用户名: 密码: 验证码:
GFRP筋混凝土桥面板内压缩薄膜效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土桥梁结构暴露在外环境中,易导致钢筋的锈蚀,影响结构的工作性能,严重时将会影响结构的承载性能。GFRP筋具有高耐腐蚀性、密度小和热膨胀系数同混凝土相近等优点,GFRP筋被认为能够代替钢筋在工程中应用。但目前应用并不广泛,主要原因是较高的建造价格使其无法在桥梁工程中推广,而现行FRP筋混凝土结构设计规范的配筋率远高于钢筋混凝土桥面板的配筋率。已有的研究表明,传统的梁板式桥梁结构中存在压缩薄膜效应。结合压缩薄膜效应对混凝土桥面板结构设计将有效的降低桥面板的配筋率,降低结构的建造成本。
     本文在以往的研究成果上,对在轮胎荷载下的GFRP筋梁板式桥梁面板的工作性能和承载力计算方法进行研究,主要进行如下几方面的工作:
     1.以支撑梁宽度、筋材种类、配筋率为参数,对1:3比例缩小的梁板式桥面板进行静力加载试验,测量各个结构模型在整个加载过程中各阶段的承载力、应变、变形等数据,考察其基本力学性能,并对承载力计算方法进行初步探讨。
     2.分析研究桥面板在轮胎荷载下,支撑梁侧向位移、桥面板的裂缝扩展和破坏形态,清晰揭示压缩薄膜效应在整个受力过程中的变化以及对结构性能的影响。
     3.采用有限元软件ABAQUS对桥面板静力加载时荷载-变形全曲线进行模拟,模拟结果与试验数据吻合,较为充分说明了本文有限元模拟的合理性。并进一步分析受力过程中桥面板沿截面高度应力分布规律,深入揭露了梁板式桥面板轮胎荷载下的工作机理。基于准确校正试验的基础上展开参数分析。
     4.通过对试验结果和数值模拟的归纳分析,本文对原有的基于压缩薄膜效应的钢筋混凝土桥梁面板承载能力的计算方法进行了修正。修正后的结果与试验结果有着较好的吻合。
     通过试验及有限元分析发现,由于压缩薄膜效应的存在,桥面板的极限承载力大幅提高,且低配筋桥面板与高配筋桥面板的承载性能差异不大。基于压缩薄膜效应的GFRP筋梁板式桥面板设计在保证承载性能的基础上将有效的降低结构的建造成本,为桥面板解决可持续性提供一种新思路。
Due to the exposure in enviroments,deterioration of reinforced concrete bridge deck slabs caused by corrosion of reinforcement has become increasingly evident.Glass Fiber Polymer(GFRP) with strong corrosion-resistant,light weight and small thermal expansion coefficient is considered as a possible replacement of steel reinforcement in paractical engineering.However,due to the higher price of GFRP and larger reinforcement ratios,which is caused by the traditional design methods,this reinforcement materials could be used widely.In the previous research,it was found that compressive membrane action(CAM) exited in the traditional slab-and-beam bridge deck structures.With the consideration of CMA in the structural design of concrete bridge deck slabs,the construction costs could be decreased.
     Based on previous studies, a research on structural behaviours of GFRP reinforced concrete bridge deck slabs and the related prediction methods of loading capacities was carried out in this paper.The main achievement can be summarized as follows:
     1. A series of one-third scaled experimental tests of GFRP reinforced concrete bridge deck slabs under static patch loads was carried out.The influences from some structural variables were considered,which included width of supporting beams,reinforcing materials and reinforcement percentages.In this study,some structural parameters,such as applied load,stress&strain,cracking conditions,were measured in different stages.Furthermore,the prediction methods of loading capacities were discussed.
     2. The structural behaviours of GFRP reinforced concrete bridge deck slabs was discussed,including displacements of supporting beams,cracking patterns and failure mechanism.The influced from CMA on bridge deck slabs was revealed clearly.
