用户名: 密码: 验证码:
大型岩体洞室地震响应及减震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国西部大开发战略的深入推进,数十座大型水电站工程在我国西部的地震高烈度聚集区和频发区正在或即将兴建。受地形等条件的限制,这些水电站的引水发电建筑物往往布置在地下岩体中,形成超大型的岩体地下洞室群。由于这种大型的岩体地下洞室群在空间上表现为大跨度、高边墙和长轴线的特点,那么,如何确保这类大型岩体地下洞室群在地震荷载作用下,尤其是强震作用下的动力稳定性,是工程设计中急待解决的关键问题。因此,本文以动力非线性有限元程序ABAQUS为平台,对水电站厂房岩体地下洞室群地震响应的数值模型、计算方法和影响因素进行了系统研究,并在此基础之上,提出了水电站厂房这类大型岩体洞室的减震方法。
     首先,建立了适合岩体地下洞室群静动力分析的有限元-无限元(FE-IE)耦合计算模型。基于该FE-IE耦合计算模型,通过数值解答与解析解答的对比分析,验证了ABAQUS中隐式和显式两种动力模块求解半空间散射场波动问题的精确性和可行性,进而证明了该耦合计算模型在地下洞室静动力分析研究领域的良好应用前景。之后系统研究了洞室埋深、地应力、岩体强度和断层破碎带这些地质因素对岩体洞室动力响应的影响。计算表明,洞室的埋深、地应力状况、岩体强度和断层破碎带在不同程度上都会影响着岩体洞室的地震响应。
     其次,从理论分析的角度,通过对损伤塑性模型基本理论及其适用条件的分析,阐明了损伤本构模型用于岩体地下洞室动力特性研究的理论适应性,并将此损伤塑性本构模型用于水电站厂房岩体地下洞室结构地震响应的研究。实例分析表明,损伤塑性模型能考虑地震等循环动荷载作用下岩体刚度退化和应变率的影响,能很好地描述混凝土、岩体等脆性材料的力学损伤行为,适合在岩体地下洞室抗震分析中应用。对于平行并排布置的水电站厂房岩体地下洞室群来说,当洞室群间距小于一倍洞室特征长度时(洞室特征长度定义为洞室群中相邻洞室最大的洞室跨度),洞室间距显著影响着洞室群的稳定性;当洞室群相邻洞室围岩厚度超过临界洞室间距时,洞室群稳定性受洞室间距的影响较小;对于一般工程的岩体来说,当洞室间距超过两倍的洞室特征长度时,结合合理的支护方式和抗震措施,洞室群的稳定性在一定程度上足可以得到满足。
     再次,考虑到水电站厂房岩体洞室轴线尺寸较长和地震动空间非均匀性的特点,研究了行波激励下这类大型岩体洞室的动力非线性响应。地震动行波激励下,洞室轴向各点的地震响应存在一定的相位差。地震动幅值是造成地下洞室发生破坏的关键因素,对于水电站厂房这类长轴线(轴线长度为300~400 m)的大型岩体地下洞室来说,小幅值地震动的行波效应对地下洞室破坏未产生明显影响,此时可不考虑地震动行波效应;然而,强震的行波效应对地下洞室破坏影响十分显著,此时应考虑强震动行波效应。
     随后,针对爆炸荷载这一特殊的高频动荷载,研究了水电站厂房岩体洞室的抗爆性能。浅埋深的洞室抗爆性能较差,深埋深的洞室抗爆性能较强。当侧压系数小于1时,随侧压系数的增加,洞室的抗爆性能变化并不明显;当地应力侧压系数大于1后,由于洞室稳定性受水平向地应力影响较大,随侧压系数的增加,洞室的抗爆性能显著降低。由于洞室拱顶效应影响,实际工程应加强对洞室拱肩、拱顶、底脚的加固支护,特别是洞室的拱肩部位。
     最后,针对水电站厂房这类大型岩体洞室,提出了采用设置柔性隔震垫层、注浆加固层和轴向隔震缝的减震措施,并分别对柔性隔震垫层、注浆加固层和轴向隔震缝的减震效果进行了敏感性分析。研究结果表明,硬岩洞室采用柔性隔震垫层的减震效果比较理想;软岩洞室采用注浆加固层的减震效果最佳;设置轴向隔震缝更有利于提高洞室结构的抗震性能。尽管设置柔性垫层后没有从根本上改变岩体洞室结构的动力特性,但设置一定厚度的柔性隔震垫层后不仅能充分发挥岩体洞室围岩的自承能力,而且还能明显地减小混凝土衬砌的动力反应。注浆加固层在很大程度上能减轻软岩洞室结构的地震反应。相邻机组段之间设置隔震缝不仅能降低施工期间混凝土所产生的干缩裂纹,而且在地震动期间还能显著降低混凝土衬砌的地震应力。本文提出的减震措施为后续类似工程的隔震和减震设计提供了方向。
Along with the deeply advancement of the western development drive, a lot of huge hydraulic power plants are being built or will be built in China's western regions which are seismically active zones with high earthquake intensity. For the reason of the restriction of geological condition, the diversion structures of the plants are mainly constructed in the mountains beside the rivers. Thus, the large rock cavern groups is formed. Its main features of this kind of large rock cavern groups are large span, long axial-length and high side walls. Therefore, how to ensure the safety of rock cavern groups under the action of earthquake, especially under the action of strong earthquake is one of the most important problems that should be solved properly and quickly. Taking the dynamic nonlinearity program ABAQUS as the numerical tool, firstly, the numerical model and other influenced factors are fully studied for the rock cavern groups under the action of seismic motion. Then, a seismic resistance measure is proposed for this large scale rock cavern groups.
