用户名: 密码: 验证码:
酒精发酵废液与煤成浆共气化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵法生产酒精会产生大量的酒精废液,直接排放将产生严重的环境污染,其已成为制约酒精工业可持续发展的瓶颈。基于酒精发酵废液的特点和现有处理方法的不足,结合作者企业建有水煤浆气化装置的实际,借鉴较成熟的水煤浆气流床气化技术,提出将酒精废液和煤混合制浆共气化的工艺思想。论文通过对酒精发酵废液与煤的成浆特性、废液煤浆浆滴的雾化性能、废液煤浆的气化特性及磷在气化系统内的分布规律的研究,以及根据气化结果所做的经济和环境效益分析,得主要研究结果如下:
     1.研究了粗细颗粒比、分散剂种类和用量一定时,5种煤样和酒精发酵废液的成浆性,结果表明:玉米和木薯酒精发酵废液煤浆均表现出剪切变稀或假塑性流体的特征,且煤浆固含率越高,浆体的剪切变稀行为或假塑性行为越明显;制浆其他条件相同时,用酒精发酵废液全部或部分代替去离子水制浆,所得合格废液煤浆的固含率均低于水煤浆,并且酒精发酵废液高的粘度和低的pH值使废液煤浆的稳定性变差;用玉米及木薯酒精发酵废液制水煤浆在工业应用上是可行的。
     2.利用高速摄像仪,研究了水煤浆和不同废液煤浆浆滴在高速气流中的运动、变形与破裂情况及其规律,结果表明:当水煤浆和酒精发酵废液煤浆具有较低粘度和较好流动性时,从雾化性能考虑,废液煤浆在破裂时间和破裂粒径两方面都表现出比水煤浆更好的雾化效果。酒精发酵废液煤浆浆滴的破裂模式均可分为拉伸破裂和剪切破裂两种,且与水煤浆相比,废液煤浆更易发生拉伸和剪切破裂模式。在拉伸破裂模式下,玉米和木薯粗馏塔后发酵废液煤浆的破裂时间较短,总特征时间在2.0~4.0左右;在剪切破裂模式下,玉米一次厌氧后和木薯粗馏塔后废液煤浆的破裂时间较短,总特征时间在1.5~2左右。木薯粗馏塔后发酵废液煤浆浆滴在较低的We数下即能破裂,破裂临界气速较低;且在60 m/s和90m/s喷嘴出口气速下,其浆滴破裂平均粒径SMD较小。说明该煤浆易于工业雾化,工业应用价值较高。
     3.借助内窥式工业电视、高温热偶、质谱仪等在四喷嘴对置式气化炉小型热模实验平台上,研究了废液煤浆气化撞击火焰稳定性、气化温度分布、各气体浓度分布等,结果发现:在给定的实验条件下,各废液煤浆均能顺利气化,撞击火焰形状和稳定性无明显区别;撞击火焰集中在气化炉的中心区域;相对于两喷嘴撞击,四喷嘴撞击火焰更加集中,也更加稳定;气化撞击火焰的稳定性主要与煤质特性有关,短时间内,各废液煤浆自身特点对气化的影响不明显。
     4.采用Aspen Plus过程模拟软件对水煤浆和酒精发酵废液煤浆的气化过程进行了模拟,并据此对酒精发酵废液与煤成浆共气化的经济和环境效益进行了分析评价,结果表明,随着成浆时酒精发酵废液掺入比例的增加,合成气中CO的含量略降低、H2和CO2的含量均略增大,有效气含量略降低,比氧耗略增大、比煤耗降低;与日处理2000吨煤(干基)的水煤浆气化相比,在产生等量有效气的情况下,玉米和木薯发酵废液煤浆气化,每年可分别节煤0.20万吨和0.08万吨,节水2.15万吨和3.47万吨,减排CO20.56万吨和0.23万吨。
     5.对木薯发酵废液与煤混合制浆后气化系统内磷的分布规律研究表明,进入气化炉的磷主要转化为PH3,其他磷的化合物的量非常少;气化炉生成的PH3主要存在于废水中排出气化装置,出水洗塔合成气中几乎不含PH3。
The process of alcoholic fermentation will produce large amounts of alcohol fermentation wastewater(AFW). The direct discharge of untreated AFW will cause serious environment pollution and huge waste of the resources, which has became the bottleneck restricting the sustainable development of alcohol industry. Based on the characteristics of AFW and the shortage of the existing processing method, the craft idea of co-gasification and slurrying of AFW and coal has been put forward according to more mature coal water slurry (CWS) entrained-flow gasification technology. The slurryability of AFW and coal, the atomization performance of slurry droplet, the gasification characteristic of coal AFW slurries(CAFWS) and the distribution laws of Phosphorus in the gasification system were researched, meanwhile, the environmental and economic benefits of CAFWS gasification were analysed. The principal conclusions obtained are as follows:
     1. The slurryabilities of five kinds of coal and AFW have been investigated respectively as the mass ratio of coarse particle to fine particle, the variety and amount of dispersing agents are given. It is showed that it is feasible for industrial application to prepare coal slurry with maize AFW(MAFW) and cassava AFW(CAFW). The coal MAFW and coal CAFW slurries exhibited shear-thinning behavior. The higher solid concentration in coal slurry was, the more significant shear-thinning or pseudo-plastic behavior was. The solid concentration in the qualified CAFWSs which were prepared by totally or partly substituting AFW for deionized water is lower than that in CWS. At the same time, the stabilities of CAFWSs become poor due to high viscosity and low PH of AFW.
