用户名: 密码: 验证码:
不同应力水平深部粘土力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以室内试验、理论分析以及数值分析为研究手段,对饱和重塑深部粘土力学特性随应力水平不同的变化特性、其内在机理和高压粘土力学本构模型进行了较为深入、系统的研究。
     本文研究选用粘土属于典型的华东、黄淮地区深厚表土层深部粘土,对其进行的矿物组成成分定量分析及基本物理指标测试结果表明该粘土是一种蒙脱石、高岭石及伊犁石矿物之和占粘土矿物总量68.6%的高液限粘土。
     利用DRS-1超高压直剪试验系统,进行了固结压力从0.2 MPa到15 MPa范围内共16个压力等级的排水剪切试验研究。试验结果表明,高压力下饱和粘土压缩指数普遍小于中常压下压缩指数,高压力下饱和粘土的压缩曲线可以用双折线表示,双线交汇点在1.6 MPa左右;由试验结果推算出的粘土渗透系数随孔隙比呈指数关系变化,其变化曲线形态表明1.6 MPa左右是渗透系数变化率的转折点;试验饱和粘土抗剪强度随竖向压力增大而增大,但中常压下获得的内摩擦角大于高压下相应值,具体相差近9°,抗剪强度包络线可以用双折线表示,双折线交汇点在1.6 MPa左右。直剪试验结果还表明饱和粘土剪切变形特性随竖向压力增大,总体呈现从塑性向脆性转变的特点;饱和粘土剪切过程中体积变形均呈现出压缩特点,且压缩量总体随竖向压力增大而减小。
     利用TSZ30-2.0中压三轴试验系统和TATW-500高压三轴试验系统,进行了饱和粘土围压从0.2 MPa至9 MPa共11个压力等级下的三轴固结不排水剪切试验研究。研究结果表明临界剪切应力比随围压增大而减小,且可以用双线性方程来近似描述这种变化趋势,分界点在1.8 MPa左右;高压下饱和粘土抗剪强度中包括内聚力项,如果不考虑其影响将会造成临界剪切应力比偏大;随围压增大,土样最终破坏形式由塑性外鼓破坏转变为脆性破裂破坏。
     对直接剪切试验和三轴不排水剪切试验结果的综合分析表明,由直接剪切试验剪应力峰值反算出的临界剪切应力比与三轴试验相应实测值具有较好的对应关系,前者小于后者,两者相差倍数约为1.5;饱和重塑粘土中常围压下临界剪切应力比是高围压下相应值的2倍左右;饱和重塑粘土中常压下饱和粘土的压缩指数是高压下相应值的1.11倍;1.6~1.8MPa是饱和粘土强度、压缩变形性质的分界点,其根源很可能与孔隙水性质的转变有关;不同于抗剪强度和压缩变形随压力水平变化的规律,剪切变形特点随压力水平增大由塑性转变为脆性的转折点在0.8 MPa左右,分析其原因在于剪切变形受控于另外不同的机制--颗粒间胶结作用。考虑到本文三轴试验结果-偏应力峰值点对应的轴向应变随压力水平变化并不显著,再结合工程实际应用中强度特征普遍是更为重要的指标,因此,本文建议以1.6~1.8 MPa作为深部饱和粘土高低应力水平的分界点。
     结合本文进行的压汞试验结果,对现有利用双电层理论预测计算高压粘土压缩曲线的计算方法进行改进,结果表明改进算法预测计算结果能够较好地与与实测结果相吻合,说明粘土压缩变形等宏观性质实际上由其内在物理化学机制所决定;用弹性粘着摩擦理论计算表明,在压力为0.2 MPa作用下土的摩擦系数是1.6 MPa压力条件下相应值的2倍,这与实测分析结果相一致。
     根据上述关于高压粘土饱和粘土力学特性的分析,在新近提出的临界土力学模型CASM的基础上,提出了适应高压饱和粘土具有内聚力这一性质的CASM-hc模型;并将上述两模型嵌入到ABAQUS中;利用该程序对三轴不排水剪切试验进行了数值模拟,结果表明上述两个模型在模拟中常压和高压饱和粘土临界强度特性方面性能较好;但在反映常压下土样塑性变形特点以及孔隙水压变化特点等方面存在不足之处,有待进一步研究。
The mechanical characteristics of saturated remolded clay under different stress level and its constitutional relationship and intrinsic mechanism were studied deeply and systemically by means of three methods which include laboratory test, theoretical and numerical analysis. The clay used in the experiment is the typical deep clay distributed in East China. The quantitative analysis of mineral composition and the measurement of basic physical index for the clay show that it is a kind of high liquid limit clay including 68.6 percents of Montmorillonite /illite / kaolinite.