     Firstly, in the precondition of using infinite elements as dynamic boundary condition, the comparison between the numerical solution and analytical solution proved the feasibility that ABAQUS can effectively simulate the wave propagation in half space scattered field. A coupling model of finite element and infinite element for the seismic response analysis of rock cavern groups is presented using the nonlinear finite program ABAQUS. On the basis of the propoed coupling model, the influence of geologic conditions such as embedded depth, geotress, strength of rocks and fracture zone on the seismic response of rock cavern is studied. The simulated results indicate that the geologic conditions motioned above can affect the seismic response of rock cavern groups in certain degree.
     Secondly, from the view of theoretical analysis, the applicability that the concrete damaged plasticity model could be used to study the dynamic property of surrounding rocks is analyzed. On the basis of this damaged plasticity model, the seismic response of rock cavern in a hydraulic power plant is studied. The numerical results indicate that the damaged plasticity model is suitable for the dynamic analysis of rock cavern subjected to earthquake. The model can also consider the stiffness recovery effects and rate sensitivity during cyclic loading. The results of the influence of cavern spacing on the stability of large cavern groups in a hydraulic power station indicate that the cavern spacing does have some influence on the stability of large cavern groups under the action of earthquake. If the cavern spacing is less than one cavern characteristic length (taken to the biggest width of a cavern in the group), the stabilities of adjacent caverns are significant affected by their spacing. Once the spacing exceeds the critical cavern characteristic length, the spacing hardly influences the stability of rock cavern groups. The stabilities of the cavern groups can be assured if the thickness of rocks between the adjacent caverns exceeds the critical cavern spacing in the conditions of adopting appropriate supporting schemes and effective anti-seismic reinforcement.
     Then, the dynamic nonlinear response of the rock cavern is studied subjected to seismic motion considering wave passage effect. The research shows that the wave passage effect of earthquake can result in phase difference of seismic response along the axial direction of the rock cavern. The amplitude of earthquake motion is the critical factor for the damage of rock cavern. For the rock cavern with its axial length around 300 m~400 m, the wave passage effect of weak earthquake can hardly influence the damage of rock cavern and the wave passage effect of strong earthquake can dramatically aggravate the damage of rock cavern.
     After that, the blast resistance of rock cavern is studied under the action of explosion loading. Numerical results indicate that the weak performance of blast resistance for the shallow cavern and the strong performance of blast resistance for the deep embedded cavern. Numerical results also indicate that when the geo-stress lateral pressure coefficientλis less than 1, no obvious variation of the blast resistance performance appears for the cavern. Onceλis great than 1, the blast resistance performance of the cavern is dramatically decreasing along with the increasing ofλ. For the effect of arch crown, the locations of spandrel, arch crown and arch footing should be enforced properly in practical engineering, especially the location of spandrel. The simulated results can be as references to the design of this kind of underground rock cavern in a hydraulic power station.
     Finally, the seismic resistance measure is proposed that is adopting soft-seismic isolation layer, reforced grouting layer and seismic isolation gap to enhance the seismic resistance performance of rock cavern. Sensitivity analysis of seismic resistance measure is conducted for the rock cavern. Simulated results show that soft-seismic isolation layer is better for the earthquake resistance of hard rock cavern and reforced grouting layer is suitable for the earthquake resistance of soft rock cavern. The seismic isolation gap is benefit for the seismic resistance of rock cavern. However, despite the dynamic features of rock cavern have not been changed essentially by adopting soft-seismic isolation layer, not only the self-supporting performance of surrounding rocks could be realized, but also the seismic response of concrete liner could be reduced in certain degree. Reforced grouting layer can reduce the dynamic response of liner in soft rock cavern. The structural joint not only can decrease the desiccation cracks during the period of concrete shrinkage but also can result in the reduction of seismic response for concrete liner. The seismic resistance measure proposed here can lead a way for the similar projects in the design of earthquake resistance.