     2. The movement, deformation and rupture of slurries droplets in high speed air were researched with high speed camera. The results showed that when CAFWSs and CWS are of lower viscosity and better fluidity, CAFWSs have the better atomization performance in rupture time and particle size than CWS does. The rupture of slurry droplets of CAFWS has two patterns:elongating rupture pattern and shear rupture pattern. Compared with CWS, the two rupture patterns of CAFWS droplets occur more easily. In elognating rupture pattern, the rupture time of the slurry droplets of maize and cassava fermentation wastewater from crue distillation tower is shorter, and the total dimensionless time is about 2.0-4.0s. While in shear rupture pattern, the rupture time of the slurry droplets of maize wastewater from once anaerobic and cassava wastewater from crue distillation tower is shorter, and the total dimensionless time is about 1.5-2.0s. The critical rupture velocity of the slurry droplets of the cassava crude distillation tower wastewater which can breakup in lower We number is low. At 60m/s and 90m/s (nozzle exit velocity), the average breakup diameter (SMD) is smaller. From the above discussion, the CCAFWS can be easily atomized, and be of good value for industrial applications.
     3. On bench-scale hot-model experimental platform of opposed multi-burner gasifier, impinging flame stability, gasification temperature distribution, gas concentration distribution were studied by using endoscopic industrial TV, high temperature thermocouples, mass spectrograph. The results show that all CAFWSs can be gasified successfully, and there are no significant differences in shape and stability of impinging flame between CAFWS and CWS. The impinging flame is concentrats in the central area of gasifier. Compared with two-nozzle impinging, the flame of four-nozzle impinging is much more concentrated and stable. The stability of impinging flame is mainly related to coal characteristics, the effects of CAFWS characteristics on gasification aren't significate in short time.
     4. Based on Aspen Plus software, the gasifications of CWS and CAFWS were simulated, and according to the simulation results, the economic and environmental benefits of slurrying and co-gasification were analysed and evaluated. The results showed that with increasing blending ratio of AFW, the contents of CO and effective gas in syngas and specific coal consumption slightly decrease, while the contents of H2 and CO2 in syngas, and specific oxygen consumption slightly increase. Compared with CWS gasification handling 2000 ton/d of coal(by dry basis), in the case of producing equivalent effective gas, each year CCAFWS and CMAFWS gasifications can save 2.0 and 0.8 thousand ton coal respectively,21.5 and 34.7 thousand ton water each year, and reduce the emissions of CO2 5.6 and 2.3 thousand ton.
     5. The distribution of Phosphorus in CCAFWS gasification system were investigated. The results show Phosphorus entering into the gasifier primarily is converted into PH3, the amount of other compounds of phosphorus is very little. PH3 produced from gasification exists primarily in wastewater and is eventually discharged from the gasification system, while there is almost no PH3 in the syngas out of the water scrubber.
引文
[1]王涛.薯类酒精糟液处理及综合利用技术研究[J].中国酿造,2005,(9):34-37.
    [2]李红霞,王晓明,王永芳.DDG+UASB+SBR工艺在玉米酒精糟液处理中的实践[J].酿酒科技,2005,(6):91-93.
