用户名: 密码: 验证码:
新疆北部卡拉麦里缝合带后碰撞构造岩浆作用及其对火山岩油气成藏的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取位于新疆北部卡拉麦里缝合带南侧陆东—五彩湾地区为典型研究区,通过对巴塔玛依内山组火山岩地质地球化学研究,主要包括岩石类型、岩相学、元素和同位素地球化学、孔渗性能等的分析,来确定该区早石炭世的构造背景和火山岩油气成藏的主控因素,进而探讨卡拉麦里缝合带后碰撞期火山活动的机制和时限,以及后碰撞构造岩浆作用对火山岩油气成藏的控制作用。
     陆东—五彩湾地区石炭系火山岩分布广泛,且具有明显的区域性差异。通过岩芯观察及岩石薄片鉴定,将该地区石炭系火山岩分为四大类型:火山熔岩类、火山碎屑岩类、火山熔结碎屑岩类和火山沉积岩类;并从岩相角度将区内火山岩划分为火山爆发相、火山溢流相、火山爆发—溢流过渡相和火山沉积相。在喷发间断中,相应发育了沉凝灰岩、凝灰质粉砂岩、泥质岩等。火山岩系列早期主要为基性,后期向酸性演化。火山活动以溢流式喷发为主,间以爆发式喷发,爆发相火山碎屑岩多沿断裂分布,即火山爆发中心沿主要断裂带分布。
     在主量元素特征上,陆东—五彩湾地区石炭系火山岩的全碱含量较高,主要为钙碱性系列,另有少量样品为低钾拉斑系列,酸性火山岩主要落入高钾钙碱性系列。从总体上看,陆东—五彩湾地区石炭系火山熔岩以中基性为主,另有少量酸性熔岩。在Harker图解上,MgO与其他主量元素表现出一定的相关性,反映出结晶分异的特征。Mg#介于38~57,表现出演化岩浆的特征。
     在稀土元素特征上,陆东—五彩湾地区中基性火山岩样品具有较高的稀土元素含量,在稀土元素球粒陨石标准化图上轻稀土相对富集,略有重稀土分馏。在不相容元素特征方面,这些火山岩样品在不相容元素原始地幔标准化图上表现出大离子亲石元素(LILE)和轻稀土(LREE)相对富集、高场强元素(HFSE)和重稀土(HREE)相对亏损的特征,但HFSE的含量相对较高。在同位素特征上,陆东—五彩湾地区石炭系火山岩样品的87Sr/86Sr初始比值介于0.70278-0.70365,143Nd/144Nd初始比值介于0.512517~0.512648,εNd(t)值为+5.69~+8.24,表明火山岩源于亏损的源区。
     尽管陆东—五彩湾地区石炭系火山岩表现出板内岩浆和岛弧岩浆的部分特征,但这些火山岩不是形成于板内或岛弧环境,而是后碰撞期的产物,其具有与典型后碰撞期火山岩一致的地球化学特征,如较高的TiO2、Zr、Nb含量和Zr/Y、Nb/Y比值等。
     卡拉麦里缝合带早石炭世中期~早二叠世发育大规模的火山活动,从西向东依次在准噶尔盆地陆梁隆起中部、陆东—五彩湾地区和三塘湖盆地发育较厚的火山岩,前人对其分别进行了研究,但对其构造背景的认识较为混乱,本论文中综合了前人的数据进行了重新分析。总体看来,卡拉麦里缝合带两侧火山岩均形成于后碰撞期伸展背景,在火山喷发时没有同期的洋壳消减作用。
     卡拉麦里洋盆关闭并发生两侧陆块碰撞时,表现出明显的软碰撞的特征,两侧陆块处于未紧密拼合的状态。岩石圈增厚有限,但由于重力失衡和强烈的地幔对流作用,发生强烈的壳幔相互作用,导致卡拉麦里缝合带后碰撞期发育强烈的火山活动。火山岩的源区主要为亏损的地幔物质和新生大陆下地壳。应当注意的是,尽管地幔对流作用很可能是卡拉麦里缝合带两侧后碰撞期火山活动的主要深部动力学机制,但也不排除在部分地区、部分时段其他机制如残余洋壳的部分熔融、加厚岩石圈深熔等也会导致火山活动。
     卡拉麦里缝合带两侧的陆块在发生软碰撞后,先后经历了早石炭世中晚期(C12-3)伸展(裂陷)—晚石炭世早中期(C21-2)挤压(隆升)、晚石炭世晚期(C23)至早二叠世(P1)伸展(裂陷)—中晚二叠世(P2-P3)挤压(隆升)这两个伸展—挤压旋回,表现出明显的软碰撞后陆—陆叠覆造山多旋回的特征,在每个旋回的伸展阶段都发生了大规模的火山活动,且随着时间的推移,火山活动的主体有从西向东逐渐迁移的趋势,这指示卡拉麦里缝合带很可能是从西向东逐渐发展进入后碰撞期的,也表明卡拉麦里洋盆可能是从西向东逐渐关闭的。因此,卡拉麦里缝合带与整个北疆地区一致,同样具有明显的继承性、旋回性、阶段性和方向性。