     3. A commercial software named ABAQUS was used to numerical study the structural response,such as load vs. deflection,in GFRP reinforeced concrete bridge decks.A good colletion between finite element analysis and experimental tests was shown in the comparisons.According to the accuracy of established nonlinear finte analysis,a further research on structural behaviours of this structural type,such as stress distribution,was carried out,which was used to reveal the failure mechanism of GFRP reinforced concrete bridge deck slabs.Thereafter,a series of parametric study was conducted.
     4. Based on the analytical results of experimental tests and numerical analysis,a modified prediction methods was proposed.The predicted result showed a good agreement with experimental results.
     In the study of experimental tests and numerical modeling, the existing of CMA enhanced the loading capacities of GFRP reinforced concrete bridge deck slabs. The structural behaviours of GFRP reinforced concrete bridge deck slabs with lower reinforcement percentages are similar to those in slabs with higher reinforcement ratios. In this study, it was found that introduction of GFRP with consideration of CMA could be a effective solution of improvement of sustainability of bridge deck slabs.
引文
[1]范立础.桥梁工程[M].北京:人民交通出版社,2004.
    [2] Onofrei, M. Durability of GFRP reinforced concrete from field demonstration structures[R].France:The International Conference, 2005.
    [3] Nanni A.FRP reinforcement for concrete structures[M].ElsevierScience Publishers,1993.
    [4]赵尚传,贡金鑫,水金锋.氯离子环境下既有钢筋混凝土桥梁耐久性的概率分析[J].公路交通科技, 2006, 23 (7): 82-86.
    [5]薛伟辰,康清梁.纤维塑料筋在混凝土结构中的应用[J].工业建筑,1999,(2):19-28.
    [6] ACI Committee 440.Guide for Design and Construction of Concrete Structures Reinforced with FRP Bars[S].Detroit, Michigan: American Concrete Institute, May, 2001.
    [7] ISIS Canada.Reinforcing concrete structures with fiber reinforced polymers.ISIS M03-01, Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, University of Winnipeg, Manitoba, Winnipeg, Canada., 2001.
    [8] Canadian Standards Association (CSA). Design and construction of building components with fiber reinforced polymers[S]. Toronto:CSA S806-02, 2002.
    [9] American Concrete Institute. Guide for the design and construction of concrete reinforced with FRP bars[S]. Farmington Hills: ACI 440.1R-03, Mich, 2003.
    [10]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993:396-410.
    [11]王言磊.FRP-混凝土组合梁/桥面结构试验、分析与设计方法[D].哈尔滨:哈尔滨工业大学,2008.
    [12]冯鹏,叶列平.FRP结构和FRP组合结构在结构工程中的应用与发展.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会,2002:51~63.
    [13]杨允表,石洞.复合材料在桥梁工程中的应用[J].桥梁建筑.1997,(4):1~4
    [14]王耀先.复合材料结构设计[M].北京:化学工业出版社,2001.
    [15]叶列平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36.
    [16] A.C. Berg, L.C. Bank, M.G. Oliva, and J.S. Russell.Construction and cost analysis of an FRP reinforced concrete bridge deck[J].Construction and Building Materials, 2006,Vol. 20(8):515-526.
    [17] Smai Rizkalla,Pierre Labossiere.Structural engineering with FRP in Canada[J].Concrete International,1999,Vol.21(10):25-28.
    [18]薛伟辰.有粘结预应力纤维塑料筋混凝土梁的试验研究[J].工业建筑,1999,29(12):11-13.
    [19]薛伟辰,康清梁.纤维塑料筋在混凝土结构中的应用[J].工业建筑,1999,29(2):19-21.
    [20]薛伟辰,康清梁.纤维塑料筋粘结锚固性能的试验研究[J].工业建筑,1999,29(12): 5-7.