引文
[1]关宝树.21世纪的地下工程[J].学术动态报道,1996,3:9-12.
    [2]钱七虎.岩土工程的第四次浪潮[J].地下空间,1999,19(4):267-272.
    [3]王梦茹.世纪是隧道及地下空间大发展的年代[J].岩土工程界,2000,3(6):13-15.
    [4]傅冰骏.21世纪我国岩石力学面临的机遇和挑战[J].岩土工程界,2000,4:9-12.
    [5]王思敬.中国岩石力学与工程的世纪成就与历史使命[J].岩石力学与工程学报,2003,22(6):867-871.
    [6]李吉川.我国水电事业的发展概况[J].广西电力技术,2001,4:61-63.
    [7]陈尊理,陈建国,马文辉.我国水电已到最佳发展期[J].四川水力发电,2002,20(1):1-5.
    [8]陆佑楣.我国水电开发与可持续发展[J].水力发电,2005,31(2):1-4.
    [9]潘家铮.老生常谈集[M].北京:黄河水利出版社,2005.
    [10]邹结富,杨英.我国水电产业发展趋势分析[J].2002,18(1):1-4.
    [11]张孝松.龙滩水电站地下洞室群布置及监控设计[J].岩石力学与工程学报,2005,24(21):3983-3989.
    [12]李杰,程志华,傅其义,等.二滩水电站地下厂房设计[J].水力发电,1997,13(8):31-34.
    [13]李友华,黄应军,李景元.溪洛渡水电站左岸地下厂房大跨度高边墙开挖施工技术[J].水力发电,2008,34(9):9-14.
    [14]高孟潭.新的国家地震区划图[J].地震学报,2003,25(6):630-636.
    [15]吕涛.地震作用下岩体地下洞室响应及安全评价方法研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [16]Wolf J P.Dynamic soil-structure interaction[M].Switzerland:Prentice Hall,1985.
    [17]Dowding C H,Rozen A.Damage to rock tunnels from earthquake shaking[J].J Geotech Eng,1978,104(GT2):175-191.
    [18]Pratt H R,Stephenson D E,Zandt G,et al.Earthquake Damage to Underground Facilities.In:Rapid excavation and tunneling conference[C].CO,USA:Littleton,1980.
    [19]Sharma S,Judd R J.Underground opening damage from earthquakes.Engineering Geology,1991,30:263-276.
    [20]Asakura T,Sato Y.Mountain Tunnels Damage in the 1995 HYOGOKEN-NANBU earthquake[J].Railway Technical Research Institute(RTRI),1998,39(1):9-16.
    [21]Hashash Y M A,Hook J J,Schmidt B,et al.Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology,2001,(16):247-293.
    [22]Mohammad C,Pakbaz,Yareevand A.2-D analysis of circular tunnel against earthquake loading[J].Tunnelling and Underground Space Technology,2005,20:411-417.
    [23]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析[J].灾害学,1998,13(2):63-66.
    [24]李海波,蒋会军,赵坚等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [25]王景明.1976年唐山地震地下工程震害的分布规律[J].地震学报,1980,2(3):314-320.
    [26]潘昌实.隧道及地下结构物抗震问题的研究概述[J].世界隧道,1996,32(5):7-16.
    [27]潘昌实.隧道地震灾害综述[J].隧道及地下工程,1990,11(2):1-9.
    [28]Shunzo Okamoto.Introduction to Earthquake Engineering[M]2nd Edition.Tokyo:University of Tokyo Press,1984.
    [29]Nakamura S,Yoshida N,Iwatate T.Damage to Daikai Subway Station During the 1995Hyogoken-Nambu Earthquake and Its Investigation[J].Japan Society of Civil Engineers,Committee of Earthquake Engineering,1996,287-295.
    [30]Tajimi M.Damage done by the great earthquake disaster of the Hanshin-Awaji district to the Kobe Municipal Subway System and restoration works of the damage[J].Jpn Railw Eng 1996,137:19-23.
    [31]Senzai Samata,Hajime Ohuchi,Takashi Matsuda.A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J].Coment and Concrete Composites,1997,19(3):223-239.
    [32]S(u|¨)leyman,Dalgic.Tunneling in squeezing rock,the Bolu tunnel,Anatolian Motorway,Turkey[J].Engineering Geology,2002,67(1-2):73-96.
    [33]Kazuo Konagai,ShigekiTakatsu,Tetsuo Kanai,et al.Kizawa tunnel cracked on 23 October 2004Mid-Niigata earthquake:An example of earthquake-induced damage to tunnels inactive-folding zones[J].Soil Dynamics and Earthquake Engineering,2009,29(2):394-403.
    [34]李育枢.山岭隧道地震动力响应及减震措施研究[D].上海:同济大学土木工程学院,2006.
    [35]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999,21(4):23-28.
