用户名: 密码: 验证码:
“活性污泥—生物膜”一体式复合生物制氢工艺的运行与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统化石能源的过度使用导致一系列的环境污染问题,因此,人们迫切寻求可以实现友好环境的可替代能源。氢能具有清洁、高效、可再生和不产生有害副产物等优点,已经引起了世界范围内的广泛关注。厌氧发酵生物制氢技术一方面可以处理有机废弃物(废水)减少对环境的危害,另一方面还可以利用有机废弃物(废水)而产生清洁能源(氢气)而更具发展前景。悬浮生长系统和附着生长系统是目前最为常用的厌氧发酵生物制氢系统,本文在研究了上述两种制氢系统的建立与运行后,提出一种新型的连续流混合固定化污泥反应器(CMISR)发酵制氢,以期为厌氧发酵生物制氢技术的产业化应用提供基础的技术和理论依据。
     本文利用糖蜜废水作为发酵底物,以连续流搅拌槽式反应器(CSTR)作为反应装置,采用经好氧预处理污泥作为接种污泥,探讨了悬浮生长制氢系统的建立及运行特性。研究表明,当反应器温度控制在35℃,水力停留时间(HRT)为6h时,pH值和ORP分别稳定在3.7~4.57和-230~-464mV之间,反应器运行35d后可实现稳定的乙醇型发酵。此时,液相末端发酵产物以乙醇和乙酸为主,占液相末端发酵产物总量的83.55%。发酵气体中氢气含量及产氢量分别为30%~45%和1.53m3/m3d。此外,氢气和乙醇是具有发展前景的生物燃料,被认为是化石能源的可替代能源。在上述系统达到稳定乙醇型发酵基础上,探讨了不同有机负荷(OLR)对发酵法生物制氢和生物制乙醇的影响。结果表明,当OLR在8-24kg/m3d范围内变化时,产氢速率和产乙醇速率随着OLR的提高而增加,并且在OLR为24kg/m3d时分别得到最佳的产氢速率(12.4mmol/hl)和产乙醇速率(20.27mmol/hl).然而,当OLR进一步提高到32kg/m3d时,产氢速率和产乙醇速率却呈现下降趋势。在液相末端发酵产物中乙醇含量占31%-59%,为主要的代谢产物。线性回归方程表明产乙醇速率(y)和产氢速率(x)成正比关系,方程式为y=0.5431x+1.6816(r2=0.7617)。基于氢气和乙醇的热量值,总产能速率被用来衡量整个发酵系统的产能效率,在OLR为24kg/m3d时发酵系统得到最大产能速率31.23kJ/hl。
     采用连续流搅拌槽式反应器(Continuous flow Stirred-Tank Reactor, CSTR)作为反应装置,以颗粒活性炭为生物载体,利用糖蜜废水厌氧发酵生物制氢。研究表明,在污泥接种量(以VSS计)为17.74g/L,温度为35℃,水力停留时间(HRT)为6h,控制有机负荷(OLR)在8kgCOD/(m3d)-24kgCOD/(m3d)范围内,连续流附着生长制氢系统可在22d内达到连续稳定产氢。此时,系统pH值为4.28,氧化还原电位(ORP)在-420mV左右,产气量和产氢量分别为10.6L/d和5.9L/d左右。液相末端发酵产物中,乙醇和乙酸的含量占挥发酸总量的89%,为典型的乙醇型发酵。连续流附着生长制氢系统表现出较高的抗负荷冲击能力和一定的耐低pH值能力,颗粒活性炭可作为固定化活性污泥发酵制氢载体。同时,还考察了有机负荷(OLR)对连续流附着生长制氢系统发酵制取氢气和乙醇的影响。研究表明,H2和乙醇的产率随有机负荷的增加(8-24kg/m3d)而提高。最高的产氢率(10.74mmol/hl)和乙醇产率(11.72mmol/hl)都是在OLR=24kg/m3d的运行条件下得到的。乙醇为主要的液相发酵产物,其含量占总的液相代谢产物的38.3%-48.9%。线性方程表明了乙醇产率和H2产率呈正相关,可表示为y=1.5365x-5.054(r2=0.9751)(y:乙醇产量;x:氢气产量)。产能效率以H2和乙醇的热值来计算,从而评估CSTR反应系统的整体产能效率。当OLR为24kg/m3d时,反应系统得到最大的产能效率为19.08kJ/hl。此外,液相代谢产物乙醇和乙酸的产量能够影响厌氧发酵系统的产氢效率,当乙醇和乙酸的比例接近1得到最大产氢速率,分析认为,这是由于NAD+/(NADH+H+的调整)影响发酵代谢途径造成的。
     利用活性炭作为载体,糖蜜废水为发酵底物,采用新型连续流混合固定污泥反应器(Continuous Mixed Immobilized Sludge Reactor, CMISR)作为反应装置,厌氧发酵生物制氢。研究表明,当CMISR反应器控制进水COD浓度为2000~6000mg/L,水力停留时间(HRT)为6h,温度为35℃,pH值和氧化还原电位(ORP)分别在4.06~4.28和-416~-434mV变化时,CMISR反应器在运行40d后可形成稳定的乙醇型发酵,此时的乙醇和乙酸含量占总液相发酵代谢产物的89.3%。氢气含量和COD去除率分别为46.6%和13%。此外,考察了有机负荷(OLR)变化对CMISR产氢效能的影响。结果表明,当CMISR反应器中OLR为32kg/m3d时,系统可得到最大产氢速率(the maximum hydrogen production rate)12.51mmol/hL; OLR为16kg/m3d时,系统可得到最佳底物转化产氢量(the maximum hydrogen yield by substrate consumed)130.57mmol/mol。由此可以看出,连续流混合固定化污泥反应器(CMISR)作为有发展前景的固定化系统,而用作厌氧发酵生物制氢。
Environmental pollution due to the burning of fossil fuels makes it necessary to find alternative energy sources that are environmentally friendly. A great deal of attention is being paid to the usage of hydrogen (H2), a sustainable energy carrier which is clean, efficient and renewable; moreover it does not generate any toxic by-products. Through biological processing, hydrogen can be produced through dark fermentation from organic wastes. Additionally, there is also a need to dispose of human-derived wastes in an environmentally friendly manner, using wastes to produce hydrogen offers a possible alternative to current waste-disposal methods. Therefore, fermentative hydrogen production has attracted increasing attention in recent years. The suspended cell system and attached cell system have been frequently used for fermentative hydrogen production. Based on the above two systems for biohydrogen production, it was developed a novel continuous mixed immobilized sludge reactor (CMISR) for hydrogen production, so as to provide basic technical and theoretical foundation for industrial hydrogen production.