     The drained direct shear test of saturated remolded clay was carried out using the DRS-1 high normal stress direct and residual shear apparatus under 16 different consolidation pressures which vary from 0.2 MPa to 15 MPa.The experiment result shows that the compression index of saturated clay in high pressure was lower than the one in medium-low pressure.The compression curve of saturated clay in high pressure can be fitted by double broken line and the meeting point was at approximately 1.6 MPa.The relationship computed by experiments between clay's permeability coefficient and void ratio had an exponential relation, from which it can be seen that the permeability coefficient change rate underwent a turning point at 1.6 MPa.The shearing strength of the saturated clay used in experiment went up with increase of vertical pressure,however the internal friction angle in medium-low pressure is 9°higher than the one obtained in high pressure.The shearing strength envelope curve can also be fitted by double broken line and the meeting point was at about 1.6 MPa.At the same time,the direct shear test also proved that the shear deformation turned from plasticity to brittleness gradually with vertical pressure increasing. The volume deformation during shearing showed compression without exception and the compression volume decreased with increase of vertical pressure.
     Then TSZ30-2.0 medium pressure triaxial experiment apparatus and TATW-500 high pressure triaxial experiment apparatus were introduced to carry out triaxial consolidated undrained shearing test for saturated clay under 11 different consolidation pressures which vary from 0.2MPa to 9 MPa.The experiment results indicated the critical shear stress ratio decreased with rise of confining pressure and the trend can be approximately described by bilinear equation with a dividing point of some 1.8 MPa.The shear strength of saturated clay in high pressure includes cohesion.The critical shear stress ratio would be slightly larger without consideration of cohesion. The final failure form turned from plastic outward squeeze to brittle failure with significant fracture plane with confining pressure increasing.
     The comprehensive analysis of direct shearing experiment and triaxial undrained shearing experiment showed that critical shear stress ratio that was back-calculated from peak of shear stress in direct shearing experiment corresponds quite well with the one measured in triaxial experiment,in which the former one is 1.5 times lower than the latter. The critical shearing stress ratio of saturated remodeling clays in general and medium pressure was 2 times of the one in high pressure.The compression index of saturated remodeling clays in medium-low pressure was 1.11 times of the one in high pressure. The dividing point of strength and compression characteristics in high pressure and low pressure was about 1.6~1.8 MPa.It seemed that the origin of mechanics property difference for saturated clay in higher or lower pressure lied in the change of pore water. The dividing point of shear deformation characteristics in high pressure and low pressure was about 0.8 MPa, which is different from strength and compression with the reason that shear deformation’s intrinsic mechanism is related to the cementation between clay particles.
     Based on the result of mercury injection experiment of this paper and electric double layer theory, the present algorithm which can be used to predict compression curve in high pressure was modified. It showed that the clay's compression property was determined by its inherent physiochemical mechanism. With the elastic adhesive friction theory,it showed that the friction coefficient in 0.2 MPa was 2 times of the one in 1.6 MPa,which is consistent to the measured result.
     According to the analysis aiming at mechanics property of saturated clay in high pressure,the paper put forward the CASM-hc model applicable to the saturated clay with cohesion which was based on the critical soil mechanics model CASM. The author embedded these models into the ABAQUS. The numerical simulation of the triaxial undrained shearing test based on the program showed that the two models above can simulate the critical strength property of saturated clay in medium and high pressure quite well, however it presented some deficiency on the analysis of the plastic deformation and pore water pressure changing, which required further research.
引文
[1]崔广心等.徐淮地区井壁破坏原因的初步分析[J].煤炭科学技术,1991(8)
    [2]杨维好等.特殊地层条件下井壁破裂机理与防治技术的研究(之一)[J].中国矿业大学学报,1996,25(4)
    [3]马金荣.深层土的力学特性研究[D].徐州:中国矿业大学建工学院,1998
    [4]张永双,曲永新.鲁西南地区上第三系硬粘土的工程特性及工程环境效应研究[J].岩土工程学报,2000(4):446-449
    [5]李文平.徐淮矿区深部土体工程地质特性及失水变形机理[J].煤炭学报,1997,22(4)
    [6]崔广心.论深厚表土层中确定地下结构物外载的基础理论-深土力学[J].煤炭学报,1999,24(2)
    [7]谢定义.21世纪土力学的思考[J].岩土工程学报,1998,20(1)
    [8]介玉新等.黄淮地区深部黏土工程性质试验研究[J].工业建筑,2006,36(3)
    [9]周治安等.深部厚粘土层内井壁工程地质特征分析[J].煤田地质与勘探,2005,33(2)
    [10]许延春.深部饱和黏土的力学性质特征[J].煤炭学报,2004,29(1)
    [11]孙如华.深部粘性土工程地质性质及微观结构性研究[D].徐州:中国矿业大学图书馆,2003.
