用户名: 密码: 验证码:
荆岳大桥结构健康监测系统研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国综合国力的增长,国家在基础建设中的投入越来越大,近几年我国公路、铁路得到了跨越式的发展,作为公路和铁路交通网重要连接枢纽的桥梁也获得了前所未有的发展,我国已成为名副其实的桥梁大国。桥梁建成以后,交通荷载、人和环境因素的影响,材料的逐渐腐蚀老化和结构损伤的积累,将使桥梁的健康状况和承载能力随着时间的推移而逐渐降低,从而产生各种各样的病害,如果维护管理不当,不仅影响行车安全,而且会大幅度降低桥梁的设计使用寿命,因此,做好桥梁结构健康监测和安全状况评估,为桥梁安全运营、日常养护和科学管理提供科学依据,预防和减少灾害事故的发生,意义重大。
     桥梁健康监测是对桥梁结构的无损检测,评价桥梁结构的使用状态,为桥梁的营运与管理提供依据和指导,从被相关学者提出至今,已经经历了一个较长的发展过程,其相关检测技术、数据处理方法和结构状况评估理论也不断完善,特别是光纤传感技术的出现,推动了桥梁健康监测的发展和进步。但是,在桥梁结构关键参量的检测技术、系统无缝集成技术、监测系统的工程实现方法以及结构状况评估的专家系统等直接影响系统功效的核心问题上还存在诸多的不足,致使系统的实用性、可用性较差。本论文以荆岳大桥结构健康监测系统的实施为背景,利用光纤智能材料与结构的技术优点,结合大桥的结构特点,研究了健康监测系统的构建。通过结构的危险性分析,确定了危及桥梁安全的关键参量,研究了其关键参量的检测技术与工程实现方法。基于光纤传输网络技术,实现了荆岳大桥多参数、大容量监测参量传感网络的设计与实现,以及对以光纤传感技术为主,传统检测技术为辅的系统无缝集成,保证了桥梁安全信息的实时采集、传输、存储与分析处理。桥梁健康状况评估系统的建立和C/S、B/S混合软件体系结构的编写,实现了完整、实用、操作性强的桥梁结构长期健康监测系统。
     本文从事的主要研究工作如下:
     1、阐述桥梁结构健康监测的意义,对桥梁健康监测国内外研究发展和现状进行总结,说明亟待解决的问题。结合荆岳大桥的结构特点,构建大桥结构健康监测系统,并对其监测项目组成、信号传输网络、计算机系统和应用系统的结构进行规划;
     2、本研究在分析既有光纤光栅振动传感器结构和原理的基础上,提出了一种新型的光纤光栅振动传感器,并对其结构、检测原理进行了研究;
     3、本研究利用光纤传感的技术优势,研制了一种预应力索索力损失在线监测的方法,可用于量化评价预应力混凝土连续梁桥运营期预应力损失大小,实际工程应用效果检验了设计方案的可行性;
     4、斜拉索是斜拉桥的关键承载构件和病害易发构件,开展索力检测技术研究,对评估桥梁承载能力,分析其病害程度,制定维护保养决策有着重要的意义。本研究把光纤传感技术与制索工艺相结合,研究了一种内置光纤传感器的智能索索力检测方法,实现了缆索索力的在线监测;
     5、在桥梁危险性分析的基础上,构建了以光纤传感技术为主的荆岳大桥结构健康全监测系统,系统检测项目涵盖桥梁荷载,结构静力响应,结构动力特性等与桥梁安全有关的多种信息,同时研究了保证大型监测系统多参量,多功能的软硬件系统集成技术,设计实现了功能完整的结构长期健康监测系统,并归纳总结了系统的工程实施关键技术;
     6、阐述了阈值设定的意义和重要性,通过建模仿真计算了各监测参量的阈值,结合实采数据及分析展示了实现的主要软件功能,面向荆岳桥,设计了使用可变权的层次分析法对结构安全进行评价。
With the incrensing of the Chinese comprehensive national strength, more and more investment has been put into the national infrastructure, which immediately prompts our highway and railway great-leap-forward development. In recent years, as the connection hub of the traffic network, the bridges achieve a rapid unprecedented development, which brings the great fame for China in bridge field. However, the health of the bridges is usually influenced by the traffic load, human action and environment load, which cause the bridge diseases occur. The unscientific maintaining and monitoring for bridge, not only influences the safety of the traffic, but also reduces the bridge operational life. Consequently, the strucutural health condition has great significance to the safety and maintenance of the bridge.