     A study of biohydrogen production was performed in a continous flow anaerobic fermentation reactor. Under the operational conditions of the inoculants, batch experiments were carried out to convert molasses wastewater pretreated by using anaerobic mixed bacteria at35℃, when the pH value, chemical oxygen demand (COD) and oxidation-reduction potential (ORP) of the efflunt ranged from3.7to4.57,1980to6407mg/L, and-230to-464mV, respectively. Soluble metabolites were predominated by acetate and ethanol, with smaller quantities of butyrate, valerate and propionate. The total amount of ethanol and acetate accounting for83.55%of the total terminal products after35days operation and stable ethanol-type fermentation was formed. The hydrogen volume content was estimated to be30-45%of the total biogas and the biogas was free of methane throughout the study. Furthermore, together with the corresponding degradation efficiencies and metabolites were compared. The rate of COD removal reached at a peak values of40.91%and stable at a value about20%. A mixed culture fermentation in a CSTR reactor system under the operational conditional was employed to convert this substrate into hydrogen with a yield of1.53m3/m3.d. Hydrogen generation using the fermentation process is possible with various type of wastewater using either mixed or pure cultures. This CSTR system showed that mixed microbial is an a promising high-efficient bioprocess for enhancing the hydrogen production from high-strength wasterwater. Moreover, hydrogen and ethanol are promising biofuels and have great potential to become alternatives to fossil fuels. The influence of organic loading rates (OLRs) on the production of fermentative hydrogen and ethanol were also investigated in a continuous stirred tank reactor (CSTR) from fermentation using molasses as substrate. Four OLRs were examined, ranging from8to32kg/m3d. The H2and ethanol production rate in CSTR initially increased with increasing OLR (from8-24kg/m3d). The highest H2production rate (12.4mmol/hl) and ethanol production rate (20.27mmol/hl) were obtained in CSTR both operated at OLR=24kg/m3d. However, the H2and ethanol production rate tended to decrease with an increase of OLR to32kg/m3d. The liquid fermentation products were dominated by ethanol, accounting for31%~59%of total soluble metabolities. Linear regression results show that ethanol production rate (y) and H2production rate (x) were proportionately correlated which can be expressed as y=0.5431x+1.6816(r2=0.7617). The total energy conversion rate based on the heat values of H2and ethanol was calculated to assess the overall efficiency of energy conversion rate. The best energy conversion rate was31.23kJ/hl, occurred at OLR=24kg/m3d.
     A continuous stirred-tank reactor (CSTR) process with granular activated carbon (GAC) was developed for fermentation hydrogen production from molasses-containing wastewater by mixed microbial cultures. Operation at35℃, an initial biomass of17.74g/L and hydraulic retention time (HRT) of6h, the CSTR reactor presented a continuous hydrogen production ability of5.9L/d and the biogas was free of methane throughout the experiment. Dissolved fermentation products were predominated by ethanol and acetate acid, with smaller quantities of propionic acid, butyric acid and valeric acid. It was found that GAC could make the immobilized system durable and stable in response to organic load impacting and low pH value. When the organic loading rate (OLR) ranged from8kgCOD/(m3d) to4kgCOD/(m3d), stable ethanol-type fermentation was formed, and the ethanol and acetate concentrations account for89%of the total liquid products. Moreover, the effects of organic loading rates (OLRs) on fermentative productions of hydrogen and ethanol were also investigated in a continuous stirred tank reactor (CSTR) with attached-sludge using molasses as substrate. The CSTR reactor with attached-sludge was operated under different OLRs, ranging from8to24kg/m3d. The H2and ethanol production rate essentially increased with increasing OLR. The highest H2production rate (10.74mmol/hl) and ethanol production rate (11.72mmol/hl) were obtained both operating at OLR=24kg/m3d. Linear regression results show that ethanol production rate (y) and H2production rate (x) was proportionately correlated and can be expressed as y=1.5365x-5.054(r2=0.9751). The best energy generation rate was19.08kJ/hl, occurred at OLR=24kg/m3d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to1.