    [3]梁欣泉,罗远潮,王双飞.甘蔗糖蜜酒精废液综合治理技术[J].甘蔗糖业,2006,(5):33-38.
    [4]Saha NK, Balakrishnan M, Batra VS. Improving industrial water use:case study for an Indian distillery[J]. Resources, Conservation and Recycling,2005,43 (2):163-174.
    [5]Navarro AR, Sepulveda MdC, Rubio MC. Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses[J]. Waste Management,2000,20 (7):581-585.
    [6]冯世骥.浅谈糖蜜酒精废醪资源化治理的可行性[J].淀粉与淀粉糖,2005,(1):34-39.
    [7]庞芝剑,刘慧霞,李振华,等.甘蔗糖蜜酒精废液浓缩液提取蛋白质的研究[J].广西蔗糖,2009,(1):32-35.
    [8]邵守言,郭庆华,陈雪莉,等.酒精发酵废液煤浆气流床气化实验研究[J].煤炭转化,2009,32(4):39-43.
    [9]刘锋,蒋文化,徐富,等.MIC反应器—卡鲁塞尔氧化沟处理酒精废水[J].工业用水与废水,2007,38(5):104-107.
    [10]Covarrubias GI, De JFGM, Ortiz GL. Utilization of recovered solids from tequila industry vinasse as fodder feed[J]. Bioresource Technology,1996,55(2):151-158.
    [11]张健平,杨方燕.活性炭吸附法处理糖蜜酒精废液工艺条件的探讨[J].云南化工2006,33(6):17-20.
    [12]刘琴,张敬东,李捍东,等.UASB处理高浓度糖蜜酒精废液的研究进展[J].酿酒科技,2005,(11):95-98.
    [13]苏天明,李杨瑞,莫艳兰, et al.甘蔗酒精废液综合治理研究[J].安徽农业科学,2006,34(22):5927-5929.
    [14]张济锋,何志武,黄超艳.制糖行业糖蜜酒精废液综合利用新模式[J].广西轻工业,2008,(9):111-112.
    [15]李坚斌,刘慧霞,扈胜禄,等.载铜活性炭催化氧化糖蜜酒精废液COD的研究[J].食品工业科技,2006,27(7):60-62.
    [16]陈锋,唐江涛,刘小川.一体化治理酒精废醪液技术的探索[J].能源与环境,2005,(1):42-45.
    [17]李亚伟,解庆林,张萍.糖蜜酒精废水治理新技术[J].广州环境科学,2006,21(3):9-12.
    [18]Yavuz Y. EC and EF processes for the treatment of alcohol distillery wastewater[J]. Separation and Purification Technology,2007,53 (1):135-140.
    [19]Parnaudeau V, Condom N, Oliver R, et al. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes[J]. Bioresource Technology,2008,99(6):1553-1562.
    [20]Chen Y, Wang CX, Wang ZJ. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants[J]. Environment International,2005,31(6):778-783.
    [21]Kumar S, Viswanathan L. Production of biomass, carbon dioxide, volatile acids, and their interrelationship with decrease in chemical oxygen demand, during distillery waste treatment by bacterial strains [J]. Enzyme and Microbial Technology,1991,13(2):179-187.
    [22]Agrawal C.S., Pandey G.S. Soil pollution by spent wash discharge:depletion of manganese(Ⅱ) and impairment of its oxidation[J]. Journal of Environmental Biology,1994, 15(1):49-53.
    [23]Kannabiran B, Pragasam A. Effect of distillery effluent on seed germination, seedling growth and pigment content of Vigna mugno[J]. Geobios,1993,20:108-112.
    [24]Fitzgibbon FJ, Nigam DP, Singh D, et al. Biological treatment of distillery waste for pollution-remediation[J]. Journal of Basic Microbiology,1995,35(5):293-301.
    [25]Lu H, Zhu D, Xie W, et al. Concentrated combustion technology of molasses alcohol wastewater[J]. Sugarcane and Canesugar,2007, (4):47-51.
    [26]Loehr RC, Sengupta M, Ludwig HF. Management of ethanol production wastes:a review of available information[J]. Environmental Sanitation Reviews,1985,16:54p.