     The bridge health monitoring is a nondestructive test means, which can provide evidence and guidance for operation and management of the bridges. The bridges health monitoring has gone through a long process of development so far from been put forward by related scholars. Some techniques, namely, detection, data processing methods and structural condition assessment theories have been continuously improved. Although the emergence of optical fiber sensing technology promoted the development of bridge strucutural health monitoring. Some deficiencies that may influence the system efficiency and reduce the actual use effect still existed, such as the detection technology of the key parameters of the bridge structure, seamless integration technology, the engineering implementation method of monitoring system, the expert system of structural condition assessment and so on.
     This paper takes the Jingyue Bridge as background, considering the bridge structural characteristics, a structural health monitoring system was built. Through the risk analysis of the structure, the key parameters and corresponding detection methods were determined. Based on optical fiber transmission network, large scale multi-parameter sensing network of Jingyue Bridge was designed and put into effect. The seamless integration techniques for different sensing parameters ensured the real-time acquisition, transmission, storage and analytical processing of the safety information of the bridge. The designed bridge health assessment expert system and practical C/S and B/S hybrid software system construction, realized the establishment of a complete, practical, availability, long-term health monitoring system.
     The main research work as follows:
     1. This paper stated the significance of the bridge structural health monitoring, the study and developed status of the health monitoring at home and abroad and some critical issues. Combined with the structural features of the Jingyue Bridge, the bridge structural health monitoring system has been built, and test items, signal network structure, computer systems and application systems have been planed.
     2. On the basis of analyzing the structure and principle of the existing FBG vibration transducer, a new type of FBG vibration sensor and its structure and principle has been studied.
     3. Based on the advantage of optical fiber sensing technique, a long-term online testing method for the bridge prestressed cable force was researched in this paper and the quantitative assessing method feasibility for the loss size of prestress for prestressed concrete continuous beam bridge during operation was verified by pratical engineering application.
     4. The cable of cable-stayed bridge performed a vital loading role, and also, is a major diseases area. So it is significant to develop cable testing technology research for evaluating the loading capacity, analyzing the disease extent and providing maintenance strategy. This research combined the optical fiber sensing technology with fabricating cable progress, and put forward a smart cable structure with embedding optical fiber sensors, which was verified by construction and operation testing data.
     5. Based on the risk analysis of the bridge, structural health monitoring system for Jingyue Bridge which adopted optical fiber sensing technology has been built. The system monitoring index included:the bridge load, the structure static response, structural and dynamic characteristics and some other safety information. The system integration technology for software and hardware was studied and a long-term structural health monitoring system with multi-parameter was designed and accomplished.
     6. Described the meaning and importance of the structural safety threshold and gave the threshold setting for every sensor parameter by finite element modeling simulation. The variable weight of analytic hierarchy process used to assess the strucutural safety for Jingyue Bridge was introduced. Several key techniques for engineering construction were summarized. Based on some actual data analysis, the main software functions were presented.
引文
[1]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-70.
    [2]邬晓光,徐祖恩.大型桥梁健康监测动态及发展趋势[J].长安大学学报,2003,23(1):39-42.
    [3]黄方林,王学敏,陈欧清等.大型桥梁健康监测研究进展[J].中国铁道科学,2005,26(2):1-7.
    [4]Wang M L, Heo G, Satpathi D. Health monitoring system for large structural systems [J]. Smart Materials and Structures,1998,7(5):606-616.
    [5]Aktan A E, Helmicki A J, Hunt V J. Issues in health monitoring for intelligent infrastructure[J]. Smart Materials and Structures,1998,7(5):674-692.
    [6]Housner G, Caughey T. Structure control:Past, present, and future[J]. Journal of Bridge Engineering Mechanics,1997,123(9):897-971.
    [7]李爱群,缪长青.桥梁结构健康监测[M].北京:人民交通出版社,2009.
    [8]蒋洪涛.光纤传感器在桥梁健康监测中的应用[J].北方交通,2006.(10):56-59.
    [9]孙汝蛟,孙利民,孙智.FBG传感技术在大型桥梁健康监测中的应用[J].同济大学学报,2008,36(2):149-154.