     A novel continuous mixed immobilized sludge reactor (CMISR) containing activated carbon as support carrier was used for fermentative hydrogen production from molasses wastewater. When the CMISR system operated at the conditions of influent COD of2000-6000 mg/L, hydraulic retention time (HRT) of6h and temperature of35℃, stable ethanol type fermentation was formed after40days operation. The H2content in biogas and chemical oxygen demand (COD) removal were estimated to be46.6%and13%, respectively. The effects of organic loading rates (OLRs) on the CMISR hydrogen production system were also investigated. It was found that the maximum hydrogen production rate of12.51mmol/hL was obtained at OLR of32kg/m3d and the maximum hydrogen yield by substrate consumed of130.57mmol/mol happened at OLR of16kg/m3d. Therefore, the continuous mixed immobilized sludge reactor (CMISR) could be a promising immobilized system for fermentative hydrogen production.
引文
[1]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究.化学工业出版社.2004
    [2]S. Venkata Mohan, G. Mohanakrishna, S.V. Ramanaiah, P.N. Sarma, Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater[J], International Journal of Hydrogen Energy,2008,33 (2):550-558
    [3]黄韧,薛成.生物信息学—网络资源与应用.中山大学出版社.2003
    [4]A. Yamada, H. Takano, J. G. Burgess, T. Matsunaga. Enhanced Hydrogen Hydrogen Production by a Marine Photosynthetic Baterium, Rhodobacter marimus, Immobilized onto Light-diffusing optical fibers. J. Mar. Biotechnol.2006,4:23-27
    [5]Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J]. Bioresource Technology,2007,98:1774-1780
    [6]Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A. Fermentative hydrogen production by diverse microflora. Int J Hydrogen Energy 2010;35:5021-7.
    [7]H. Zurrer, R. Bachofen. Hydrogen Energy Production by the Photosynthetic Bacterium Rhodospirillum rubrum. Appl. Environ. Midrobiol.2006,37(5):789-793
    [8]Wang L, Zhou Q, Li FT. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass and Bioenergy 2006;30:177-82.
    [9]You-Kwan Oh, Eun-Hee Seol, J. R. Kim, S. H. Park. Fermentative Biohydrogen Production by a New Chemoheterotrotrophic Bacterium Citrobacter sp. Y 19. Int J Hydrogen Energy.2003,28:1353-1359
    [10]H. H. P. Fang, H. Liu. Effect of pH on Hydrogen Production from Glucose by a Mixed Culture. Bioresour Technol.2009,82:87-93
    [11]J. S. Chang, K. S. Lee, P. J. Lin. Biohydrogen Production with Fixed-Bed Bioreactors. Int J Hydrogen Energy.2002,27:1167-1174
    [12]V. Gadhamshetty, D. C. Johnson, N. Nirmalakhandan, G. B. Smith, S. Deng.Feasibility of biohydrogen production at low temperatures in unbuffered reactors[J], International Journal of Hydrogen Energy,2009,34 (3):1233-1243
    [13]S. Y. Wu, C. N. Lin, J. S. Chang. Hydrogen Production with Immobilized Sewage Sludge in Three-Phase Fluidized-Bed Bioreactors. Biotechnol Bioeng.2004,87:648-657
    [14]国家环境保护总局,《水和废水检测分析方法》编委会.《水和废水检测分析方法》中国环境科学出版社.第四版.2002
    [15]R.E.布坎南,N.E.吉本斯.伯杰氏细菌鉴定手册(第八版).科学出版社.1984
    [16JR.S. Prakasham, P. Brahmaiah, T. Sathish, K.R.S. Sambasiva Rao, Fermentative biohydrogen production by mixed anaerobic consortia:Impact of glucose to xylose ratio [J], International Journal of Hydrogen Energy,2009,34 (23):9354-9361
    [17]Kotay SM, Das D. Biohydrogen as a renewable energy resource-prospects and potentials. Int J Hydrogen Energy 2008; 33:258-263.
    [18]Kim JK, Han GH, Oh BR, Chun YN, Eom CY, Kim SW. Volumetric scale-up of a three stage fermentation system for food waste treatment. Biores Technol 2008; 99:4394-4399.
    [19]J-I. Horiuchi, T. Shimizu, K. Tada, T. Kanno, M. Kobayashi. Selective Production of Organic Acids in Anaerobic Acid Reactor by pH Control. Bioresour Technol.2009, 82:209-213
    [20]C. Y. Lin, R. C. Chang. Hydrogen Production during the Anaerobic Acidogenic Conversion of Glucose. J Chem Technol Biotechnol.1999,74:498-500
    [21]Ren N, Li J, Li B, Wang Y, Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy 2006; 31:2147-2157.