     火山岩油气藏是近年来准噶尔盆地油气勘探的重点之一。陆东—五彩湾地区石炭系火山岩原生孔隙的发育程度较低,主要原生孔隙类型有气孔和气管、晶内孔、晶间孔、粒间孔、冷凝收缩缝;次生孔隙的形成往往叠加复合于原生孔隙,从而改善了火山岩的储集性能;次生孔隙比原生孔隙发育,对油气的储集意义较大,其主要类型为溶蚀孔缝和构造裂缝;原生孔隙、次生孔隙的发育以及储集空间的组合类型均具有明显的区域性差异。
     陆东—五彩湾地区石炭系火山岩的储集物性受埋藏压实作用影响较小,与岩性岩相紧密相关,后期的风化淋滤、热液流体、构造活动、火山喷发环境均明显影响火山岩的储集性能。火山岩储集空间的形成和演化经历了原生孔隙发育、断裂构造改造、抬升风化淋滤、深埋热液作用、油气充注等几个发展阶段,且后期过程对前期过程形成的储集空间有明显的改造作用。整体上看,构造作用和风化及次生溶蚀作用都比较强烈的地区其火山岩的孔渗性能最佳。陆东—五彩湾地区石炭系火山岩的储集物性具有明显的区域性差异,储集物性较好的火山岩多分布于石炭系顶面风化壳。
     从总体上看,研究区火山岩油气成藏的有利因素有:紧邻石炭系和二叠系烃源岩的生烃凹陷;火岩储层物性较好;上覆致密的泥岩和粉砂质泥岩、风化壳顶部黏土层、异常高压岩层均具有很好的封盖性能;断裂和不整合面是油气垂向和侧向运移的有利通道;继承性的古隆起和正反转构造是油气运移的有利指向区。陆东—五彩湾地区石炭系火山岩油气藏除少部分为火山岩内幕油气藏外,主要表现出与不整合面相关的特性。其成藏模式主要有:新生古储型和自生自储型两大类。
     近年来的油气勘探表明,卡拉麦里缝合带两侧后碰撞火山岩中赋存了大量的油气资源,已发现了石西油田、克拉美丽气田和三塘湖油田等规模较大的油气田,而卡拉麦里缝合带后碰撞构造岩浆作用对油气成藏具有明显的控制作用:后碰撞期幔源岩浆底垫作用和火山活动促进了有机质的热演化;岩浆活动和岩浆岩可以直接参与烃类的形成,研究区石炭系烃源岩的分布明显受到后碰撞地质背景和火山活动的控制;致密火山岩和火山岩风化壳顶部黏土层在油气聚集成藏过程中会起到良好的封盖作用。
     火成岩油气藏的成藏机理、勘探开发等方面与常规油气藏的特点不同,有必要加强相关研究和工作投入。深化火山岩油气藏乃至基岩油气藏的成藏机理研究和勘探开发,以开拓火山岩油气藏新的领域,是油气勘探的迫切需求,这不仅有利于我们搞清楚火山岩中油气赋存和成藏的规律,而且也有利于油气产量的稳步提高。
     尽管本论文以卡拉麦里缝合带为例就后碰撞构造岩浆作用对火山岩油气藏的控制进行了分析,然而论构造岩浆作用对火成岩油气藏的控制作用而言,目前的研究仍然非常薄弱,十分必要在后续的工作加以强化。
Ludong-Wucaiwan area, to the south of Kalamaili suture zone in north Xinjiang, was selected to study in this dissertation. Through geological and geochemical study of volcanic rocks in Batamayineishan Formation, including rock types, lithofacies, elemental and isotopic geochemistry, and the reservoir quality, the author has analysed the tectonic setting at early Carboniferous and the major controlling factors of volcanic reservoirs, and further discussed the mechanism and duration of post-collisional volcanism around Kalamaili suture zone, as well as the controlling on volcanic reservoirs by post-collisional tectono-magmatism.