    [27]Tucker MP, Nagle NJ, Jennings EW, et al. Conversion of distiller's grain into fuel alcohol and higher-value animal feed by dilute-acid pretreatment[J]. Applied Biochemistry and Biotechnology-Part A Enzyme Engineering and Biotechnology,2004,115(1-3): 1139-1159.
    [28]Yamada M, Yamauchi M, Suzuki T, et al. On-site treatment of high-strength alcohol distillery wastewater by a pilot-scale thermophilic multi- staged UASB (MS-UASB) reactor[J]. Water Science and Technology,2006,53(3):27-35.
    [29]Benito GG, Miranda MP, Santos DRdl. Decolorization of wastewater from an alcoholic fermentation process with trametes versicolor[J]. Bioresource Technology,1997,61(1): 33-37.
    [30]付全意,李坚斌,王彦玲,et al.催化氧化糖蜜酒精废液催化剂的制备[J].矿产与地质,2006,20(3):313-316.
    [31]Jimenez AM, Borja R, Martin A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater [J]. Process Biochemistry.2003,38(9):1275-1284.
    [32]王连勇,蔡九菊,冯杰,et al.煤代油技术研究进展[J].中国冶金,2005,15(8):45-48.
    [33]崔秀玉,雷晓平,杨向福.浅谈中国水煤浆技术的开发与应用[J].洁净煤技术,2002,8(4):13-16.
    [34]Xu R, Zhuang W, He Q, et al. Effects of Chemical Structure on the Properties of Carboxylate-Type Copolymer Dispersant for Coal-Water Slurry[J]. Environmental and energy engineering,2009,55(9):2461-2467.
    [35]Guo Z, Feng R, Zheng Y, et al. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2007, 14(5):583-588.
    [36]Zhu H, Yan X, Xia J, et al. Preparation and rheological properties of oil-water-coal triplex synfuel using petroleum sulfonate as the dispersants[J]. Fuel Processing Technology, 2007,88(3):221-255.
    [37]TIWARI KK, BASU SK, BIT KC, et al. High-concentration coal-water slurry from Indian coals using newly developed additives[J]. Fuel Processing Technology,2004,85(1): 31-42.
    [38]郭延红,王维周,张东亮.三相比率对三元料浆流变性及燃烧性的影响[J].西安科技大学学报,2005,25(4):517-520.
    [39]Boylu F, Atesok G. Coal-water mixtures and their technologies, Ⅴ[J]. Coal utilisation and technology symposium, Ankara-Turkey,2000:195-212.
    [40]Laskowski JS. Does it matter how coals are cleaned for CWS[J]. Coal Prep,1999,21: 105-123.
    [41]Boylu F, Atesok G, Dincer H. The effect of carboxymethyl cellulose (CMC) on the stability of coal-water slurries[J]. Fuel,2005,84(2-3):315-319.
    [42]Qiu X, Zhou M, Yang D, et al. Evaluation of sulphonated acetone-formaldehyde (SAF) used in coal water slurries prepared from different coals[J]. Fuel,2007,86 (10-11): 1439-1445.
    [43]李春桂.洁净煤燃烧-水煤浆应用技术[J].大众科技,2005,(9):82-84.
    [44]Mishra S.K., Senapati P.K., Panda D. Rheological Behavior of Coal-Water Slurry.[J]. Energy Sources,2002,24(2):159-167.
    [45]Pawlik M. Polymeric dispersants for coal-water slurries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,266(1-3):82-90.
    [46]Mishra SK, Kanungo SB, Rajeev. Adsorption of sodium dodecyl benzenesulfonate onto coal[J]. Journal of Colloid and Interface Science,2003,267(1):42-48.
    [47]吴坤泰.高浓度水煤浆(CWM)制备技术的探讨[J].煤炭工程,2002,(3):38-41.
    [48]Yavuz R, kbayrak S, Williams A. Combustion characteristics of lignite-water slurries[J]. Fuel Processing Technology,1998,77(11):1229-1235.
    [49]Atesok G, Boylu F, Sirkeci A, et al. The effect of coal properties on the viscosity of coal-water slurries[J]. Fuel,2002,81(14):1855-1858.
    [50]Renfu X, Baixing H, Qihui H, et al. Effect of compound inorganic nano-stabilizer on the stability of high concentration coal water mixtures[J]. Fuel,2006,85(17-18):2524-2529.