    [22]J. Ding, X. Wang, X. Zhou, N. Ren, W. Guo, CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J], Bioresource Technology,2010,101 (18):7005-7013
    [23]工修垣,谢树华.有斜面法分离厌氧细菌微生物.微生物学通报.1994,21(2):119-120
    [24]C. Y. Lin, C. H. Lay. Effects of Carbonate and Phosphate Concentrations on Hydrogen Production Using Anaerobic Sewage Sludge Micro flora. Int J Hydrogen Energy.2004,29: 275-281
    [25]卢圣栋.现代分子生物学实验指南.中国协和医科大学出版社.2004
    [26]E Palazzi, B. Fabiano, P. Perego. Process Development of Continuous Hydrogen Production by Enterobacter Aerogenes in a Packed Column Reactor. Bioprocess Engineering.2010,22:205-211
    [27]B. J. Bassam, G. A. Caetano, P. M. Gresshoff. Fast and Sensitive Silver Staining of DNA in Polyacrylame Gels. Anal.Biochem.1991,196:80-83
    [28]刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学.2001
    [29]N. Kumar, D. Das. Enhancement of Hydrogen Production by Enterobacter Cloacae IIT-BTO8. Proc Biochem.2010,35:589-593
    [30]林明.高效产氢发酵新菌种的产氢机理及生态学研究.哈尔滨工业大学博士学位论文.2002
    [31]东秀珠,蔡妙英.常见细菌系统鉴定手册.科学出版社.2001
    [32]Lee DY, Li YY, Oh YK, Kim MS, Noike T. Effect of iron concentration on continuous H2 production using membrane bioreactor. Int J Hydrogen Energy 2009; 34(3):1244-1252.
    [33]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.科学出版社.2002:52-67
    [34]Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, et al. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 2009; 31(10):1306-1313
    [35]X. J. Wang, N. Q. Ren, W. S. Xiang. Magnesium Improve Hydrogen Production by a Novel Hydrogen-producing Bacterial Strain B49. J. Harbin. Ins. Techno.2005,12(2): 164-168.
    [36]丁杰,任南琪,刘敏,丁兰.Fe和Fe2+对混合细菌产氢发酵的影响.环境科学.2004,25(4):48-53
    [37]Y. F. Zhang, G. Z. Liu, J.Q. Shen. Hydrogen Production in Batch Culture of Mixed Bacteria with Sucrose under Different Iron Concentrations. Int J Hydrogen Energy.2009, 30:855-860
    [38]C. Y. Lin, C. H. Lay. Carbon/nitrogen Effects on Fermentative Hydrogen Production by Mixed Microflora. Int J Hydrogen Energy.2004,29:41-45
    [39]J. Woodward, M. Orr, K. Cordray, E. Greenbaum. Enzymatic Production of Biohydrogen. Nature.2010,405:1014-1015
    [40]Lee ZK, Li SL, Lin JS, Wang YH, Kuo PC, Cheng SS. Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrogen Energy 2008; 33(19):5234-5241.
    [41]Karube, T. Matsunaga, S. Tsuru, S. Suzuki. Continuous Hydrogen Production by Immobilized Whole Cells of Clostridium butyricum. Biochim Biophys Acta.1976,444(2): 338-343
    [42]秦智.生物制氢反应器发酵类型控制对策及生物强化作用.哈尔滨工业大学博士学位论文.2003
    [43]Show KY, Zhang ZP, Tay JH, Liang DT, Lee DJ, Jiang WJ. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. Int J Hydrogen Energy 2009; 32(18):4744-4753.
    [44]H. Nakamura, M. Mochimura. Photohydrogen Production and Nitrogenase Activity in Some Hetercystous Cynobacteria. Biohydrogen II. Elsevier Science,2001:63-66
    [45]R. L. Kerby, P.W. Ludden, G. P. Robert. Carbon Monoxide Dependent Growth of Rhodospirillum rubrum. J. Bacteriol.1995,177:2241-2244
    [46]Zheng H, Zeng RJ, Angelidaki I. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 ℃). Biotechnol Bioeng.2008;100(5):1034-1038.
    [47]A. A. Tsygankov, Y. Hirata, M. Miyake, Y. Asada, J. Miyake. Photobioreactor with Photosynthetic Bacteria Immobilized on Porous Glass for Hydrogen Photoproduction. J. Ferment Bioeng.1994,77:575-578
    [48]Wang Y, Mu Y, Yu HQ. Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrogen Energy 2007; 32(8):1086-1094.
    [49]Zhang ZP, Tay JH, Show KY, Yan R, Liang DT, Lee DJ, et al.Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energy 2007; 32(2):185-191.
    [50]C. Collet, N. Adler, J-P. Schwitzgulebe, P. Peringer. Hydrogen Production by Clostridium Thermolacticum during Continuous Fermentation of Lactose. Int J Hydrogen Energy.2004, 29:1479-1485
    [51]S. Tashino. Feasibility Study of Biological Hydrogen Production from Sugar Cane by Fermentation. Hydrogen Energy Progress XI Proceedings of 1 lth WHTC, (T. N Veziroglu, C-J Winter, J. P Basselt, G. Kreysa. eds.), Stuttgart.1996,3:2601-2606
    [52]G. N. Stephanopoulos, A. A. Ardtidou. J. Nielsen.代谢工程原理与方法.赵学明,白冬梅译.化学工业出版社.2004
    [53]H. Kawaguchi, K. Hashomoto, K. Hirata, K. Miyamoto. H2 Production from Agal Bimass by Mixed Culture of Rhodobium marinum A-501 and Lacterbacillus amylovorus. J. Biosci. Bioeng.2011,91(3):277-282
    [54]Y-K Oh, E-H Seol, E.Y Lee, S. H. Park. Fermentative Hydrogen Production by a New Chemoheterotrophic Bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy. 2009,27:1373-1379
    [55]王勇,任南琪,孙寓娇.Fe对产氢发酵细菌发酵途径及产氢能力的影响.太阳能学报.2003,24(2):222-226
    [56]C. Y. Lin, C. H. Lay. Effects of Carbonate and Phosphate Concentrations on Hydrogen Production using Anaerobic Sewage Sludge Microflora. Int J Hydrogen Energy.2004,29: 275-281
    [57]王相晶.发酵产氧细菌B49生理特性及其固定化应用研究.哈尔滨工业大学博士学位论文.2003
    [58]Kim SH, Han SK, Shin HS. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermentor. Process Biochem 2009; 41(1):199-207.