    [10]Chueng M S, Tadros G S, Brown T G, et al. Field Monitoring and Research on Performance of The Confederation Bridge[J]. Canadian Journal of Civil Engineering,1997, 24 (6):951-962.
    [11]Myroll F, Dibiagio E. Instrumentation for Monitoring the Skarnsunder Cable-stayed Bridge[A]. Proceedings of the Third Sympo_sium on Strait Crossing[C]. Rotterdam: Balkema,1994:207-215.
    [12]Andersen E Y. Structural Monitoring of the Great Belt East Bridge[A]. Proceedings of the Third Symposium on Strait Crossing[C]. Rotterdam:Balkema,1994:54-62.
    [13]Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguide: applicaation to reflection fiber fabrication[J]. Appl Phys Lett,1978,23(10):647-649.
    [14]梁磊,姜德生,罗裴等.光纤Bragg光栅在结构健康监测中的实验研究[J].山东理工大学学报,2003,17(3):4-7.
    [15]李功标,瞿伟廉,刘晖.光纤光栅传感器在空间网架结构监测中的应用[J].武汉理工大学学报,2007,29(2):83-86.
    [16]南秋明,刘德力,梁磊.FBG传感器在水下结构工程中的应用[J].武汉化工学院学报,2006,28(3):25-28.
    [17]Prohaska J D, Snitze E, Chen B, et al. Fiber optic Bragg grating strain sensor in large scale concrete structures[C]. Fiber optic smart structures and Skins V, Proceedings of SPIE. Boston.1993,1798:286-294.
    [18]Kersey A D, Davis M A, Berkoff T A et al. Progress Towards the Development of Practical Fibre Bragg Grating Instrumentation Systems[J]. SPIE,1996,2839:40-63.
    [19]Kersey A D. A review of Recent Developments in Fiber Optic Sensor Technology [J]. Optical Fiber Technology,1996,2(3):291-317.
    [20]尚柏林,宋笔锋,万方义.光纤传感器在飞行器结构健康监测中的应用[J].光纤与电缆及其应用技术,2008,(3):7-9.
    [21]芦吉云,梁大开,张晓丽等.基于支持向量回归机的机翼盒段结构健康监测研究[J].仪器仪表学报,2009,30(3):486-491.
    [22]Borinski J, Meller S. Optical fiber sensors for In-flight health monitoring[C]. SPIE Proceedings, Vol,3986,2000.
    [23]胡宁.FBG应变传感器在隧道长期健康监测中的应用[J].交通科技,2009,(3):91-93.
    [24]孙胜臣.地铁国贸站结构健康监测技术的应用[J].铁道建筑,2009,(5):65-68.
    [25]乌建中,张学俊.基于光纤光栅技术的大型钢结构安装监测系统[J].中国工程机械学报,2006,4(3):322-327.
    [26]Zhou Zhi, Ou Jinping, Chen Genda. R&D of optical fiber based sensors and their applications[J]. Society for Experimental Mechanics-SEM Annual Conference and Exposition on Experimental and Applied Mechanics,2009,2:1318-1330.
    [27]Jiang De-sheng, Li Sheng. Design and research structural health monitoring system for an existing bridge based on optical fiber sensing technology [C]. The Second International Conference on Structural Condition Assessment, Monitoring and Improvement 19-21 November,2007, Changsha, China 2007, Vol.11:959-965.
    [28]李爱群,周广东.光纤Bragg光栅传感器测试技术研究进展与展望[J].东南大学学报,2009,39(6):1298-1314.
    [29]Casas R, Cruz J S. Fiber optic sensors for bridge monitoring [J]. Journal of Bridge Engineering,2003,6(8):362-366.
    [30]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现[J].土木工程学报,2006,39(4):39-53.
    [31]王估,南秋明,李跃.光纤光栅传感技术在特大跨桥梁施工监测中的应用[J].河南科技大学学报,2007,28(4):46-49.
    [32]刘金碹,柴敬,朱磊.岩层变形检测的光纤光栅多点传感理论与工程应用[J].光学学报,2008,28(11):2143-2147.
    [33]梁磊,左军,南秋明等.新型光纤光栅渗压传感器及其在土木工程中的应用[J].河南科技大学学报,2005,26(4):58-60.
    [34]Nellen P M, Bronnimann R, Frank A et al. Structurally Embedded Fiber Bragg Gratings: Civil Engineering Application[J]. SPIE,1999,3860:44-54.