    [51]苗云霞.水煤浆制备工艺技术研究[J].河北化工,2009,32(7):27-29.
    [52]Akta Z, Woodburn ET.Effect of addition of surface active agent on the viscosity of a high concentration slurry of a low-rank British coal in water[J]. Fuel Processing Technology, 2000,62(1):1-15.
    [53]Shin Y-J, Shen Y-H. Preparation of coal slurry with 2-propanol[J]. Journal of Hazardous Materials,2006,137(1):152-156.
    [54]GOUDOULAS TB, KASTRINAKIS EG, NYCHAS SG. Rheological aspects of dense lignite-water suspensions:time dependence, preshear and solidsloading effects[J]. Rheol Acta, 2003,42:73-85.
    [55]Zhou M, Qiu X, Yang D, et al. Synthesis and evaluation of sulphonated acetone-formaldehyde resin applied as dispersant of coal-water slurry [J]. Energy Conversion & Management,2007,48 (1):204-209.
    [56]张利合,王伟,谢华,等.中国水煤浆产业简述[J].山西能源与节能,2005,(4):
    12-13.
    [57]Shin Y-J, Shen Y-H. Preparation of coal slurry with organic solvents[J]. Chemosphere, 2007,68(2):389-393.
    [58]Kikkawa H, Takezaki H, Otani Y, et al. Effect of adsorption characteristic of dispersant on flow and storage properties of coal-water mixtures[J]. Powder Technology,1988,55(4): 277-284.
    [59]Crawford RJ, Mainwaring DE. The influence of surfactant adsorption on the surface characterisation of Australian coals[J]. Fuel,2001,80(3):313-320.
    [60]Roh N-S, Shin D-H, Kim D-CKaJ-D. Rheological behaviour of coal-water Mixtures[J]. Fuel Processing Technology,1995,74(8):1220-1225.
    [61]Dincer H, Boylu F, Sirkeci AA, et al. The effects of chemicals on the viscosity and stability of coal-water slurries[J]. Int J Miner Process,2003,70(1-4):41-51.
    [62]Cheng J, Zhou J, Li Y, et al. Improvement of Coal Water Slurry Property through Coal Physicochemical Modifications by Microwave Irradiation and Thermal Heat[J]. Energy & Fuels,2008,22(4):2422-2428.
    [63]Atesok G, Dincer H, Ozer M, et al. The effects of dispersants(PSS-NSF) used in coal-water slurries on the grindability of coals of different structures [J]. Fuel,2005,84(7-8): 801-808
    [64]尉迟唯,李保庆,李文,等.煤质因素对水煤浆性质的影响[J].燃料化学学报,2007,35(2):146-154.
    [65]程军,陈训刚,刘建忠,et al.煤粉孔隙分形结构对水煤浆性质的影响规律[J].中国电机工程学报,2008,28(23):60-64.
    [66]Gursesa A, Acikyildiza M, Dogarb C, et al. An investigation on effects of various parameters on viscosities of coal-water mixture prepared with Erzurum-Askale lignite coal[J]. Fuel Processing Technology,2006,87(9):821-827.
    [67]Boylu F, Dincer H, Atesok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries[J]. Fuel Processing Technology,2004,85(4): 241-250.
    [68]Turian RM, Attal JF, Sung DJ, et al. Properties and rheology of coal-water mixtures using different coals[J]. Fuel,2002,81(16):2019-2033.
    [69]孙成功,吴家珊,李保庆.高浓度煤浆的制备和流变性的研究[J].燃料化学学报,1996,24(2):131-136.
    [70]尉迟唯,李保庆,李文,et al.混合煤制浆对水煤浆性质的影响[J].燃料化学学报,2004,32(1):31-36.
    [71]顾晓愚.改善神华低阶煤成浆性的试验研究[J].煤炭科学技术,2009,37(1):111-113.[72]尉迟唯,李保庆,李文,et al.煤孔结构特性对水煤浆性质的影响分析[J].燃料化学学报,2006,34(1):5-9.
    [73]吴家珊,宋永玮,张春爱,et al.煤的性质对水煤浆特性的影响[J].燃料化学学报,1987,15(4):298-304.
    [74]Kaji R, Muranaka Y, Otsuka K, et al. Water absorption by coals:effects of pore structure and surface oxygen [J]. Fuel,1986,65(2):288-291.