    [59]G. Davila-Vazquez, C B. Cota-Navarro, L M. Rosales-Colunga, A de Leon-Rodriguez, E. Razo-Flores. Continuous biohydrogen production using cheese whey:Improving the hydrogen production rate[J], International Journal of Hydrogen Energy,2009,34(10): 4296-4304
    [60]Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation.Biotechnol Bioeng 2011; 96(6):1040-1050.
    [61]P. Lindblad, K. Christensson, P. Lindberg, A. Federov, F. Pinto, A. Tsygankov. Photoproduction of H2 by Wildtype Anabaena PCC 1720 and a Hydrogen Uptake Deficient Mutant:from Laboratory to Outdoor Culture. Int J Hydrogen Energy.2002, 27:1271-1281
    [62]李建政.有机废水发酵法生物制氢技术研究.哈尔滨建筑大学博士学位论文.1999
    [63]T. Kondo, M. Arawaka, T. Wakayama, J. Miyake. Hydrogen Production by Combining Two types of Photosynthetic Bacteria with Different Characteristics. Int J Hydrogen Energy.2011,27:1303-1308
    [64]李建政,任南琪,林明,王勇.有机废水发酵法生物制氢中试研究.太阳能学报.2002,23(2):252-256
    [65]李白昆.有机废水发酵法产氢原理研究—产氢细菌产氢机理和能力.哈尔滨建筑大学博士学位论文.1995
    [66]J.J. Lay. Modelling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechnol Bioeng.2010,68(3):269-278
    [67]N.Q. Ren, B. Z. Wang, J. L. Huang. Ethanol-type Fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol. Bioeng.2007,54:428-433
    [68]Z. Kadar, T. De Vrijek, G.E. van Noorden, M. A. W. Budde, Z. Szengyel, K. Reczey, P. A. M. Claassen. Yields from Glucose, Xylose, and Paper Sludge Hydrolysate during Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor Saccharolyticus. Appl.Biochem. Biotech.2004,113(16):497-508
    [69]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社.2002:52-67
    [70]王爱杰,任南琪.环境中的分子生物学诊断技术.化学工业出版社.2004:132-176
    [71]Manish S, Banerjee R. Comparison of biohydrogen production processes. Int J Hydrogen Energy 2008; 33:279-86.
    [72]W-M. Chen. Z-J. Tseng, K-S. Lee, J-S Chang. Fermentative Hydrogen Production with Clostridium butyricum CGS5 Isolated from Anaerobic Sewage Sludge Int J Hydrogen Energy.2007,30:1063-1070
    [73]N.V.托雷斯.E.O.沃伊特.代谢工程的途径分析与优化.修志龙,腾虎译.化学工业出版社.2009
    [74]张克旭,陈宁,张蓓,赵桂仙.代谢控制发酵.中国轻工业出版社.,2000
    [75]Chen WH, Chen SY, Khanal SK, Sung S. Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 2009; 31:2170-2178.
    [76]Gavala HN, Skiadas IV, Ahring BK. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 2006; 31:1164-1175.
    [77]J. E. W. Polle, S. Jin, E. Kanakagiri, T. Masuda, A. Melis. A Truncated Chlorophyll Antenna Size of the Photosystems-a Practical Method to Improve Microalgal Productivity and Hydrogen Production in Mass Culture. Int J Hydrogen Energy.2002,27:1257-1264
    [78]Lin CY, Cheng CH. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 2006; 31:832-840.
    [79]T. Melis. Green Alga Production:Process, Challenges, and Prospects. Int J Hydrogen Energy.2009.27:1217-1228
    [80]张元兴,许学书.生物反应器工程.华东理工大学出版社.2001
    [81]I-B. Ko. T. Noike. Use of Blue Optional Filters for Suppression of Growth of Algae in Hydrogen Producing Non-Axenic Cultures of Rhodobacter sphaeroides RV. Int J Hydrogen Energy.2002.27:1297-1302
    [82]Y. Ueno, S. Otauka, M. Morimoto. Hydrogen Production from Industrial Wastewater by Anaerobic Microflora in Chemostat Culture. J Ferment Bioeng.1996,82:194-197
    [83]Y. Jouanneau, S. Lebecque, P. M. Vignais. Ammpnia and Light effect on Nitrogenase Activity in Nitrogen-limited Continuous Cultures of Rhodopseudomonas capsulata:Role of Glutamate Synthetase. Arch Microbiol. 1984, 119: 326-331
    [84]李建政,蒋凡,郑国臣.ABR发酵产氢系统的控制运行及产氢效能[J].环境科学学报,2010,30(1):79-87
    [85]L. J. Chadiwich, R. L. Irgens. Continuous Fermentative Hydrogen Production from Sucrose and Sugarbeet. Applied Environmental Microbiology. 2011, 57 (6): 594-595
    [86]C. R. Worse, O. Kandler, M. L. Wheelis. Towards a Natural System of Organisma: Proposal of the Domains Archaea, Bacteria, And Eucayao. 1990, Proc. Natl. Acad. Sci. 87: 4576-4579
    [87]J. D. Brosseau, J. E. Zajic. Hydrogen-gas Production with Citrobacter intermedius and Clostridium pasteuianum. J Chem Tech Biotechnol. 1982, 32: 496-502
    [88]Lee KS, Lo YC, Lin PJ, Chang JS. Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int J Hydrogen Energy 2009; 31(12): 1648-1657.