    [36]Lee C F.Performance of underground coal mines during the 1976 Tangshan earthquake[J].Tunnelling Underground Space Technol,1987,2(2):199-202.
    [37]叶世强,肖扬.地下工程地震灾害与防治[J].中国地质与灾害防治学报,1993,4(4):66-71.
    [38]Wang W L,Wang T T,Su J J,et al.Assessment of damage in mountain tunnels due to the Taiwan chi-chi Earthquake[J].Tunnelling Underground Space Technol,2001,16(3):133-50.
    [39]王文礼,苏灼谨,林峻弘,等.台湾集集大地震山丘隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [40]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2009,16(6):742-750.
    [41]Wang Zhengzheng,Gao Bo.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China Series E:Technological Sciences,2009,52(2):546-558.
    [42]St John C M,Zahrah T F.Aseismic Design of Underground Structures[J].Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [43]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [44]路石(译).地震区的隧道工程[J].铁道建筑,1993,33(3):13-17.
    [45]徐龙军,张相忠,胡进军.地下工程震害与地下地震动的位移特征[J].青岛理工大学学报,2008,29(3):16-21.
    [46]尚昊,郭志昆,张武刚.大断面地下结构抗震模型试验[J].岩土工程界,2002,5(10):60-64.
    [47]赵大鹏,宫必宁,晏成明.大跨度地下结构振动性态试验研究[J].重庆建筑大学学报,2002,24(5):52-56.
    [48]徐复新,刘芳.地震时岩石隧洞的稳定问题[J].人民黄河,1982,4(3):39-42.
    [49]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-10.
    [50]Carpenter D W,Chung D C.Effects of earthquakes on underground facilities[R].NUREG/CR-4609,Lawrence Livermore National Lab,1986.1-52.
    [51]陈国兴,庄海洋,杜修力,等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,7(2):172-176.
    [52]Owen G N,Scholl R E.Earthquake engineering of large underground structures[R].FHWA/RD-80/195.Federal Highway Administration and National Science Foundation,1981.
    [53]严松宏,高峰,李德武,等.沉管隧道地震响应分析若干问题的研究[J].岩石力学与工程学报,2004,23(5):846-850.
    [54]刘志贵.影响地下结构地震响应的若干因素探讨[J].岩土工程界,2004,7(2):44-49
    [55]常虹,尹新生,尹春超.地下建筑结构抗震设计的几个问题[J].吉林建筑工程学院学报,2005,22(1):21-23.
    [56]林皋,梁青槐.地下结构的抗震设计[J].土木工程学报,1996,29(1):15-24.
    [57]Wang J M.The Distribution of Earthquake Damage to Underground Facilities during the 1976Tangshan Earthquake[J],Earthquake Spectra,1985,1(4).
    [58]McClure Cole R.Damage to underground structures during earthquakes.In:Workshop on Seismic Performance of Underground Facilities.Augusta Ga USA.1981,75-106.
    [59]张玉娥,白宝鸿,张耀辉,等.地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J].振动与冲击,2003,22(1):70-74.
    [60]梁庆国,韩文峰,谌文武,等.岩体地震动力破坏问题研究[J].岩石力学与工程学报,2003,22(增2):2783-2788.
    [61]房营光.岩土介质与结构动力相互作用理论及其应用[M].北京:科学出版社,2005.
    [62]杨林德,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [63]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报,2003,43(3):344-348.
    [64]Shahidi A R,Vafaeian M.Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining(for Koohrang-Ⅲ tunnel)[J].Tunnelling and Underground Space Technology,2005,20(3):213-221.
    [65]杨自友,顾金才,陈安敏,等.爆炸波作用下锚杆间距对围岩加固效果影响的模型试验研究[J].岩石力学与工程学报,2008,27(4):757-764.
    [66]顾金才,陈安敏,徐景茂,等.在爆炸荷载条件下锚固洞室破坏形态对比试验研究[J].岩石力学与工程学报,2008,27(7):1315-1320.
    [67]夏元友,张亮亮,顾金才.预应力锚索抗爆洞室加固效果试验研究[J].工程爆破,2008,14(3):8-12.
    [68]王光勇,顾金才,陈安敏.外部连接全长黏结式锚杆和弹力式锚杆抗爆加固效果模型试验研究[J].岩石力学与工程学报,2008,27(8):1695-1702.
    [69]高峰,石玉成,韦凯,等.锚杆加固对石窟地震反应的影响[J].世界地震工程,2006,22(2):84-88.
    [70]石玉成,秋仁东.预应力锚索加固石窟围岩的地震响应的数值模拟分析研究[J].防灾减灾工程学报,2007,24(2):436-443.
    [71]高峰,石玉成,严松宏,等.隧道的两种减震措施研究[J].岩石力学与工程学报,2005,24(2):222-229.