     Carboniferous volcanic rocks were widespread and regionally different in Ludong-Wucaiwan area. After the observation of cores and slides, the volcanic rocks were divided into four types:lavas, volcaniclastic rocks, welded pyroclastic rocks, and volcanogenitic sedimentary rocks. The corresponding lithofacies were explosive facies, extrusive facies, transient facies between explosive and extrusive, and volcanogenitic sedimentary facies. Sedimentary tuff, tuffaceous siltstone and pelyte developed at the intervals of eruptions. The volcanic rocks generally evolved from basic to acidic. The volcanism was mainly extrusive eprutions, as well as explosive ones accidently. The explosive centers distributed along the major faults, since the explosive volcaniclastic rocks distributed mostly along them.
     According to the major elements, the Carboniferous volcanic rocks from Ludong-Wuwaican area had relatively high contents of total alkali, and were mainly belong to calc-alkaline series, while several samples were low-K tholeiitic series, and the acidic rocks were mainly high-K calc-alkaline series. The lavas were mainly intermediate-mafic, with several acidic. The MgO contents were interrelated with those of other major elements in Harker diagrams, indicating the characteristics of fractional crystallization. The Mg# values (38~57) indicated the characteristics of evolved magmas.
     As to the characteristics of rare Earth elements(REE), the intermediate-mafic samples had relatively high REE contents, and LREEs were relatively enriched in chondrite normalized REE patterns, with slight fractionation of HREEs. LILEs and LREEs of these volcanic samples were enriched while HFSEs and HREEs were relatively depleted in primitive mantle normalized incompatible element diagrams, but the contents of HFSEs were relatively high. These volcanic rocks were from depleted source, since the initial 87Sr/86Sr and 143Nd/144Nd ratios andεNd(t) values were 0.70278~0.70365,0.512517~0.512648 and+5.69~+8.24 respectively.
     Although the volcanic rocks from Ludong-Wucaiwan area indicated some characteristics of intraplate and island arc magmas, they were produced in post-collisional setting rather than intraplate or island arc, since the geochemical characteristics were identical with those of post-collisional lavas, such as high TiO2, Zr, Nb contents and Zr/Y, Nb/Y ratios.
     Extensive volcanism developed around Kalamaili suture zone from the middle stage of early Carboniferous to early Permian, and massive volcanic rocks were produced along the suture zone from central Luliang uprise in the west, Ludong-Wucaiwan area in the middle, and Santanghu basin in the east. Previous data from other authors was re-analysed in this dissertation since the previous understandings were confused. In general, these volcanic rocks were all produced in post-collisional period, without any contemporary subduction of oceanic crust.
     The collision of bilateral landmasses around Kalamaili oceanic basin was soft-collision, and the bilateral landmasses were subsequently untightly connected. Although the lithosphere was finitely thickened, the gravitational unbalance and extensive mantle convection could cause intense crust-manlte interaction and further extensive volcanism along Kalamaili suture zone in post-collisional period. The sources of volcanic rocks were depleted mantle materials and juvenile continental crust. Although mantle convection could be the major mechanism of this volcanism, several other mechanisms such as partial melting of residual oceanic crust, anatexis of thickened lithosphere could also cause post-collisional volcanism in specific regions and times.