    [35]C.K.Y.Leung, N.Elvin. A novel distributed optical crack sensor for concrete structures [J]. Engineering Fracture Mechanics,2000,65:133-148.
    [36]Fiebele P. Fiber Bragg Grating Strain Sensors:Present and Future Applications in Smart Structures [J]. Optics and Photonics News,1998,9:33-37.
    [37]Sagvolden G, Pran K, Vines L, et al. Fiber optic system for ship hull monitoring[C] //Optical fiber sensors conference technical digest. Portland:IEEE,2002:435-438.
    [38]Hjelme D, Bjerkan L. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes [J]. Appl Opt,1997,36:328-344.
    [39]Wang G, Pran K. Ship hull structure monitoring using fibre optic sensors [J]. Smart MaterStruct,2001,10:472-479.
    [40]Curran P, Tilly G. Design and Monitoring of the Flintshire Bridge[J]. Structural Engineering International,1999,9(3):225-228.
    [41]Measures M, Alavie A, Maaskant, et al. Bragg grating fiber optic sensing for bridge and other structures[C]//Second european conference on smart structures and materials. Glasgow:SPIE,1994:162-167.
    [42]Wong Kai Yuen. Structural identification of Tsing Ma Bridge [J]. Transactions Hong Kong Institution of Engineers,2003,10(1):38-47.
    [43]Chan T, Yu L. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J]. Engineering Structures,2006,28(5): 648-659.
    [44]缪长青.江阴大桥原结构安全监测系统设计分析[J].公路交通科技,2007,24(11):81-86.
    [45]苏木标,杜彦良,孙宝臣等.芜湖长江大桥长期健康监测与报警系统研究[J].铁道学报,2007,29(2):71-76.
    [46]丁幼亮.润扬长江大桥结构损伤预警系统的设计与实现[J].东南大学学报,2008,38(4):704-708.
    [47]李爱群,缪长青,李兆霞等.润扬长江公路大桥结构健康监测系统研究[J].东南大学学报,2003,33(5):544-548.
    [48]李战明,陈红波,何畏.大型桥梁健康监测智能调理器的研究[J].微计算机应用,2003,17(3):298-302.
    [49]马广.软计算研究及其在桥梁健康监测与状态评估中的应用[D].[博士学位论文].长沙:中南大学,2010.
    [50]李毅.基于城市桥梁集群监测平台的系杆拱桥健康监测研究[D].[博士学位论文].杭州:浙江大学,2010.
    [51]孙砚飞.基于光纤光栅传感的桥梁损伤识别与评估系统研究[D].[博士学位论文].武汉:武汉理工大学,2008.
    [52]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究[D].[博士学位论文].上海:同济大学,2007.
    [53]宋雨.文晖大桥健康监测与评估管理系统主要问题研究[D].[博士学位论文].杭州:浙江大学,2003.
    [54]石顺祥,孙艳玲,马琳.光纤技术及应用[M].武汉:华中科技大学出版社,2009.
    [55]赵雪峰,田石柱,周智等.钢片封装光纤光栅监测混凝土应变试验研究[J].光电子.激光,2003,14(2):171-174.
    [56]黄勇林,李杰,开桂云等.光纤光栅的温度补偿[J].光学学报,2003,23(6):677-679.
    [57]黄山,赵华凤,俞涛等.光纤光栅温度补偿桥式结构[J].半导体光电,2003,24(6):439-440.
    [58]俞钢,何赛灵.一种新型的光纤光栅封装装置[J].光子学报,2004,3(3):291-293.
    [59]刘铁根,江俊峰,李欣等.光纤光栅在预应力钢绞线应力测量中的应用[J].光电子·激光,2005,16(10):1235-1238.
    [60]李冬生,邓年春,周智等.拱桥吊杆的光纤光栅监测与健康诊断[J].光电子·激光,2007,18(1):81-84.
    [61]邓年春,周智,龙跃等.光纤光栅冷铸镦头锚拉索及其在桥梁中应用[J].预应力技术,2007,62(3):3-7.
    [62]侯立群,欧进萍,李宏伟等.东营黄河公路大桥振动监测系统设计与实现[J].世界桥梁,2008,(3):75-79.
    [63]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49.
    [64]张通,欧进萍.大型刚构-连续梁桥预应力张拉过程主梁应变的FBG跟踪监测[J].沈阳建筑大学学报,2009,25(3):409-413.