    [72]孙铁成,高波,叶朝良.地下结构抗震减震措施与研究方法探讨[J].现代隧道技术,2007,44(3):1-5,10.
    [73]凌燕婷,高波.高烈度地震区双线公路隧道减震措施研究[J].隧道建设,2008,28(4):412-415.
    [74]章伟.近年日本的隧道施工与抗震设计[J].世界地震工程,2006,22(2):68-71.
    [75]王明年,关宝树.高烈度地震区地下结构减震原理研究[J].工程力学,2002,19(增):295-299.
    [76]朱长安,高波,索然绪.强震区隧道洞口段减震的振动台模型试验[J].公路,2008,6:211-214.
    [77]申玉生,高波,王峥峥,等.高烈度地震区山岭隧道模型试验研究[J].现代隧道技术,2008,45(5):38-43.
    [78]王峥峥,高波,索然绪.双洞隧道洞口段抗减震振动台试验[J].中国公路学报,2009,22(2):71-75.
    [79]黄胜,陈卫忠,杨建平,等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报,2009,28(3):483-490.
    [80]Kiyomiya O.Earthquake-resistant Design Features of Immersed Tunnels in Japan[J].Tunnelling and Underground Space Technology,1995,10(4):463-475.
    [81]周德培.高烈度地震区浅埋大跨隧道施工技术及抗震材料[J].现代隧道技术,2001,38(2):1-4.
    [82]林皋.地下结构抗震分析综述(下)[J].世界地震工程,1990,6(3):1-10.
    [83]于翔,陈启亮,赵跃堂,等.地下结构抗震研究方法及其现状[J].解放军理工大学学报,2000,1(5):63-69.
    [84]边金.地铁地下结构的地震动力响应研究[D].北京:北京工业大学,2006.
    [85]刘金云.软弱土层输水隧道地震响应及减震措施研究[D].大连:大连理工大学,2007.
    [86]王国波.软土地铁车站结构三维地震响应计算理论与方法的研究[D].上海:同济大学,2007.
    [87]Dike C M,Leeds D J.Effeets of Earthquakes on Tunnels.Pact Presented at the RAND Second Proteetive Construction Symposium.Mareh,1959,PP:24-26.
    [88]ASCE.Earthquake damage evaluation and design considerations for underground struetures.American Soeiety of Civil Engineers,Los Angeles Section,1974.
    [89]JSCE.Earthquake Resistant Design for Civil Engineering Strueture in Japan.Japanese Society of Civil Engineering,Tokyo,1988.
    [90]Okamoto Shunzo.Introduetion to Earthquake Engineering(M)(2nd Ed).University of Tokyo Press,1984.
    [91]Hamada H,Kitahara M.Earthquake observation and BIE analysis on dynamic behavior of rock cavern[C].Proeeedings of the Fifth International Confereneeon Numerical Method in Geomeehanies.Nagoya:1985,3:1525-1532.
    [92]Phillips J S,Luke B A.Tunnel damage resulting from seismic loading[C].Proceedings of 2nd International conference on Rec Adv,in Geotechnical Earthquake Engineering and Soil Dynamics,March 11-15,St.Louis,Missouri,1991,207-201.
    [93]Yakovlevieh D I,Borisovna M J.Behavior of tunnel liner model on seismic platform.Ⅵ.Sump.on Earthquake Engineering,University of Roorkee,1978,1:379-382.
    [94]Goto Y,Matsuda Y,Ejiri J,et al.Influence of Distance between Juxtaposed Shield Tunnels on their Seismic Response[C].Proc.9th world Conf on Earthquake Eng.Tokyo-Kyoto,Japan,1988,569-574.
    [95]邵根大,骆文海.强震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92-108.
    [96]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993(4):1-7.
    [97]史常青.浅埋明挖地下铁道车站结构的抗震性能研究[D].西安:西南交通大学,1996
    [98]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].三峡大学学报,2002(6):493-496.
    [99]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报,2006,32(9):798-801.
    [100]郑少河,车爱兰,岩敞广.地铁地震响应的减震效果模型振动试验研究[J].四川建筑科学研究,2007,33:42-45.
    [101]车爱兰,岩楯敞广,葛修润.关于地铁地震响应的模型振动试验及数值分析[J].岩土力学,2006,27(8):1293-1298.
    [102]李凯玲,张亚,刘妮娜.土-地铁隧道动力相互作用模型试验分析[J].工程地质学报,2007,15(4):534-538.
    [103]史晓军,陈隽,李杰.地下综合管廊大型振动台模型试验研究[J].地震工程与工程振动,2008,28(6):116-123.
    [104]Pao Y H,Mow C C.Diffraction of Elastic waves and Dynamic Stress Concentrations[M].New York:Crane Russak&Company,1973.