     The bilateral landmasses around Kalamaili suture zone had experienced two extension-compression cycles after the soft-collision, extension (rift) at C13~C21 and compression (uprise) at C21-2, and extension (rift) at C23-P1 and compression (uprise) at P2-P3, indicating the characteristics of continent-continent superposition orogeny after soft-collision, and extensive volcanism developed at extension stage of each cycle. The principal volcanism migrated from west to east, indicating that the Kalamaili suture zone gradually evolved into post-collisional period from west to east, which reflected that the oceanic basin might be closed gradually from west to east. Therefore, Kalamaili suture zone shared the same characteristics with total north Xinjiang as successive, cyclic, periodical and orientational.
     The oil and gas exploration of Junggar basin has focused on volcanic reservoirs in recent years. The primary pores of Carboniferous volcanic rocks in Ludong-Wucaiwan area, including gas pores and pipes, intra-crystal pores, inter-crystal pores, inter-grain pores, condensational shrinking fissures, were less developed than the secondary pores, which included solution pores and fissures and tectonic fissures, and were more significative to oil and gas reservoirs. The superposition of secondary pores on primary ones significantly improved the reservoir quality of volcanic rocks, and the development of primary and secondary pores and the assemble types of reservoir pore space were regionally different.
     The reservoir quality of volcanic rocks in Ludong-Wucaiwan area was affected by weathering and leaching, hydrothermal fluids, tectonism and environment of eruption rather than burial and welding, and was closely related to the lithologies and lithofacies. The formation and evolvement of volcanic reservoir space had experienced the following stages:the development of primary pores, the modification by faults, weathering and leaching by uprising, deep-buried hydrothermal activities, the filling of oil and gas. The latter stages could modify the reservoir space produced by the early stages. In general, the more intensive of tectonism and weathering as well as secondary solution, the better reservoir quality of the volcanic rocks. The reservoir quality of Carboniferous volcanic rocks in Ludong-Wucaiwan area were regionally different. Almost all the volcanic rocks with favorable reservoir quality lied in the weathered crust at the top of Carboniferous.
     In general, the favorable factors controlling volcanic reservoir formation for oil and gas were as follows:close to the depression of hydrocarbon generation from Carboniferous and Permian source rocks, favorable quality of volcanic reservoirs, overlying compact mudstones and silty mudstones, good capping quality of clay deposition at the top of weathered crust and ultra-high pressure of rock stratums, favorable pathway for vertical and lateral migration of oil and gas by faults and unconformities respectively, favorable pointing zones for oil and gas as successive paleo-uprise and positive reversion structures. Besides some inner-volcanic reservoirs, the majority of Carboniferous volcanic reservoirs in Ludong-Wucaiwan area were related to unconformities, and their reservoir formation models were mainly two types, new bed generating and old bed preserving reservoirs, self-generating and self-preserving reservoirs.
     Oil and gas exploration in recent years revealed plentiful oil and gas resources in post-collisional volcanic rocks around Kalamaili suture zone, and several large oil and gas fields were discovered, such as Shixi oil field, Kelameili gas field and Santanghu oil field. Post-collisional tectono-magmatism of Kalamaili suture zone had controlled the volcanic reservoir formation obviously:underplating of mantle-derived magmas and post-collisional volcanism had promoted the thermal evolution of organic matters; the magmatism and igneous rocks could be directly involved in the generation of hydrocarbons; the distribution of Carboniferous hydrocarbon source rocks was controlled by post-collisional setting and volcanism; compact volcanic rocks and the clay deposition at the top of weathered crust of volcanic rocks could be the favorable capping rocks in the accumulation and reservoir formation processes of oil and gas.
     The reservoir formation mechanism and exploration techniques of volcanic reservoirs for oil and gas were different from those of regular ones, and it's worthy of strengthening the interrelated research and investment. Therefore, it's urgent to deepen the study on reservoir formation mechanisms and exploration on oil and gas reservoirs in volcanic rocks even the bedrocks, and to enlarge the new fields on volcanic reservoirs for oil and gas exploration. They are favorable to both the understanding of disciplines of accumulation and reservoir formation in volcanic rocks, and the stable increase of oil and gas output.