    [75]孙成功,李保庆,尉迟唯.煤的孔结构特征对水煤浆性质的影响[J].燃料化学学报,1996,24(5):434-439.
    [76]Mahamud MM, Novo MF. The use of fractal analysis in the textural characterization of coals[J]. Fuel,2008,87(2):222-231.
    [77]Mahamud M, Lopez O, Pis JJ, et al. Textural characterization of coals using fractal analysis[J]. Fuel Processing Technology,2003,81(2):127-142
    [78]姜秀民,杨海平,闫澈等.超细化煤粉表面形态分形特征[J].中国电机工程学报,2003,21(12):165-169.
    [79]尉迟唯,李保庆,李文,et al.煤的岩相显微组分对水煤浆性质的影响[J].燃料化学学报,2003,31(5):415-419.
    [80]周安宁,王祖侗,陈邦杰.神木煤显微组分的表面特性[J].燃料化学学报,1989,17(4):381-384.
    [81]吴国光,郭照冰.水煤浆制浆试验研究与制备因素分析[J].中国矿业大学学报,2001,30(6):543—546.
    [82]谢亚雄,李保庆,孙成功,et al.煤中矿物质对水煤浆性质的影响[J].洁净煤技术, 1996,2(1):40-43.
    [83]起冰翠,张荣曾.浆体中可溶离子组分对水煤浆性质的影响研究综述[J].煤炭加工与综合利用,1998,(2):44-47.
    [84]赵世永,张晋陶.粒度配比对神府煤水煤浆稳定性的影响[J].煤炭工程,2006,(12):88--90.
    [85]Toda M, Kuriyama M, Konno H, et al. The influence of particle size distribution of coal on the fluidity of coal-water mixture[J]. Power Technology,1988,55(4):241-245
    [86]周新建.水煤浆颗粒级配的研究[J].煤炭学报,2001,26(5):557-560.
    [87]李静,董慧茹,刘国文.改善粒度级配提高大同水煤浆的稳定性[J].北京化工大学学报,2002,29(1):93-94.
    [88]陈松,李寒旭,王群英.粒度级配对淮南煤成浆性能影响的研究[J].安徽理工大学学报(自然科学版),2003,23(3):58-60.
    [89]Logos.C, Nguyen.Q.D. Effect of particle size on the flow properties of a South Australian coal-water slurry[J]. Powder Technology,1996,88:55-58.
    [90]王利珍,杨祥生,陈荣荣,et al.水煤浆稳定性影响因素的研究进展[J].煤化工,2007,(6):55-59.
    [91]Li Y, Li B. Study on the ultrasonic irradiation of coal water slurry[J]. Fuel Processing Technology,2000,79(3-4):235-241.
    [92]Heibel AK, Vergeldt FJ, van HA. Gas and liquid distribution in the monolith film flow reactor[J]. AIChE Journal,2003,49(12):3007-3017.
    [93]王金玲,高惠民.水煤浆技术研究现状[J].煤炭加工与综合利用,2005,(3):28-31.
    [94]孙成功,谢亚雄,李保庆,et al.分散剂分子结构特征对煤浆流变特性的影响[J].燃料化学学报,1997,25(3):213-217.
    [95]Zhou M, Qiu X, Yang D, et al. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology,2007,88(4): 375-382.
    [96]朱书全,邹立壮,波黄,et al.水煤浆添加剂与煤之间的相互作用规律研究[J].燃料化学学报,2003,31(6):519-524.
    [97]邹立壮,朱书全,王晓玲等.不同水煤浆分散剂与煤之间的相互作用规律研究(Ⅵ)分散剂对水煤浆静态稳定性的影响[J].煤炭转化,2005,28(2):42-47.
    [98]李淑琴,朱书全,李凤起.钠接枝丙烯酸添加剂在水煤浆制备中的应用[J].煤炭加工与综合利用,2001,(2):4-25.
    [99]时留新,杨益琴.木质素磺酸盐类水煤浆添加剂的制备[J].林产化工通讯,2004,38(6):30-33.
    [100]张佳丽,张如意,谌伦建.植酸类水煤浆分散剂的化学改性研究[J].河南化工,2005,22:18-21.
    [101]闫学海,红朱,炜赵.石油磺酸盐表面活性剂在水煤浆制备中的应用[J].精细化工,2004,21(1):19-22.