    [105]Lee V M,Trifunac M D.Response of tunnels to incident SH wave[J].Journal of Engineering Meehanies,ASCE.1979,105(4):643-659.
    [106]Wong K C,Shah A H,Datta S K.Diffraetion of elastic waves in half-space.Analytical and numerical solutions[J].Bulletin of the Seismological Society of America,1985,75:69-92.
    [107]Luco J E,Debarris F C P.Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half spaee[J].Earthquake Eng.Struet.Dyn.,1994,23:321-340.
    [108]Stamos A A,Beskos D E.3-D seismic response analysis of long lined tunnels in half spaee[J].Soild Dynamics and Earthquake Engineering,1996,15(2):111-118.
    [109]Lee V M,Karl J.On deformation of near a circular underground cavity subjected to incident plane P wave[J].European Journal of Earthquake Engineering,1993,7(1):29-36.
    [110]Davis C A.Lee V M,Bardet J P.Transverse response of underground cavities and pipes to incident SV waves[J].Earthquake Engineering and Structural Dynamic.2001,30(3):383-410.
    [111]梁建文,张浩,Lee V W.地下双洞室在SV波入射下动力响应问题解析解[J].振动工程学报,2004,17(2):132-140.
    [112]梁建文,张浩,Lee V W.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [113]阎盛海,王常义.圆形隧洞双层衬砌在P波作用下的动力反应[J].大连理工大学学报,1989,29(8):707-714.
    [114]李伟华,赵成刚.平面SV波仔饱和土半空间中圆柱形孔洞周边的散射[J].地震工程与工程振动,2008,28(6):1-7.
    [115]李建波.结构-地基动力相互作用的时域数值分析方法研究[D].大连:大连理工大学,2005.
    [116]Wolf J P.Soil-structure-interaction analysis in time domain[M].Switzerland:Prentice Hall,1988.
    [117]Lysmer J,Richart F E T.Dynamic response of footings to vertical loadings[J].T.Soil.Mech.Div.ASCE.1966,92(1):65-91.
    [118]Wolf J P,Somaini D R.Approximate dynamic model of embedded foundation in time domain[J].Earthquake Engineering and Structural Dynamics,1986,14(5):683-703.
    [119]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-482.
    [120]Chopra A K,Perumalswami P R.Dam-Foundation Interaction during Earthquake[J],Pro 4~(th) World Conf.Earthq.Eng,Santiago,Chile,1969.
    [121]楼梦麟.粘弹性地基的动力刚度矩阵及坝基相互作用对水坝地震反应的影响[D].大连:大连理工大学,1984.
    [122]Bettess P,Zienkiewica O C.Diffraction and Refraction of Surface Wave Using Finite and Infinite Elements[J].Int.J.for Num.Mech.,In eng.1977:1271-1290.
    [123]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986:26(3):51-63.
    [124]Dasgupta G A.A finite element formulation for unbounded homogeneous continua[J].J,of Appl.Mech.,ASME.1982,49:136-140.
    [125]Wolf J P,Song C M.Dynamic-stiffness matrix of unbounded soil by finite element multi-cell cloning[J].Earthquake Eng.Struct.Dyn.,1994,23(3):232-250.
    [126]Song C M,Wolf J P.Dynamic stiffness of unbounded medium based on damping-solvent extraction[J].EESD.,1994,23(2):169-181.
    [127]Song C M,Wolf J P.The scaled boundary finite element method-a primer solution procedures[J].Computer and Structures,2000,78(3):211-225.
    [128]Nakamura N.A practical method to transform frequency dependent impedance to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(2):217-231.
    [129]Nakamura N.Improved methods to transform frequency-dependent complex stiffness to time domain[J].Earthquake Engineering and Structural Dynamics,2006,35(8):1037-1050.
    [130]杜修力,赵建峰.考虑土-结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007,33(5):517-523.
    [131]赵建锋,杜修力.地基阻抗力时域递归参数的计算方法及程序实现[J].岩土工程学报,2008,30(1):34-40.
    [132]吴健,金峰,张楚汉,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J].岩土工程学报,2002,24(6):716-719.
    [133]Lysmer J.Kuhlemeyer R L.Finite model for infinite media[J].Journal of engineering mechanics,division,ASCE.,1969,95:377-392.
    [134]White W,Valliappan S,Lee I K.United boundary for finite dynamic models[J].J.Eng.Mech.,Div.,ASCE.,1977,103(5):949-964.
    [135]Smith W D.A nonreflecting plane boundary for wave propagation problems[J].Journal of Computational physics,1974,15:492-503.
    [136]Clatton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bulletin of the seismlogical society of America,67:1529-1540.
    [137]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动,1982,2(1):1-11.
    [138]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,26(6):50-56.
    [139]Liao Z P,Wong H L.A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation[J].Dyn.and Earth.Eng.1984,3(4):178-183.