     Though the controlling of post-collisional tectono-magmatism on volcanic reservoirs had been analysed in this dissertation taking Kalamaili suture zone as an example, the study on the controlling of tectono-magmatism on volcanic reservoirs were weak, and need to be strengthened in further works.
引文
Abrajano T A, Sturchio N C, Bohlke J K, et al. Methane-hydrogen gas seeps, Zambales ophiolite,Philippines:deep or shallow origin?[J]. Chemical Geology,1988,71(1-3):211-222.
    Areshev E G, Dong T L, San N T, et al. Reservoirs in fractured basement on the continental shelf of southern Vietnam[J]. Journal of Petroleum Geology,1992,15(3):451-464.
    Badarch G, Dickson Cunningham W, Windley B F.A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences,2002,21(1):87-110.
    Beeskow B, Treloar P J, Rankin A H, et al. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia[J]. Lithos,2006,91(1-4): 1-18.
    Berndt M E, Allen D E, Seyfried W E, Jr. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar[J]. Geology,1996,24(4):351-354.
    Buslov M M, Fujiwara Y, Iwata K, et al. Late Paleozoic-Early Mesozoic geodynamics of Central Asia[J]. Gondwana Research,2004a,7(3):791-808.
    Buslov M M, Watanabe T, Fujiwara Y, et al. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation[J]. Journal of Asian Earth Sciences,2004b,23(5): 655-671.
    Castillo P R. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico[J]. Geological Society of America Bulletin,2008,120(3-4):451-462.
    Castillo P R, Solidum R U, Punongbayan R S. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited[J]. Geology,2002,30(8):707-710.
    Chen B, Jahn B M. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China:Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences,2004,23(5):691-703.
    Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica Et Cosmochimica Acta,2005,69(5):1307-1320.
    Chen S P, Zhang Y W, Tang L J, et al. Tectonic evolution of the Junggar foreland basin in the late Carboniferous-Permian[J]. Acta Geologica Sinica-English Edition,2001,75(4):398-408.
    Chen Z Y, Yan H, Li J S, et al. Relationship between Tertiary volcanic rocks and hydrocarbons in
    the Liaohe Basin, People's Republic of China[J]. AAPG Bulletin,1999,83(6):1004-1014.
    Chung S L, Chu M F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews,2005,68(3-4):173-196.
    Coleman R G. Continental growth of Northwest China[J]. Tectonics,1989,8(3):621-635.
    Coulon C, Megartsi M h, Fourcade S, et al. Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria):magmatic expression of a slab breakoff[J]. Lithos,2002,62(3-4):87-110.
    Defant M J, Jackson T E, Drummond M S, et al. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:an overview[J]. Journal of the Geological Society, London,1992,149(4):569-579.
    Dekov V. Native nickel in the TAG hydrothermal field sediments (Mid-Atlantic Ridge,26°N): Space trotter, guest from mantle, or a widespread mineral, connected with serpentinization? [J]. Journal of Geophysical Research,2006,111:B05103, doi,05110.01029/02005JB003955.
    Dewey JF. Extensional collapse of orogens[J]. Tectonics,1988,7(6):1123-1139.
    Dilek Y, Altunkaynak S. Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia[J]. International Geology Review,2007,49(5):431-453.
    Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to modern comparisons[J]. Journal of Geophysical Research-Solid Earth,1990,95(B13):21503-21521.
    Elburg M A, Foden J. Geochemical response to varying tectonic settings:an example from southern Sulawesi (Indonesia)[J]. Geochimica et Cosmochimica Acta,1999,63(7-8): 1155-1172.
    Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research-Solid Earth,1997,102(B7):14991-15019.
    Escuder Viruete J, Contreras F, Stein G, et al. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola:Record of a major change in the Caribbean island arc magma sources[J]. Lithos,2007,99(3-4):151-177.