    [102]H.L. Y, C. Z, J.Z L, et al. Experimental Study of the Atomizing Performance of a New Type of Nozzle for Coal Water Slurry[J]. Energy & Fuels,2008,22(2):1170-1173.
    [103]王宝中,贾晓鸣,赵伟.水煤浆喷嘴磨损机理研究[J].洁净煤技术,2002,8(3):22-24.
    [104]原鲲,陈丽芳,吴承康.水煤浆多级喷嘴的雾化和流动特性[J].燃烧科学与技术,2003,9(1):77-80.
    [105]Cao X-K, Sun Z-G, Li W-F, et al. A new breakup regime of liquid drops identified in a continuous and uniform air jet flow[J]. Physics of Fluids,2007,19(5):p057103.
    [106]Faeth G.M., Hsiang L.-P.,Wu P.-K. Structure and breakup properties of sprays [J]. International Journal of Multiphase Flow,1995,21 (Supplement):99-127. [107]黄亚平,王应时,高雨君.水煤浆外混式气动雾化机理研究[J].工程热物理学报,1991,12(1):84-90.
    [108]Chryssakis CA, Assanis DN. A Secondary Atomization Model for Liquid Droplet Deformation and Breakup under High Weber Number Conditions[J]. ILASS Americas,18th Annual Conference on Liquid Atomization and Spray Systems, Irvine, CA,2005.
    [109]Krzeczkowski SA. Measurement of liquid droplet disintegration mechanisms[J]. International Journal of Multiphase Flow,1980,6(3):227-239.
    [110]Pilch M, Erdman CA. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration--induced breakup of liquid drop[J]. International Journal of Multiphase Flow,1987,13(6):741-757.
    [111]Dai Z, Faeth GM. Temporal properties of secondary drop breakup in the multimode breakup regime[J]. International Journal of Multiphase Flow,2001,27(2):217-236.
    [112]Jaehoon H., Gretar T.. Secondary breakup of axisymmetric liquid drops.Ⅱ. Impulsive acceleration[J]. PHYSICS OF FLUIDS,2001,13(6):1554-1565.
    [113]Liu Z., Reitz RD. AN ANALYSIS OF THE DISTORTION AND BREAKUP MECHANISMS OF HIGH SPEED LIQUID DROPS[J]. International Journal of Multiphase Flow,1997,23(4):631-650.
    [114]Wierzba A. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers [J]. Experiments in Fluids,1990,9:59-64.
    [115]Hirahara H, Kawahashi M. Experimental investigation of viscous effects upon a breakup of droplets in high-speed air flow[J]. Experiments in Fluids,1992,13(6):423-428.
    [116]Liu H-F, Li W-F, Gong X, et al. Effect of liquid jet diameter on performance of coaxial two-fluid airblast atomizers[J]. Chemical Engineering and Processing,2006,45(4):240-245.
    [117]Babinsky E, Sojka PE. Modeling drop size distributions [J]. Progress in Energy and Combustion Science,2002,28(4):303-329
    [118]Liu H-F, Gong X, Li W-F, et al. Prediction of droplet size distribution in sprays of prefilming air-blast atomizers [J]. Chemical Engineering Science,2006,61(6):1741-1747.
    [119]Sellens RW, Brzustowski TA. A prediction of the drop size distribution in a spray from first principles[J]. Atomisation and Spray Technology,1985,1:89-102.
    [120]Li X, Tankin RS. Drople Size Distribution:A Derivation of a Nukiyama-Tanasawa Type Distribution Function [J]. Combustion Science and Technologys,1987,56(1-3):65-76.
    [121]Ayres D, Caldas M, Semiao V, et al. Prediction of the droplet size and velocity joint distribution for sprays[J]. Fuel,2001,80(3):383-394.
    [122]Sivathanua YR, Gore JP. A discrete probability function method for the equation of radiative transfer [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1993, 49(3):269-280s.
    [123]Sovani SD, Sojka PE, Sivathanu YR. Prediction of drop size distributions from first principles:the influence of fluctuations in relative velocity and liquid physical properties [J]. Atomic Sprays,1999,9 (2):133-152.
    [124]Sovani SD, Sojka PE, Sivathanu YR. Prediction of drop size distributions from first principles:joint PDF effects[J]. Atomic Sprays,2000,10(6):16.