    [12]李文平.深部土体失水变形及诱发井筒破裂的机理研究[D].徐州:中国矿业大学资源学院,1995.
    [13] Yoichi Watabe,Takashi Tsuchida,Kakuichiro Adachi. Undrained Shear Strength of Pleistocene Clay in Osaka Bay[J].Journal of geotechnical and geoenvironmental engineering,2002,128(3)
    [14] Stephen A. Akers. Two-Dimensional Finite Element Analysis of Porous Geomaterials at Multikilobar Stress Levels[D].Virginia Polytechnic Institute and State University,2001.12
    [15] Golder,H.Q.,Ackroyd, T.N. An apparatus for triaxial-compression tests at high Pressures[J].Geotechnique,1954(4)
    [16] Holland, C.N. An investigation of the strength-deformation characteristics of two soils tested under high confining pressures in the triaxial cell[D].Georgia Institute of Technology,1971
    [17] Lo, K.Y.,Roy, M. Response of particulate materials at high pressure[J].Soils and Foundations,13(1)
    [18] Murphy, D.J.Soils and rocks: Composition, confining level and strength[D].Duke University,1970
    [19] Vesic, A.S.,Barksdale, R.D. On shear strength of sand at very high pressures[M].ASTM Special Technical Publication No. 361,1963
    [20] Vesic, A.S.,Clough, G.W. Behavior of granular materials under high stresses[J].Journal of the Soil Mechanics and Foundations Division 94(SM3),1968
    [21] Jerry A.Yamamuro,Poul V.Lade. Drained sand behavior in axisymmetric tests at high pressres[J].Journal of Geotechnical Engineering,1996,122(2)
    [22] Poul V.Lade,Jerry A.Yamamuro. Undrained sand behavior in axisymmetric tests at high pressres[J].Journal of Geotechnical Engineering,1996,122(2)
    [23] Jerry A.Yamamuro, Paul A.Bopp, Poul V.Lade. One-dimensoinal compression of sands at highpressres[J].Journal of Geotechnical Engineering,1996,122(2)
    [24] Paul A.Bopp,Poul V. Lade.Effects of initial density on soil instability at high pressres[J].Journal of Geotechnical Engineering,123(7)
    [25] Bishop, A.W. The strength of soils as engineering materials[J].Geotechnique,1966,16(2)
    [26] Wang Chi-yuen,Mao Nai-hsien,Wu FrancisT. The mechanical property of montmorillonite clay at high pressure and implications on fault behavior[J].Geophysical Research Letters,1979,6(6)
    [27] Wang Chi-yuen,Mao Nai-hsien,Wu FrancisT. Mechanical properties of clays at high pressure[J].Journal of Geophysical Research,1980,85(3)
    [28] Wang Chi-yuen , Mao Nai-hsien. Shearing of saturated clays in rock joints at high confining pressures[J].Geophysical Research Letters,1979,6(11)
    [29] Takahashi , et.al. Effects Of Clay On The Frictional Strength And Fluid Flow Property Of Faults[M].American Geophysical Union Fall Meeting,2006
    [30] Bardenl , Ismailh&Tong, p. Plane strain deformation of granular material at low and high pressures[J].Geotechnique,1969,19(4)
    [31] Cheng, Y. P.,Bolton, M. D. & Nakata, Y. Crushing and plastic deformation of soils simulated using DEM[J].Geotechnique,2004,54(2)
    [32] Cheng, Y. P,Nakata, Y,Bolton, M. D. Discrete element simulation of crushable soil[J].Geotechnique,2003,53(7)
    [33] Cheng Y.P. , Bolton,M.D , &Nakata,Y. Grain crushing and critical states observed in DEM simulations[C].Proc.powders and grains,2005
    [34] Bolton, M. D. The strength and dilatancy of sands[J].Geotechnique,1986,36(1)
    [35] Pestana J.M,Whittle A.J. Compression model for cohesionless soils[J].Geotechnique,1995,45(4)