    Feng Y M, Coleman R G, Tilton G, et al. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics,1989,8(4):729-752.
    Foland K A, Allen J C. Magma sources for Mesozoic anorogenic granites of the White Mountain Magma series, New England, USA[J]. Contributions to Mineralogy and Petrology,1991, 109(2):195-211.
    Foustoukos D I, Seyfried W E Jr. Hydrocarbons in Hydrothermal Vent Fluids:The Role of Chromium-Bearing Catalysts[J]. Science,2004,304(5673):1002-1005.
    Galushkin Y I. Thermal effects of igneous intrusions on maturity of organic matter:A possible mechanism of intrusion[J]. Organic Geochemistry,1997,26(11-12):645-658.
    Glasby G P. Abiogenic Origin of Hydrocarbons:An Historical Overview[J]. Resource Geology, 2006,56(1):83-96.
    Gold T. Terrestrial sources of carbon and earthquake outgassing[J]. Journal of Petroleum Geology, 1979,1(3):3-19.
    Gold T, Soter S. Deep-earth-gas hypothesis[J]. Scientific American,1980,242(6):130-137.
    Gu L X, Ren Z W, Wu C Z, et al. Hydrocarbon Reservoirs in a Trachyte Porphyry Intrusion in the Eastern Depression of the Liaohe Basin, Northeast China[J]. AAPG Bulletin,2002,86(10): 1821-1832.
    Guo Z Q, Wang X B, Liu W L. Reservoir-forming features of abiotic origin gas in Songliao Basin[J]. Science in China(Series D),1997,40(6):621-626.
    Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust[J]. Lithos,2007,96(1-2):205-224.
    Haase K M, Muhe R, Stoffers P. Magmatism during extension of the lithosphere:geochemical constraints from lavas of the Shaban Deep, northern Red Sea[J]. Chemical Geology,2000, 166(3-4):225-239.
    Han B F, He G Q, Wang S G. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin[J]. Science in China (Series D),1999,42(2): 113-119.
    Han B F, Wang S G, Jahn B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology,1997,138(3-4):135-159.
    Han C M, Xiao W J, Zhao G C, et al. Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China[J]. Ore Geology Reviews,2006,28(3):308-328.
    Hawkesworth C, Turner S, Gallagher K, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range[J]. Journal of Geophysical Research-Solid Earth,1995, 100(B7):10271-10286.
    Hawkesworth C J, Gallagher K, Kelley S, et al. Parana magmatism and the opening of the South Atlantic[J]. Geological Society, London, Special Publications,1992,68(1):221-240.
    Hofmann A, Jochum K, Seufert M, et al. Nb and Pb in oceanic basalts:new constraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1-2):33-45.
    Hofmann A W. Chemical differentiation of the earth:The relationship between mantle, continental
    crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988,90(3):297-314.
    Hole M J, Saunders AD, Marriner G F, et al. Subduction of pelagic sediments:implications for the origin of Ce-anomalous basalts from the Mariana Islands[J]. Journal of the Geological Society, London,1984,141(3):453-472.
    Holloway J R. Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions[J]. Geology,1984,12(8):455-458.
    Holloway J R, O'day P A. Production of CO2 and H2 by diking-eruptive events at mid-ocean ridges:Implications for abiotic organic synthesis and global geochemical cycling[J]. International Geology Review,2000,42(8):673-683.
    Holm N G, Charlou J L. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 2001,191(1-2):1-8.
    Hong D W, Zhang J S, Wang T, et al. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences,2004, 23(5):799-813.
    Horita J, Berndt M E. Abiogenic Methane Formation and Isotopic Fractionation Under Hydrothermal Conditions[J]. Science,1999,285(5430):1055-1057.
    Hou Z Q, Wang L Q, Khin Z, et al. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China [J]. Ore Geology Reviews,2003,22(3-4):177-199.
    Houseman G A, McKenzie D P, Molnar P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts[J]. Journal of Geophysical Research,1981,86(B7):6115-6132.
    Hu A Q, Jahn B M, Zhang G X, et al. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence. Part I. Isotopic characterization of basement rocks[J]. Tectonophysics,2000,328(1-2):15-51.