    [89]S. Tashino, Y. Suzuk, N. Wakao. Fermentative Hydrogen Evolution by Enterobacter aerogenes Strain E. 82005. Int. J. Hydrogen Energy. 1987, 12(9): 623-627
    [90]M. A. Rachman, Y. Nakashimada, T. Eahizono, N. Nishio. Hydrogen Production with High Yield and High Evolution Rate by Self-flocculated Cells of Enterobacter aerogenes in a Packed-bed Reactor. Appl. Microbiol. Biotechnol. 2008, 49:450-454
    [91]N. Kumar, D. Das. Continuous Hydrogen Production by Immobilized Enterobacter cloacae ⅡT~BT 08 Using Lignocellulosic Material as Solid Matrices. Enzyme Microbiol. Technol. 2001,29:280-287
    [92]G. Y. Jung, J. R. Kim, J-Y, Park, S. FI. Park. Hydrogen Production by a New Chemoheterotrophic Bacterium Citrobacter sp.19. Int J Hydrogen Energy. 2002, 27: 601-610
    [93]N. Kumar, D. Das. Enhancement of Hydrogen Production by Enterobacter cloacae II T-08. Process Biochemistry. 2010, 35: 589-593
    [94]S. Tanisho, Y. Ishiwata. Continuous Hydrogen Production from Molasses by Fermentation Using Urethane Foam as a Support of Flocks. Int. J. Hydrogen Energy. 1995, 20(7):541~545
    [95]Akutsu Y, Li YY, Harada H, Yu HQ. Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy 2009; 34:2558-2566.
    [96]H.Yokoi, T.Ohkawara, J.Hirose, S. Hayashi, Y. Takasaki. Hydrogen Production by Immobilized Cells of Aciduic Enterobacter aerogenes Strain HO~39. J. Ferment. Bioeng. 1997, 83(5): 481-484
    [97]H. Yokoi, Y. Maeda, J. Hirose. H2 Production by Immobilization Cells of Clostridium butyricum on Porous Glass Beads. Biotechnology Techniques. 1997, 11(6): 431-433
    [98]N. Kumar, D.Das. Biological Hydrogen Production in a Packed Bed Reactor Using Agroresidues as Solid Matrices. Proceedings of the 13th World Hydrogen Energy Conference. Beijing. 2010: 364-369
    [99]F.Taguchi, N. Mizukami, T. Saiti-Taki, K. Hasegawa. Hydrogen Production from Continuous Fermentation of Xylose during Growth of Colstridium sp. No.2. Can. J. Microbiol. 1995, 41:536-540
    [100]L. Minnan, H. Jinli, W. Xiaobin, X. Huijuan, C. Jinzao, L. Chuannan, Z. Fengzhang, X. Liangshu. Isolation and Characterization of a High H2-producing Strain Klebsiella oxytoca HP1 from a Hot Spring. Research in Microbiology. 2009, 156: 76-81
    [101]Zhao QB, Yu HQ. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values.Bioresour Technol 2008; 99(5): 1353-1358.