    [36] Huabei Liu,Hoe I. Ling. A sand model based on generalized plasticity[C].15th ASCE engineering mechanics conference,Columbia university,2002.7,NewYork
    [37]王伟等.高围压下粉煤灰的应力应变特性[J].水电站设计,2005,21(2)
    [38]李海晓等.膨胀土在高压力下强度特性研究[J].矿业安全与环保,2001,28(3)
    [39] YangpingYao etc. An Elastoplastic Model Considering Sand Crushing[C].Computational Science– ICCS 2007,Springer Berlin / Heidelberg,2007
    [40]殷家瑜等.高应力下尾矿砂的强度与变形特性[J].岩土工程学报,1980,2(2)
    [41]三浦哲彦等.砂の高压三轴压缩试验の结果に及ぼす2、3の要因にっぃて[C].日本土质工学会论文报告集,1976,16(3)
    [42] Lee, K.L,Seed, H.B. Drained strength characteristics of cohesionless soils[R].Soil Mechanics and Bituminous Materials Research Laboratory,University of California,Berkeley,1966
    [43] Lee, K.L,Seed, H.B,Dunlop, P. Effect of moisture on the strength of clean sand[J].Journal of the Soil Mechanics and Foundations Division 93(SM6),1967
    [44] Lee, K.L,Seed, H.B. Drained Strength Characteristics of Sands[J].Journal of the Soil Mechanics andFoundations Division 93(SM6),1967
    [45] Lee, K.L,Seed, H.B,Dunlop, P. Effect of transient loading on the strength of Sand[C].Proc. of the Seventh International Conference on Soil Mechanics and Foundation Engineering 1,1969
    [46] Hagerty,M.N,Hite,D.R.,Ullrich,C.R.,Hagerty,D.J. One-dimensional high-pressure compression of granular media[J].Geotechnical Engineering,1991,119(1)
    [47]黄文熙.土的工程性质[M].北京:水利电力出版社,1983
    [48]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996
    [49]吕擎峰,殷宗泽.非线性强度参数对高土石坝坝坡稳定性的影响[J].岩石力学与工程学报,vol.23,No.16,2004.8
    [50]刘希亮等.高应力作用界面剪切性质的试验研究[J].岩石力学与工程学报,2004,23(6)
    [51]张嘎,张建民.粗颗粒土的应力应变特性及其数学描述研究[J].岩土力学,2004,25(10)
    [52]周国庆等.超高压直残剪试验系统及其初步应用[J].中国矿业大学学报,2001,25(10)
    [53]夏红春.高应力条件下土-结构接触面与界面层力学特性研究[D].中国矿业大学建筑工程学院,2006
    [54]李文平等.大埋深粘土三轴高压卸载变形与强度特征[J].工程地质学报,2004,12(3)
    [55]王维理.深部土高压卸载力学特性研究及结构性本构模型[D].中国矿业大学资源与地球学院,2004
    [56]李文平等.深部砂土三轴高压卸载结构变化的CT研究[J].工程地质学报,2003,11(3)
    [57]李文平等.深部粘土高压K0蠕变试验及其微观结构各向异性特点[J].岩土工程学报,2006,28(10)
    [58]王衍森等.深部土的高压K0固结试验研究展望[J].岩土力学,2003,supp(24)
    [59]刘明等.卸荷对高应力下粘土力学性质的影响[J].工业建筑,2005,35(8)
    [60]李文平等.饱水粘土高压密实过程中孔压及体积应变变化试验研究[J].岩土工程学报,1999,21(6)
    [61] Schofield,A.N.,Wroth, C.P. Critical State Soil Mechanics[M]. New York:McGraw-Hill,1968
    [62] Seed, H.B,Lee, K.L. Undrained Strength Characteristics of Cohesionless soils[J].Journal of the Soil Mechanics and Foundations Division,1967,93(6)
    [63] T.Ramamurthy. Shear strength response of some geological materials in triaxial compression[J].International Journal of Rock Mechanics & Mining Sciences,2001,38
    [64] Y.Nakata. Relating particle characteristics to macro behavior of DEM crushable material[C].Proc.powders and grains,2005
    [65] McDowell, G.R,M.D. Bolton.On the micromechanics of crushable ggregates[J].Geotechnique 48,1998,(5):667-679
    [66] Y. P. Cheng,D. J. White,E. T. Bowman,M. D. Bolton & K. Soga. The observation of soil microstructure under load[C].4th International Conference on Micromechanics of Granular Media,Proc.Powders and Grains,2001
    [67] M.D.Bolton. The Role of Micro-Mechanics in Soil Mechanics[C].International Workshop on Soil Crushability,Japan,1999
    [68] McDowell,G. R,Bolton, M. D,Robertson, D. The fractal crushing of granular materials[J].Int. J. Mech. Phys. Solids,1996,(44).