    [140]Higdon R L.Absorbing boundary conditions for difference approximations to the multi-dimensional wave eaquation[J].J.Comp Phys,1973,15:492-503.
    [141]Deeks A J,Randolph M F.Axisymmetric time-domain transmitting boundaries[J].J.Eng.Mech.,1994,120(1):25-42.
    [142]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [143]高峰.地下结构动力分析若干问题研究[D].成都:西南交通大学,2003.
    [144]Kirzhner F,Rosenhouse G.Numerical analysis of tunnel dynamic response to earth motions[J].Tunnelling and Underground Space Technology,2000,15(3):249-258.
    [145]Stamos A A,Beskos D E.Dynamic analysis of large 3-d underground structures by the BEM[J].Earthquake Engineering and Structure Dynamics,1995,24(6):917-934.
    [146]Chow Y K,Smith I M.Static and periodic infinite solid elements[J].International Journal for Numerical Methods in Engineering,1981,17(4):503-526.
    [147]Zhao C,Valliappan S.A dynamic infinite element for three-dimensional infinite domain wave problems[J].International Journal for Numerical Methods in Engineering,1993,36(15):2567-2580.
    [148]Zhang C H,Pekau O,Jin F.Application of FE-IE-IBE coupling to dynamic interaction between alluvial soil and rock canyons[J].Earthquake Engineering and Structure Dynamics,1992,21(3):367-385.
    [149]MOORE I D,GUAN F.Three-dimensional dynamic response of lined tunnels due to incident seismic waves[J].Earthquake Engineering and Structural Dynamics,1996,25(4):357-369.
    [150]Esmaeili M,Vahdani S,Noorzad A.Dynamic response of lined circular tunnel to plane harmonic waves[J].Tunnelling and Underground Space Technology,2006,(5):511-519.
    [151]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报,2002,(1):71-75.
    [152]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报,2001,23(4):494-498.
    [153]Chen J Y,Li J,Zhou J.Seismic analysis of large 3-D underground caverns based on high performance recursive method[J].International Joural of Solids and Structures,2004,41(11-12):3081-3094.
    [154]隋斌,朱维申,李晓静.地震荷载作用下大型地下洞室群的动态响应模拟[J].岩土工程学报,28(12):1877-1882.
    [155]李海波,朱莅,吕涛,等.考虑地震动空间非一致性的岩体地下洞室群地震反应分析[J].岩石力学与工程学报,2008,27(9):1758-1766.
    [156]王如宾,徐卫亚,石崇,等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2008,28(3):569-575.
    [157]黄胜,陈卫忠,杨建平,等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报,2009,28(3):483-490.
    [158]JOHN C M S,ZAHRAH T F.A seismic design of underground structures[J].Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [159]中华人民共和国铁道部.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [160]中华人民共和国行业标准编写组.JTJ004-89公路工程抗震设计规范[S].北京:人民交通出版社,1990.
    [161]中华人民共和国交通部.JTG D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [162]ABAQUS User's Manual.Version 6.7.ABAQUS,Inc.,Rising Sun Mills,166 Valley Street Providence,RI 02909,USA:2007.
    [163]ABAQUS Analysis Manual.Version 6.7.ABAQUS,Inc.,Rising Sun Mills,166 Valley Street Providence,RI 02909,USA:2007.
    [164]ABAQUS Theory Manual.Version 6.7.ABAQUS,Inc.,Rising Sun Mills,166 Valley Street Providence,RI 02909,USA:2007.
    [165]庄茁.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [167]张文元.ABAQUS动力学有限元分析指南[M].香港:中国图书出版社,2005.
    [168]庄海洋.土-地下结构动力非线性相互作用及其大型振动台试验研究[D].南京:南京工业大学,2006.
    [169]陈厚群.坝址地震动输入机制探讨[J].水利学报,2006,37(12):1417-1423.
    [170]朱以文,蔡元奇,徐晗.ABAQUS与岩土工程分析[M].香港:中国图书出版社,2005.
    [171]丘庆霞.地下综合管廊地震反应分析与抗震可靠性研究[D].上海:同济大学,2007.
    [172]杜修力.局部解耦的时域波分析方法[J].世界地震工程,200,16(3):22-26.
    [173]杜修力,赵密,王进廷.近场波动模拟的一种应力人工边界[J].力学学报,2006,38(1):49-56.
    [174]Wolf J P,SONG C.Finite-Element Modeling of Unbounded Media[M].New York:John Wiley &Sons,1997.
    [175]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [176]Menetrey P,Willam K.Triaxial failure criterion for concrete and its generalization[J].ACI Structural Journal,1995,92(3):311-318.
    [177]LUBLINER J,OLIVER J,OLLER S,et al.A plastic-damage model for concrete[J].International Journal of Solids and Structures,1989,(25):299-329.