    [125]Marmottant P, Villermauxs E. On spray formation[J]. Journal of Fluid Mechanics,2004, 498:73-111.
    [126]Gorokhovski MA, Saveliev VL. Analyses of Kolmogorov's model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization[J]. PHYSICS OF FLUIDS,2003,15(1):184-192.
    [127]Hsiang Ls, Faeth GM. Near-limit drop deformation and secondary breakup [J]. International Journal of Multiphase Flow,1992,18(5):635-652
    [128]Ranger AA, Nicholls JA. Aerodynamic shattering of liquid drops[J]. AIAA Journal, 1969,7(2):285-290.
    [129]Tan LL, Li C.-Z.. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass.[J]. Fuel,2000,79(15):1883-1889.
    [130]赵炜,冯杰,常丽萍,et al.煤气化过程中生成氮化物的研究[J].燃料化学学报,2002,30(6):519-522.
    [131]Li C.-Z., Buckley AN, Nelson PF. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions[J]. Fuel,1998, 77(3):157-164.
    [132]Xu W.-C., Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal[J]. Fuel, 2002,81(18):2325-2334.
    [133]Xie K.-C., Lin J.-Y., Li W.-Y., et al. Formation of HCN and NH3 during coal macerals pyrolysis and gasification with CO2 [J]. Fuel,2005,84(2-3):271-277.
    [134]Friebel J., Kopsel RFW. The fate of nitrogen during pyrolysis of German low rank coals —a parameter study [J]. Fuel,1999,78(8):923-932.
    [135]Leppalahti J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark [J]. Fuel,1995,74(9):1363-1368.
    [136]Bassilakis R., Zhao Y., Solomon PR, et al. Sulfur and nitrogen evolution in the Argonne coals. Experiment and modeling[J]. Energy Fuels,1993,7(6):710-720.
    [137]Leppalahti J., Koljonen T.. Nitrogen evolution from coal, peat and wood during gasification-Literature review[J]. Fuel Processing Technology,1995,43(1):1-45.
    [138]Li C-z, Nelson PF, Ledesma EB, et al. An experimental study of the release of nitrogen from coals pyrolyzed in fluidized-bed reactors [J]. Symposium (International) on Combustion, 1996,26(2):3205-3211.
    [139]Wojtowicz MA, Pels JR, Moulijn JA. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel,1995,74(4):507-516.
    [140]Kambara S., Takarada T., Yamamoto Y., et al. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis[J]. Energy Fuels,1993,7(6):1013-1020.
    [141]陈忠,袁帅,梁钦锋,et al.煤的模型化合物混合燃料气流床气化中N的迁移研究[J].燃料化学学报,2008,36(5):513-518.
    [142]陈忠,袁帅,王增莹,et al.煤的模型化合物混合燃料气流床气化过程中NH3的生成率[J].煤炭学报,2008,33(9):1053-1057.
    [143]Beck J., Unterberger S.. The behaviour of particle bound phosphorus during the combustion of phosphate doped coal[J]. Fuel,2007,86(5-6):632-640.
    [144]Beck J., Unterberger S.. The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel,2006,85(10-11):1541-1549.
    [145]Adam C., Peplinski B., Michaelis M., et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery[J]. Waste Management,2009,29(3):1122-1128.
    [146]Lindstrom E., Sandstrom M., Bostrom D, et al. Slagging Characteristics during Combustion of Cereal Grains Rich in Phosphorus[J]. Energy Fuels,2007,21(2):710-717.
    [147]Zhang L., Ninomiya Y.. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10 [J]. Proceedings of the Combustion Institute, 2007,31(2):2847-2854.
    [148]Matinde E., Sasaki Y., Hino M. Phosphorus gasification from sewage sludge during carbothermic reduction[J]. ISIJ International,2008,48(7):912-917.
    [149]Piotrowska P., Zevenhoven M., Hupa M., Davidsson K., Amand L. E., Zabetta E. C., Barisic V.. Fate of phosphorus during co-combustion of rapeseed cake with wood[C]. Proccdings of the 20th International Conference on Fluidized Bed Combustion, Xi'an, China, May 18-20,2009.
    [150]Watkinson A. P., Lucas J. P., Lim C. J.. A prediction of performance of commercial coal gasifiers[J]. Fuel,1991,70(4):519-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700