    [21]刘华杰.纤维塑料筋混凝土受弯构件试验研究与理论分析[D].上海:同济大学,2003.
    [22]郑乔文. FRP筋混凝土梁设计理论研究[D].上海,同济大学, 2006,
    [23]高丹盈,B.Brhaim.玻璃纤维聚合物筋混凝土梁正截面承载力的计算方法[J].水利学报,2001(9): 73-80.
    [24]Zheng, Y. Modelling of Compressive Membrane Action in Concrete Bridge Decks [D]. Belfast :Queen’s University of Belfast, 2007.
    [25] Ockleston, A.J..Load tests on a 3-storey RC building in Johannesburg[J]. Structural Engineer, 1955,Vol.33:304-322.
    [26] Christiansen, K.P. .Ultimate strength of concrete slabs with horizontal restraints[J]. Danish Society of Structural Engineers, 1983, Vol.53(3):61-86.
    [27] Christiansen, K.P. , Frederiksen, V.T. .Experimental investigation of rectangular concrete slabs with horizontal restraints[J]. Materials and Structures, 1983,Vol.16(3):179-192.
    [28] Eyre, J.R. .Flow rule in elastically restrained one way spanning slabs[J]. Journal of Structural Engineering , 1990, Vol.116 ( 12):3251–3267.
    [29] Eyre, J.R..Direct assessment of safe strengths of RC slabs under membrane action[J].Journal of Structural Engineering,1997, Vol. 123(10):1331-1338.
    [30] Eyre, J.R. and Kemp, K.O..In-plane stiffness of reinforced concrete slabs under compressive membrane action[J]. Magazine of Concrete Research, 1994,Vol.46(166):67-77.
    [31] Eyre, J.R. and Kemp, K.O..A graphical solution for predicting the increase in strength of concrete slabs due to membrane action[J].Magazine of Concrete Research, 1983,Vol.35 (124):151-156.
    [32] Long, A.E..A two-phase approach to prediction of punching strength of slabs[J]. Journal Proceedings, 1975, Vol.72(2):37-45.
    [33] Long, A.E. and Rankin, G.I.B. Real strength and robustness of RC structures[J]. Conservation of engineering structures, 1989:47-58.
    [34] Batchelor, BdeV, Hewitt, B.E., Csagoly P., Holowka, M.Investigation of the ultimate strength of deck slabs of composite Steel/Concrete bridges[J]. Transportation Research Board,1978,Vol.1(664):162-170.
    [35] Batchelor, BdeV. Membrane enhancement in top slabs of concrete bridges Concrete bridge engineering[J].Performance and Advances, 1987:189-211.
    [36] Hewitt, B.E. and Batchelor, BdeV. Punching shear strength of restrained slabs[J]. ASCE Journal of Structural Engineering, 1975, Vol.101(9):1837-1853.
    [37] Mufti, A. A., Bakht, B. and Newhook, J. P. Precast Concrete Decks for Slab on Girder Systems: A New Approach[J]. Structural Journal, 2004,Vol. 101(3):395-402.
    [38] Mufti, A.A. and Newhook, J.P. Punching shear strength of restraint concrete bridge deck slabs[J]. Structural Journal, 1998:375-381.
    [39] Thorburn, J. and Mufti, A.A..Full-scale testing of externally reinforced FRC bridge decks on steel girders[J].Canada:Annual conference for the Canadian Society of Civil Engineers, 1995:543-552.
    [40] Kirkpatrick, J. An analytical field and model study of M-beam bridge decks[D].Belfast: Queen’s Universit,1982.
    [41] Taylor, S.E..Compressive membrane action in high strength concrete bridge deck slabs[D].Belfast:Queen’s University of Belfast, 2000.
    [42] Yu Zheng, Su Taylor, Des Robinson, David Cleland. Investigation of the compressive membrane action in composite steel-concrete bridge decks[A].Y.C.WANG,C.K.CHOI.Steel and composite structures[C].London:TJ Inernational Ltd.Padstow Cornwall,2007:521-532..