    [178]LEE J,FENVES G L.Plastic-damage model for cyclic loading of concrete structures[J].Journal of Engineering Mechanics,1998,124(8):892-900.
    [179]BONGANOFF J L,GOLDBERG J E,SCHIFF A J.The effect of ground transmission time on the response of long structures[J].Bull Seism Soc Am,1965,55:627-640.
    [180]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J].同济大学学报,1999,27(2):189-193.
    [181]屈铁军,王前进.多点输入地震反应分析研究的进展[J].世界地震工程,1993,11(1):30-36.
    [182]王军文,张运波,李建中,等.地震动行波效应对连续梁桥纵向地震碰撞反应的影响[J].工程力学,2007,24(11):100-105.
    [183]LIN J H,ZHANG Y H,LI Q S,et al.Seismic spatial effects for long-span bridges,using the pseudo excitation method[J].Engineering Structures,2004,26(9):1207-1216.
    [184]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报,2008,41(2):35-41.
    [185]楼梦麟,林皋.重力坝地震行波反应分析[J].水利学报,1984,(5):26-32.
    [186]刘金云,陈健云,胡志强.输水隧道在行波激励下的三维地震反应分析[J].防灾减灾工程学报,2007,27(1):11-16.
    [187]耿萍,何川,晏启祥.水下盾构隧道抗震设计分析方法的适应性研究[J].岩石力学与工程学报,2007,26(S2):3625-3630.
    [188]韩大建,唐增洪.珠江水下沉管隧道的抗震分析与设计(Ⅱ)-行波法[J].华南理工大学学报(自然科学版),1999,27(11):122-130.
    [189]黄忠邦,高海,项忠权.埋地管线在均匀和非均匀土介质中的地震反应[J].天津大学学报,1995,28(1):55-60.
    [190]ZHAO Baoyou,MA Zhenyue.Influence of cavern spacing on the stability of large cavern groups in a hydraulic power station[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(3):506-513.
    [191]DHAWAN K R,SINGH D N,GUPTA I D.Dynamic Analysis of Underground Openings[J].Rock Mech Rock Engng,2004,37(4):299-315.
    [192]杨苏杭,梁斌,顾金才,等.锚固洞室抗爆模型试验锚索预应力变化特性研究[J].岩石力学与工程学报,2006,25(2):3749-3756.
    [193]陈剑杰.深埋岩石硐室在爆炸应力波荷载作用下的破坏效应[J].岩石力学与工程学报,2001,20(4):589-589.
    [194]唐德高,毕佳,孙乃光.常规武器爆炸作用下地震动的试验研究[J].爆炸与冲击.1997,17(3):207-213.
    [195]CHARLES E J,GEORGE S.Brick model tests of shallow underground magazines[R].[S.l.]:Department of the Army Waterways Experiment Station Corps of Engineers,1992.
    [196]王祥林,郭靖华.冲击荷载下孔洞附近的动力集中[J].地震工程与工程振动,1984,4(4):50-60
    [197]任云燕,张莉,韩峰.地下结构物在爆炸冲击波作用下的动力分析[J].应用数学和力学,2006,27(9):1122-1128.
    [198]盖秉政.弹性波在平面多连通域中的绕射与动应力集中[J].应用数学和力学,1986,7(1):25-36.
    [199]赵晓兵,方秦.地下结构变形速度在抗爆结构分析中的作用[J].应用数学和力学,2002,23(4):436-440.
    [200]赵以贤,王良国.爆炸荷载作用下地下拱形结构动态分析[J].爆炸与冲击,1995,15(3):201-211.
    [201]孙钧.地下抗爆结构有限元数值分析的若干课题[J].岩石力学与工程学报,1983,2(1):121-129.
    [202]鞠杨,环小丰,宋振铎,等.损伤围岩中爆炸应力波动的数值模拟[J].爆炸与冲击,2007,27(2):136-142.
    [203]严鹏,卢文波,陈明,等.初始地应力场对钻爆开挖过程中围岩振动的影响研究[J].岩石力学与工程学报,2008,27(5):1036-1045.
    [204]Broch E,Myrvang A M,Stjem G.Support of large rock caverns in Norway[J].Tunneling and Underground Space Technology,1996,11(1):11-19.
    [205]Peck R B,Hendron A J,Mohraz B.State of the Art of Soft Ground Tunnelling[C].Proceedings of the Rapid Excavation and Tunnelling Conference,Chicago,IL.,1972,(1).
    [206]Deshpande V S,Fleck N A.Isotropic Constitutive Model for Metallic Foams[J].Journal of the Mechanics and Physics of Solids,2000,48(6-7):1253-1276.
    [207]杜修力,廖维张,田志敏,等.炸药爆炸作用下地下结构的动力响应分析[J].爆炸与冲击2006,26(5):474-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700