,13(2):97-160.
    104. Fiveland W A. Three-Dimensional Radiative Heat Transfer Solutions by the Discrete-Ordinates Method [J], ASME H7D,1987,72:9-18.
    105. Adams B R, Smith P J. Three-Dimensional Discrete-Ordinates Modeling of Radiative Transfer in a Geometrically Complex Furnace[J], Combustion Science and Technology, 1993,88:293-308.
    106. Jamaluddin A S, Smith P J. Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method [J]. Combustion Science and Technology,1988,62:173-186.
    107. Truelove J S. Three Dimensional Radiation in Absorbing-Emitting-Scattering Media Using the Discrete-Ordinates Approximation [J]. J Quant Spectros Rad Transfer,1988,39: 27-31.
    108. Larsen M E, Howell J P. The Exchange Factor Method, An Alternative Basis for Zonal Analysis of Radiating Enclosures [J], Heat Transfer,1985,107(4):936-942.
    109. Wei Xiaolin, Xu Tongmo, Hui Shien. Three-Dimensional Radiation in Absorbing-Emitting-Scattering Medium Using the Discrete-Ordinates Approximation [J], Journal of Thermal Science,1998.7(4):255-263.
    110.田贺忠.中国氮氧化物排放现状、趋势及综合控制对策研究[D],北京:清华大学,2003.
    111.赵惠富.污染气体NOx的形成和控制[J],北京:科学出版社,1993,119-120.
    112.周力行.NOx生成湍流反应率数值模拟的进展[J],力学进展,2000,30(1):77-82.
    113.许荣.新型全天然气蓄热式钢包烘烤器[J],工业加热,2002,4:26-28.
    114.王恒,孙德民,李栋等.蓄热烧嘴式钢包烘烤器的设计开发与实践[J],钢铁,2004,39(5): 67-70.
    115.冯俊小,盛振江,梁凯莉等.蓄热式空间燃烧烤包器[J],河北理工学院学报,2004,26(1): 15-21.
    116.翟正耀.蓄热式燃烧技术在钢包烘烤器上的应用[J],能源研究与利用,2001(2):15~18.
    117.欧俭平,萧泽强,蒋绍坚等.蓄热式钢包烘烤装置热工问题研究[J],中南大学学报(自然科学版),2004,35(2):217-221.
    118.金从进,邱文东,汪宁.烘烤过程钢包包壁温度场的有限元研究[J],耐火材料,2001,35(1):24-25.
    119.张莉,徐宏,崔建军等.特大型钢包烘烤过程包壳表面温度场研究[J],钢铁,2006,41 (11): 29-31.
    120.冯长宝,饶文涛,章金法.宝钢连铸中间包烘烤烧嘴的开发与应用[J],宝钢技术,2006,5:47-50.
    121.厉英,刘承军,姜茂发等.中间包热状态分析及烘烤工艺优化[J],钢铁研究学报,2007,19(3):11-13.
    122.展军,康雯雯.连铸机中间罐烘烤改造[J],山东冶金,2004,26(1):29-30.
    123.王立军,麻晓光,范德忠等.连铸中间包烘烤制度的研究[J],包钢科技,2003,29: 34-36.
    124.刘学君,黄小东,黄国龙等.中间罐烘烤装置的改进[J],冶金能源,2001,20(2):38-39.
    125.职建军,郑贻裕,崔健等.宝钢连铸中间包热状态测试和分析[J],钢铁,2002,37(1): 26-27.
    126.张胤,贺友多,李士琦等.套筒式陶瓷燃烧器内燃烧过程数学模型[J],金属学报,2000,36(6):667.
    127.杨占春,刘浏,陈蛾等.同轴烧嘴炉内混合燃烧过程的数值模拟[J],钢铁研究学报,2006,18(9):21-25.
    128. Muhsin kilic. Flow and convective heat transfer in culindrical reversed flow combustion chambers[J], heat transfer,23(8):1151-1161.
    129. Stockwell N, zhang c, et al. Numerical simulations of turbulent non-premixed combustion in regenerative furnace[J], ISIJ International,2001,10:1272-1281.
    130. Malikov G K, Lisienko V G, et al. A mathematical modeling and validation study of NOx Emissions in metal processing systems[J], ISIJ International,2002,42:1175-1181.
    131.汪金龙.材料工程测试技术[M],郑州:河南科学技术出版,1996.
    132.陶文铨.数值传热学[M],西安:西安交通大学出版社,1988,264-275.
    133. Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting [J], Journal of Computational Physics,1986,62(1):40-65.
    134.王福军.计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004,87-88.
    135.王力军,李爱民,李继怀等.高温空气燃烧炉内耦合传热的数值模拟[J],计算物理,2005,22(1):77-82.
    136.陈敏,于景坤,王楠.耐火材料与燃料燃烧[M],沈阳:东北大学出版社,2005,306-308.
    137.赵博宁.天然气在蓄热式锻造加热炉上的应用及模拟[D],西安:西北工业大学,2007.
    138.沈文建.HTAC技术在锻造加热炉上的应用[J],设备管理与维修,2005,(2):39-41.
    139.马晓茜.天然气燃烧特性及其与其它燃气的互换性分析[J],冶金能源,2001,20(5): 33-37.
    140.刘洪,温治.蓄热式高温空气燃烧技术[J],技术设备,2003,(6):10-12.
    141. Ito Y, Gupta A K, Yoshikawa K, et al. Combustion characteristics of low calorific value gas with high temperature air [A], In:Yoshikawa K. eds.5th International Symposium on High Temperature and Gasification [C], Tokyo Institute of Technology, 2002,401-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700