    [69] McDowell,G. R,Harireche, O. Discrete element modelling of soil particle fracture[J].Geotechnique,2002,52(2).
    [70] Yin-yu Jan. A critical state plasticity model for granular soils[D].Purdue University,1997
    [71] Zhi-Liang Wang,Yannis F.Dafalias,Xiang-Song Li,Faiz I.Makdisi. State pressure index for modeling sand behavior[J].Journal of geotechnical and geoenvironmental engineering,2000,128(6)
    [72] Stephen L. Karner,Frederick M. Chester,Judith S. Chester.Towards a general state-variable constitutive relation to describe granular deformation[J].Earth and Planetary Science Letters,2005,(237):940– 950
    [74] Yu.H.S. CASM:a unified state parameter model for clay and sand[J].International journal of numerical analysis method in geomechanics,1998,22(8)
    [75] Yu.H.S. Plasticity and Geotechnics[M].New York:Springer,2006
    [76] Yu.H.S. A critical state framework for modelling bonded geomaterials[J].Geomechanics and Geoengineering:An international journal,2007,2(1)
    [77] Britto, A.M,Gunn, M.J. Critical State Soil Mechanics via Finite Elements[M].John Wiley & Sons,1987
    [78] Khong.C.D. Development and numerical evaluation of unified critical state models[D].University of Nottingham,2004
    [79] Schnaid.F. , Prietto,P.D.M. , Consoli,N.C. Characterization of cemented sand in triaxial compression[J].Journal of geotechnical and geoenvironmental engineering,2001,129(10)
    [80] M.A.Crisfield. Non-linear finite element analysis of solids and structures[M]. John Wiley & Sons,1991
    [81] Bath,K.J. Finite element procedures in engineering analysis[M].New Jersey:Prentice-Hall,1982
    [82] Owen,D.R.J.,HInton,E. Finite elements in plasticity theory and practice[M].Swansea:Pineridge Press,1980,
    [83] Chen.W.F. Nonlinear analysis in soil mechanics-theory and implementation[M].Amsterdam:Elsevier Science Publishers,1990
    [84] I.M.Smith,D.V.Griffiths. Programming the finite element method[M].John Wiley & Sons,1998
    [85] ABAQUS, Inc.Abaqus version 6.6 documentation[M].2004
    [86]赵光思.高压下砂的剪切性状试验研究[D].中国矿业大学建筑工程学院,2001
    [87] Roscoe, K.H,Burland, J.B. On the Generalised Stress-Strain Behaviour of Wet Clay[M].Engineering Plasticity,Cambridge University Press
    [88] W.WU,H.S.YU. Morden trends in geomechanics[M]. Netherland:Springer,2006
    [89] G.T.Houlsby,A.M.Puzrin. Principles of hyperplasticity[M]. London :Springer,2006
    [90] S.S. Radampola.etc. Evaluation of the properties of railway capping layer soil[J].Computers and Geotechnics,2008,35
    [91]张锋.计算土力学[M].北京:人民交通出版社,2007
    [92] James K.Mitchell,Kenichi Soga. Fundamentals of soil behavior[M].New Jersey:John wiley & sons,2005
    [93] Snehasis Tripathy,Tom Schanz. Compressibility behaviour of clays at large pressures[J].Canadian geotechnical journal,2007,44:355–362
    [94] Duilio Marcial,Pierre Delage,Yu Jun cui. On the high stress compression of bentonites[J].Canadian geotechnical journal,2002,39
    [95] Yao,M,Anandarajan.A. Three-dimensional discrete element method of analysis of clays[J].Journal of engeering mechanics,ASCE,129
    [96] Roscoe, K.H,Schofield, A.N,Wroth, C.P. On the yielding of soils[J].Geotechnique,8(1).
    [97]邓英尔,等.饱和粘土非线性渗流规律与径向固结[J].应用数学与力学,2007,28(11)
    [98]魏静.软粘土渗透诱发固结机理及固结参数确定的研究[J].水利水电技术,2003,34(7)
    [99]Zienkiewicz.O.C,Taylor.R.L. The finite element method-fifth edition[M].Butterworth-Heinemann,2000
    [100] Sloan,S.W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J].International journal of numerical methods in engineering,1987,24::893–911
    [101] Abbo,A.J. Finite element algorithms for elastoplasticity and consolidation[D].Australia:university of newcastle,1997
    [102] Fionn.Dunne,Nik.Petrinic. Introduction to computational plasticity[M].New York:Oxford university press,2006
    [103] F.Cotecchia ,R.J.Chandler. A general framwork for the mechanical behaviour of clays[J]. Geotechnique, 2000,50(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700