    [43] Yu Zheng, Des Robinson, Su Taylor, David Cleland. Nonlinear Finite Element Analysis of Compressive Membrane Action in Concrete Slabs[J]. Bridge Engineering,2008,Vol.161(1): 21-31.
    [44] Amendment No.3 to Bridge Design Code N.I. Roads Service Headquarters .Design of M-beam bridge decks[S]. Northern Ireland: Department of Regional Development,1986.
    [45] BD 81/02. Use of compressive membrane action in bridge decks[S]. UK: UK Highways Agency,2002.
    [46]建筑结构研究室.超静定钢筋混凝土结构塑性内力重分布研究报告集[R].北京:建筑工程部建筑科学研究院,1963.
    [47]王金.现浇混凝土筒芯楼盖受力性能研究[D].长沙:中南大学,2004.
    [48]白生翔.现浇混凝土楼盖设计中的几个问题[A].全国现浇混凝土空心楼盖结构技术交流会论文集[C].上海: 2005.7.
    [49]江红军.钢筋混凝土双向板受力性能及承载力计算的试验研究[D].南京:东南大学,2005.
    [50]李永春.钢筋混凝土矩形板薄膜效应的有限元分析[D].武汉:华中科技大学.2006.
    [51] El-Salakawy, E. F., and Benmokrane, B., El-Ragaby, A. Nadeau D.Field investigation on the first bridge deck slab reinforced with glass FRP bars constructed in Canada[J].Journal of Composites for Construction , 2005,Vol. 9( 6):470-479.
    [52] Taylor. S.E. and Mullin.B.. Arching action in FRP reinforced concrete slabs[J]. Construction and Building Materials, 2006,Vol. 20(1-2):71-80.
    [53] Mufti A.A. Steel free deck Canadian experience[R]. St. Louis MO:ACI Convention, 2008.
    [54] Department for regional development .Roads service, technical approval of highway and associated structures, approval in principle for the design of bridges and other structures[R]. Europ:Department for regional development,2007.
    [55] BS 5400.British Standard for the design of steel, concrete and composite bridges [S].London:British Standards Institute, 1990.
    [56] Bin Wu and Christian Meyer.Bending and punching shear strength of fiber-reinforced glass concrete slabs[J]. Material Journal, 2003,V.100(2):127-132.
    [57] Yu Zheng, Des Robinson, Su Taylor, David Cleland.Nonlinear finite element analysis of compressive membrane action in concrete slabs[A]. Concrete Research in Ireland Colloquium 2005[C]. Ireland:2005:9-18
    [58] Yu Zheng, Des Robinson, Su Taylor, David Cleland .Investigation of ultimate strength of deck slabs in composite steel-concrete bridges[A]. N.A.Ni Nuallain,A.O Counnor,K.Gavin.3rd Nationnal Symposium on Bridge and Infrastruture Research in Ireland[C].Ireland:Engineerings Ireland,2006: 171-179.
    [59] GB50107-2010.混凝土强度检验评定标准[S].北京:国家城乡建设部,2010.
    [60] GB 50080-2002.普通混凝土拌合物性能试验方法标准[S].北京:建设部,2002.
    [61] GB 50081-2002.普通混凝土力学性能试验方法标准[S].北京:建设部,2002.
    [62] JTG D60-2004.公路桥涵设计通用规范[S].北京:交通部,2004.
    [63] Amr EI-Ragaby,Ehab EI-Salakawy,Brahim Benmokrane.Fatigue analysis of concrete bridge deck slabs reinforced with E-glass/vinyl ester FRP reinforcing bars[J].Composites,2006,PartB38 (2007):703-711.
    [64] Sone WC.,Taylor A W..A Predictive model for hysteretic falure Parameters[A].Proceedings of the Tenth World Conference on Earthquake Engineering[C].Spain:Balkema,Rotterdam,1992:2575-2580.