    [102]H. Yokoi, R. Maki, J.Hirose, S. Hayashi. Microbioal Production of Hydrogen from Starch-Manufactureing Wastes. Biomass & Bioenergy. 2011, 22(5): 389-395
    [103]O. Mizuno, R. Dinsdale, F. R. Hawkes, D. L. Hawkis, T. Noike. Enhancement of Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresour Technol. 2010, 73:59-65
    [104]S. Suzuki, I. Karube, T. Matsunaga, S. Kuriyama, N. Suzuki, T. Shirogami, T. Takamura. Fermentative Hydrogen Production. Biochimie.1980,62:353-355
    [105]S. Tashino, N. Wakao, Y. Kosako. Biological Hydrogen Production by Enterobacter aerogenes. J Chem. Eng of Japan.1983,16(6):529-530
    [106]任南琪,林明,马汐萍,工爱杰,李建政.厌氧高效产氢细菌的筛选及其耐酸性研究.太阳能学报.2003,24(1):80-84
    [107]M. Monmoto, M. Atsuka, A. A. Y. Atif, M. A. Ngan, A. Fakhru'1-Razi,S.E. Iyuke, A. M. Bakir. Biological Production of Hydrogen from Glucose by Natural Anaerobic Micro flora. Int. J. Hydrogen Energ.2004,29:709-713
    [108]贾士儒.生物反应工程原理.科学出版社.2002
    [109]H. Q. Yu, Z. H. Hu, T. Q. Hong. Hydrogen Production from Rice Winery Wastewater by Using A Continuously Stirred Reactor. J. Chem. Eng.Jpn.2003,36:619-626
    [110]S. K. Han, H. S. Shin. Biohydrogen Production by Anaerobic Fermentation of Food Waste. Int. J. Hydrogen Energ.2010,29:569-577
    [111]B. E. Logan. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environ. Sci. Technol.2002,36:2530-2535
    [112]I. Hussy, F. R. Hawkes, R. Dinsdale, K. L. Hawkes. Continuous Fermentative Hydrogen Production from a Wheat Starch Co-product by Mixed Microflora Biotechnol. Bioeng. 2003,84:619-626
    [113]M. L. Fardeau, B. Ollivier, J. L. Garcia, B. K. Patel. Transfer of Thermobacteroides leptospartum and Clostridium thermolacticum as Clostridium stercorarium subsp. Leptospartum subsp. nov., comb. nov. and C. stercorarium subsp. Thermolacticum subsp. nov., comb. nov. Int J Syst Evol Microbiol.2011,51:1127-1131
    [114]J. H. Wu, C. Y. Lin. Biohydrogen Production by Mesophilic. Fermentation of food Wastewater. Water Sci. Technol.2004,49:223-228
    [115]C. C. Wang, C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao. Producing Hydrogen from Wastewater Sludge by Clostridium Bifermentans. J Biotechnol.2011, 102(1):83-92
    [116]L. T. Angenent, K. Karim, M. H. Al-Dahhan, B. A. Wrenn, R. Domiguez-Espinosa, Production of Bioenergy and Biochemicals from Industrial and Agricultural Wastewater. TRENDS in Biotechnology.2004,22 (9):477-485
    [117]B. Fabiano, P. Perego. Thermodynamic Study and Optimization of Hydrogen Production by Enterobacter aerogenes. Int. J. Hydrogen Energ.2002,27:149-156
    [118]R. Nandi, S. Sengupta. Microbial Production of Hydrogen:An Overview. Crit Rev Microbiol.1998,24(1):61-84
    [119]M. Talabardon, J. P. Schwitzgulebel, P. Pleringer, S. T. Yang. Acetic Acid Production from Lactose by an Anaerobic Thermophilic Coculture Immobilized in a Fibrous-Bed Bioreactor. Biotechnol Prog.2000,16(6):1008-1017
    [120]W. S. Kisaalita, K. V. Lo. Kinetics of Whey-Lactose Acidogenesis. Biotechnol Bioeng. 1989,33:623-30
    [121]M. Desvaux, E.Guedon, H. Petitdemange. Metabolic Cux in Cellulose Batch and Cellulose-Fed Continuous Cultures of Clostridium Cellulolyticum in Response to Acidic Environment. Microbiology.2011,147:1461-1471
    [122]B. de Corte, D. Dries, W. Verstraete, P. Stevens, L. Goossens, P. deVos, J. de Ley. The Effect of the Hydrogen Partial Pressure on the Metabolite Pattern of Lactobacillus Casei, Escherichia coli and Clostridium Butyricum. Biotechnol Lett.1989,11(8):583-588
    [123]P. Le Ruyet, H. C. Dubourguier, G.. Albagnac. Characterization of Clostridium Thermolacticum sp. nov.. A Hydrolytic Thermophilic Anaerobe Producing High Amounts of Lactate. Syst Appl Microbiol 1985,6(2):196-202
    [124]M. Talabardon, J. P. Schwitzgulebel, P. Pleringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Permeate. J Biotechnol.2000,76(1):83-92
    [125]R. P. Jones, P. F. Greenfield. Effect of Carbon Dioxide on Yeast Growth and Fermentation. Enzyme Microbiol Technol.1982,4:210-223
    [126]D. Evvyernie, K. Morimoto, S. Karita, T. Kimura, K. Sakka, K.Ohmiya. Conversion of Chitinous Wastes to Hydrogen Gas by Clostridium Paraputrificum M-21. J. Biosci Bioeng. 2001,91(4):339-343
    [127]R. Frick, B. Junker. Indirect Methods for Characterization of Carbon Dioxide Levels in Fermentation Broth. J Biosci Bioeng.1999,87(3):344-351
    [128]N. Kataoka, A. Miya, K. Kiriyama. Studies on Hydrogen Production by Continuous Culture System of Hydrogen Producing Anaerobic Bacteria. Water Sci Technol.1997, 36(6-7):41-47