    [65]何建平,周智,王永政等.基于光纤光栅绝对测量技术的高耐久智能钢拉杆[J].应用光学,2009,30(1):118-124.
    [66]陈凤晨,谭忆秋,董泽蛟等.基于光纤光栅技术的沥青路面结构应变场分析[J].公路交通科技,2008,25(10):9-13.
    [67]张彪,马德才,刘跃进等.基于FBG传感的瀛洲大桥结构健康监测系统研究[J].特种结构,2009,26(1):78-82.
    [68]余波,邱洪兴,王浩等.苏通大桥结构健康监测系统设计[J].地震工程与工程振动,2009,29(4):170-177.
    [69]李俊,吴瑾.钢筋锈蚀的光纤光栅监测[J].南京航空航天大学学报,2008,40(3):395-398.
    [70]张嵩.分布式网络化桥梁结构安全监测系统研究[J].武汉理工大学学报,2007,29(11):115-118.
    [71]张东生,李微,郭丹.基于光纤光栅振动传感器的桥梁索力实时监测[J].传感技术学报,2007,20(12):2720-2723.
    [72]李盛,姜德生,岳丽娜.光纤传感技术在预应力砼箱形梁桥加固监测中的应用[J].仪表技术与传成器,2009,(7):96-98
    [73]刘胜春,姜德生,郝义昶.光纤光栅测力传感器的研究及应用[J].武汉理工大学学报,2006,30(2):209-211.
    [74]姜德生,李盛,刘胜春.光纤光栅传感系统在桥梁重载车识别中的应用[J].中外公路,2007,27(3):153-155.
    [75]信思金,梁磊,左军.光纤光栅传感技术在成桥检测中的应用研究[J].光学与光电技术,2005,3(3):13-16.
    [76]刘胜春,姜德生,李盛.新型光纤光栅振动传感器测试斜拉索索力[J].武汉理工大学学报,2006,28(8):110-112.
    [77]信思金,柴伟.光纤Bragg光栅温度传感器封装方法研究[J].传感器技术,2004,23(4):10-12.
    [78]王俊杰,姜德生,梁宇飞.差动式光纤Bragg光栅土压力计及其温度特性的研究[J].光电子·激光,2007,18(4):389-391.
    [79]陈涛,张嵩.用于桥梁健康监测的光纤光栅解调系统[J].武汉理工大学学报,2009,31(15):41-44.
    [80]刘军,童杏林,梁磊.高性能桥梁长期健康监测系统设计与集成研究[J].武汉理工大学学报,2009,31(23):52-56.
    [81]姜德生,梁磊,南秋明等.新型光纤Bragg光栅锚索预应力监测系统[J].武汉理工大学学报,2003,25(7):15-17.
    [82]刘胜春.光纤光栅智能材料与桥梁健康检测系统研究[D].[博士学位论文].武汉:武汉理工大学,2006.
    [83]刘军.桥梁长期健康监测系统集成与设计研究[D].[博士学位论文].武汉:武汉理工大学,2010.
    [84]岳丽娜.大跨悬索桥安全监测方法及体系研究与应用[D].[博士学位论文].武汉:武汉理工大学,2010.
    [85]李盛.基于光纤光栅传感原理的桥梁索力测试方法研究与应用[D].[博士学位论文].武汉:武汉理工大学,2009.
    [86]谢晓尧.红枫湖大桥健康监测系统关键技术研究[D].[博士学位论文].武汉:武汉理工大学,2007.
    [87]符晶华.光纤光栅智能材料、结构的应用与研究[D].[博士学位论文].武汉:武汉理工大学,2006.
    [88]王应军.大型斜拉桥长期健康监测系统的关键技术研究[D].[博士学位论文].武汉:武汉理工大学,2006.
    [89]姜德生,Richard O C智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000.
    [90]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007.
    [91]李宏男,任亮.结构健康监测光纤光栅传感技术[M].北京:中国建筑工业出版社,2008.
    [92]李爱群,缪长青.桥梁结构健康监测M].人民交通出版社,2009.
    [93]Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors[J]. Proc. SPIE,1989, 1169:98-107.
    [94]Rao Y J, Jackson D A. A prototype multiplexing system for use with a large number of fiber-optic-based extrinsic Fabry-Perot sensor exploiting low coherence interrogation[J]. Proc.SPIE,1995,2507:90-98.