    [65] Rankin.G.I.B.,Long,A.E..Arching action strength enhancement in laterally restrained slabs[J].Structures and Building,1997,Vol.122:461-467.
    [66] Taylor,S.E.,Rankin G.I.B,Cleland.D.J..Real strength of high-performance concrete bridge deck slabs[J].Bridge Engineering,2003,Vol.156:81-90.
    [67] Mufti,A.A.,Newhook,J.P.,Wegner,L.D.The important of understanding punching shear in bridge deck slab innovation[J].Inernational Workshop on Punching Shear Capaticty on RC Slabs,Stockholm 2000,407—414.
    [68] ACI 318M-05.Building code requiremnents for structureal concrete and commentary[S]. Detroit, Michigan: American Concrete Institute, 2002.
    [69] J.Lubliner,J.Oliver,S,Oller,E.Onate.A plastic-damage model for concrete[J].Solid Structures,1989,Vol.25(3):299-326.
    [70]余流.碳纤维布增强钢筋混凝土构件的非线性有限元分析[D].天津:天津大学,2002.
    [71] ABAQUS. ABAQUS Version 6.8 Documentation[EB/OL].
    [72] The Institution of Civil Engineers. Report of a Concrete Working Party of Technical Note 372[R].England: The Institution of Civil Engineers,2004.
    [73] Wang,P.T..Stress-strain curves of normal and lightweight concrete in compression[J].Journal of American Concrete Institute,1978,Vol.75(10):603-611.
    [74]张国丽,苏军.基于ABAQUS的钢筋混凝土非线性分析[J].科学技术与工程,2008,Vol8(20):5620-5624.
    [75]陈力,方秦,还毅等.对ABAQUS中混凝土弥散开裂模型的静力特性分析[J].解放军理工大学学报,2007,Vol8(5):478-485.
    [76]关虓,冯仲奇.基于ABAQUS的混凝土材料非线性本构模型的研究[J].安徽建筑,2009,89-90.
    [77]单波.FRP加固钢筋混凝土柱考虑地震及使用损伤的长期性能和修复[D].长沙:湖南大学,2005.
    [78] Lee J,Fenves GL.Plastic-damage model for cyclic loading of concrete structures[J].Journal of Engineering Mechanics,ASCE,1998,124(8):892-900.
    [79] Vermeer,P.A.,de Borst,R..Non-associated plasticity for solids,concrete and rock[J].Heron,1984,Vol.29(3):64.
    [80] Hibbitt,Karlsson Scorenser,NC. Abaqus/Explicit有限元软件入门指南[M].庄茁等译.北京:清华大学出版社,1999.
    [81]王素裹,韩小雷,季静.ABAQUS显式分析方法在钢筋混凝土结构中的应用[J].科学技术与工程,2009,Vol9(16):4688-4692.
    [82]庄茁,张帆,由小川.Abaqus非线性有限元分析与实例[M].北京:科学出版社,2005.
    [83] Robinson.D.,Tayor,S.E.,Rankin,B..Finite element simulation of arching action in restrained slabs[J].Proceedings of the Seventh International Conference on Computational Structures Technology,Lisbon ,Portugal,Paper 168 Electronic CD,7-9 September 2004.
    [84] Taylor,S.E.,Robinson,D.Modelling of arching action in FRP reinforced concrete slabs[J].Proceedings of The Second International Conference on FRP Composites in Civil Engineerin-CiCE,Adelaide,Australia,8-10 December 2004,757-763.
    [85] Rankin,G.I.B..Punching failure and copmpressive membrane action in reinforced concrete slabs[D].Belfast:Queen’s Univiersity of Belafas,1982.
    [86] Cleland,D.J..An experimental and analytical study of the behaviour of posttentioned unbonded concrete flat slabs at edge columns[D].Belfast: Queen’s Univiersity of Belafas,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700