    [129]K. Jungermann, R. K. Thauer, G. Leimenstoll, K. Decker. Function of Reduced Pyridine Nucleotide-Ferredoxin Oxidoreductases in Saccharolytic Clostridia. Biochim Biophys Acta. 1973,305(2):268-280
    [130]S. Saint-Amans, L. Girbal, J. Andrade, K. Ahrens, P. Soucaille. Regulation of Carbon and Electron Cow in Clostridium Butyricum VPI 3266 Grown On Glucose-Glycerol Mixtures.J Bacteriol.2011,183(5):1748-1754
    [131]J. Sridhar, M. A. Eiteman, J. W. Wiegel. Elucidation of Enzymes in Fermentation Pathways Used by Clostridium thermosuccinogenes growing on Inulin. App Environ Microbiol.2000,66(1):246-251
    [132]C. C. Chen. C. Y. Lin. J. S. Chang. Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Appl Microbiol Biotechnol.2001,57(1-2):56-64
    [133]Y J. Lee, T. Miyahara, T. Noike. Effect of pH on Microbial Hydrogen Fermentation. J Chem Technol Biotechnol.2009,77(6):694-698
    [134]R. Sparling, D. Risbey, H. M. Poggi-Varaldo. Hydrogen Production from Inhibited Anaerobic Composters. Int J Hydrogen Energy.1997,22(6):563-566
    [135]H. Yokoi, T. Tokushige, J. Hirose. S.Hayashi. Y. Takasaki. H2 Production from Starch by a Mixed Culture of Clostridium Butyricum and Enterobacter Aerogenes. Biotechnol Lett. 1998,20:143-147
    [136]J. G. van Andel, G. R. Zoutberg, P. M. Crabbendam, A. M. Breure. Glucose Fermentation by Clostridium Butyricum Grown under a Self Generated Gas Atmosphere in Chemostat Culture. Appl Microbiol Biotechnol.1985,23:21-26
    [137]K. S. Lee, Y. S. Lo, Y C. Lo, et al. H2 Production with Anaerobic Sludge Using Activated-Carbon Supported Packed-Bed Bioreactors. Biotechnol Lett.2009,25:133-138
    [138]E. Palazzi, B. Fabiano, P. Perego. Process Development of Continuous Hydrogen Production by Enterobacter Aerogenes in a Packed Column Reactor. Bioprocess Eng.2010, 22:205-213
    [139]Y. Nakashimada, M. A. Rachman, T. Kakizono, N. Nishio. Hydrogen Production of Enterobacter Aerogenes Altered by Extracellular and Intracellular Redox States. Int J Hydrogen Energy.2002,27:1399-405
    [140]Aruana Rocha Barros, Eduardo Lucena Cavalcante de Amorim, Cristiane Marques Reis, Gessia Momoe Shida, Edson Luiz Silva, Biohydrogen production in anaerobic fluidized bed reactors:Effect of support material and hydraulic retention time[J], International Journal of Hydrogen Energy,2010,35 (8):3379-3388
    [141]Thomas A. Kotsopoulos, Ioannis A. Fotidis, Nikolaos Tsolakis, Gerassimos G. Martzopoulos, Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 ℃) [J], Biomass and Bioenergy, 2009,33 (9):1168-1174
    [142]Kim JD, Park JS, In BH, Kim DK, Namkoong W. Evaluation of pilot scale in vessel composting for food waste treatment. J Hazardous Mater 2008; 154:272-277.
    [143]H. Q. Yu, H. H. P. Fang. Acidification of Mid-and High-Strength Dairy Wastewaters. Water Res.2001,35(15):3697-3705
    [144]宫曼丽,任南琪,李永峰,唐婧.生物制氢反应器不同发酵类型产氢能力的比较[J].哈尔滨工业大学学报,2006,38(11):1826-1830
    [145]D. M. De Albuquer, S. C. Costa. Genotyping of Human Cytomegalovirus Using Non-radioactive Single Strain Conformation Polymoyphyism (SSCP) Analysis. J Virol Methods, 2003,110(1):25-28.
    [146]M. Vincenzini, R. Materassi, M. R. Tredici. G. Florenzano. Hydrogen Production by Immobilized Cells-Ⅱ. H2 Photoevolution and Waste water treatment by Agar-Entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum. Int. J. Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum. Int.J.Hydrogen Energy.2007, 7(9):725-728
    [147]任南琪.有机废水处理生物产氢原理与工程控制对策研究.哈尔滨建筑大学博士学位论文.1993
    [148]P. Hallenbeck, J.R. Benemann. Biological Hydrogen Production:Fundamentals and Limiting Processes. Int J Hydrogen Energy.2011,27:1185-1194
    [149]林明,任南琪,马汐萍,王爱杰,马放,王相晶.产氢发酵细菌培养基的选择和改进.哈尔滨工业大学学报.2003,35(4):398-402
    [150]任南琪,王宝贞.有机废水发酵法生物制氢技术原理与方法.黑龙江科技出版社,1994
    [151]F. A. L. Pinto, O. Troshina, L. Peter. A Brief Look at Three Decades of Research on Cyanobacterial Hydrogen Evolution. Int J Hydrogen Energy.2011,27:1209-1215
    [152]Azbar, N., T. Keskin. and E. Cokay Catalkaya. Improvement in anaerobic degradation of olive mill effluent (OME) by chemical pretreatment using batch systems. Biochem. Eng. J. 2008,38:379-383.
    [153]李建政,汪群惠.废物资源化与生物能源.化学工业出版社.2004:29-47
    [154]Lee DY, Li YY, Noike T. Continuous H2 production by anaerobic mixed microflora in membrane bioreactor. Bioresour Technol 2009; 100 (2):690-695.
    [155]任南琪,王爱杰.厌氧生物技术原理与应用.化学工业出版社.2004:212-275
    [156]N. Francou, P. M. Vignais. Hydrogen Production by Rhodopsundomonas Cell Entrapped in Carrageenan Beads. Biotechnol Lett.1984,6:39-44
    [157]丁杰.金属离子和半胱氨酸对产氢能力的影响及调控对策研究.哈尔滨工业大学博士学位论文.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700