    [95]Meltz G, Morey W W, Glenn W H. Formation of Bragg grating in optical fibers by a transverse holographic method[J]. Optic Letters,1989,14(15):823-825.
    [96]Hill K O, et al. Point-by-point fabriation of micro-Bragg grating in photosensitive fiber using single excimer pulse refractive index modification techniques [J]. Electronic Letters, 1993,29(18):1668-1669.
    [97]Hill K O, et al. Bragg grating fabriated in monomode photosensitive optic fiber by UV exposure through a phase mask[J]. Applied Physics Letters,1993,62(10):1035-1037.
    [98]Davis M A, Kersey A D. Matched-filter interrogation technique for fiber Bragg grating array[J]. Electronic Letters,1995,31(10):822-823.
    [99]Kersey A D, Berkoff TA, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Febry-Perot wavelength fiber[J]. Optic Letters,1993,18:1370-1372.
    [100]Ning Y N, Meldrum A, Shi W J, et al. Bragg Grating Sensing Instrument Using a Tunable Febry Perot Filter to Detect Wavelength Variations[J]. Measurement Science & Technology,1998,9(6):599-606.
    [101]余有龙,谭华耀,锺永康.基于干涉解调技术的光纤光栅传感系统[J].光学学报,2001,21(8):987-989.
    [102]Davis M A, Kersey A D. All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler. Electronic Letters,1994,30(1):75-77.
    [103]陈常松,田仲初,郑万泔.大跨度混凝土斜拉桥模态试验技术研究[J].土木工程学报,2005,38(10):72-75.
    [104]王彦一,梁大开,周兵.强度解调的光纤光栅智能结构动态监测技术[J].光电子·激光.,2008,19(23):361-364.
    [105]厉善元,蒋冬青,梁磊.新型光纤光栅加速度传感器动态特性的研究[J].武汉理工大学学报,2008,30(12):117-120.
    [106]张东生,郭丹,罗裴.基于匹配滤波解调的光纤光栅振动传感器研究[J].传感技术学报,2007,20(2):311-313.
    [107]詹建辉,陈卉.特大跨度连续刚构主梁下挠及箱梁裂缝成因分析[J].中外公路,2005,25(1):56-58.
    [108]陈宇峰,徐君兰,余武军.大跨PC连续刚构桥跨中持续下挠成因及预防措施[J].重庆交通学院学报,2007,26(4):6-8.
    [109]谢峻,王国亮,郑晓华.大跨度预应力混凝土箱梁桥长期下挠问题的研究现状[J].公路交通科技,2007,24(1):47-50.
    [110]龙跃,邓年春,朱万旭等.磁通量传感器及其在桥梁监测中的应用[J].预应力技术,2007,(2):3-6.
    [111]邓年春,欧进萍,周智等.光纤光栅在预应力钢绞线应力监测中的应用[J].哈尔滨工壮大学学报,2007,39(10):1550-1553.
    [112]Washer G A, Green R E, Pond R B, et al. Velocity Constants for Ultrasonic Stress Measurement in Prestressing Tendons [J]. Res Nondestr Eval,2002, (14):81-94.
    [113]汪永兰,陆建兵,章世祥.光纤光栅传感器用于竖向预应力监测试验研究[J].西部交通科技,2011,49(8):48-52.
    [114]南秋明,姜德生,梁磊.光纤光栅测力环的应用[J].华中科技大学学报:自然科学版,2006,34(9):63-65.
    [115]林志宏,徐郁峰.频率法测量斜拉桥索力的关键技术[J].中外公路,2003,23(5):1-4.
    [116]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报,2006,19(2):62-65.
    [117]欧进萍,周智.纤维增强塑料-光纤光栅复合筋[P].中国专利:CN1484456A,2004.
    [118]邓年春,欧进萍,周智等.一种新型平行钢丝智能拉索[J].公路交通科技,2007,24(3):82-85
    [119]林元培.斜拉桥[M].北京:人民交通出版社,2004.
    [120]喻梅,李乔.结构布置对多塔斜拉桥力学行为的影响[J].桥梁建设,2004,(2):1-4.
    [121]于天来,王今朝.斜拉桥危险性分析[J].东北林业大学学报,2010,38(12):95-98.
    [122]孙光亮.多层次综合评判模型及其应用[J].系统工程,1996,(2)::64-67.
    [123]赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1996.
    [124]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [125]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700