    Huw Davies J, von Blanckenburg F. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters,1995,129(1-4):85-102.
    Ickert R B, Thorkelson D J, Marshall D D, et al. Eocene adakitic volcanism in southern British Columbia:Remelting of arc basalt above a slab window[J]. Tectonophysics,2009,464(1-4): 164-185.
    Ionov D A, Hofmann A W. Nb-Ta-rich mantle amphiboles and micas:Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters,1995,131(3-4):341-356.
    Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic:Evidence from Central Asia[J]. Tectonophysics,2000,328(1-2):vii-x.
    Jahn B M, Windley B F, Natal'in B, et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences,2004,23(5):599-603.
    Jeffrey A W A, Kaplan IR. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden[J]. Chemical Geology,1988,71(1-3):237-255.
    Jenden P D, Kaplan I R, Hilton D R, et al. Abiogenic hydrocarbons and mantle helium in oil and gas fields[M]. David F H. The Future of Energy gases. Washington:United States Government Printing Office.1993,31-56.
    Jin Q, Xiong S S, Lu P D. Catalysis and hydrogenation:volcanic activity and hydrocarbon generation in rift basins, eastern China[J]. Applied Geochemistry,1999,14(5):547-558.
    Katz B J, Mancini E A, Kitchka A A. A review and technical summary of the AAPG Hedberg Research Conference on "Origin of petroleum--Biogenic and/or abiogenic and its significance in hydrocarbon exploration and production"[J]. AAPG Bulletin,2008,92(5): 549-556.
    Kelemen P B, Hanghoj K, Greene A R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust[M]. Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam:Elsevier.2003,3:593-659.
    Kelley D S. Methane-rich fluids in the oceanic crust[J]. Journal of Geophysical Research,1996, 101(B2):2943-2962.
    Kenney J F, Kutcherov V A, Bendeliani N A, et al. The evolution of multicomponent systems at high pressures:VI. The thermodynamic stability of the hydrogen-carbon system:The genesis of hydrocarbons and the origin of petroleum[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(17):10976-10981.
    Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic:new geochronologic data and palaeotectonic reconstructions[J]. Precambrian Research,2003,122(1-4):329-358.
    Konnerup-Madsen J, Dubessy J, Rose-Hansen J. Combined Raman microprobe spectrometry and microthermometry of fluid inclusions in minerals from igneous rocks of the Gardar province (south Greenland)[J]. Lithos,1985,18(C):271-280.
    Kovalenko V I, Yarmolyuk V V, Kovach V P, et al. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:geological and isotopic evidence[J]. Journal of Asian Earth Sciences,2004,23(5):605-627.
    Lancet M S, Anders E. Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites[J]. Science,1970,170(3961):980-982.
    Le Matre R W. A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommision on the Systematics of igneous rocks [M]. Oxford:Blackwell Scientific Publications,1989.
    Levin L E. Volcanogenic and volcaniclastic reservoir rocks in Mesozoic-Cenozoic island arcs: examples from the Caucasus and the NW Pacific[J]. Journal of Petroleum Geology,1995, 18(3):267-288.
    Liegeois J-P. Preface-Some words on the post-collisional magmatism[J]. Lithos,1998,45(1-4): xv-xvii.
    Luo J L, Zhang C L, Qu Z H. Volcanic reservoir rocks:A case study of the Cretaceous Fenghuadian suite, Huanghua basin, eastern China[J]. Journal of Petroleum Geology,1999, 22(4):397-416.
    Luo J L, Morad S, Liang Z G, et al. Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe basin, China[J].AAPG Bulletin,2005,89(10):1319-1346.
    Macdonald R, Hawkesworth C J, Heath E. The Lesser Antilles volcanic chain:a study in arc magmatism[J]. Earth-Science Reviews,2000,49(1-4):1-76.
    Magara K. Volcanic reservoir rocks of northwestern Honshu island, Japan[J]. Geological Society, London, Special Publications,2003,214(1):69-81.
    Martin H. Adakitic magmas:modern analogues of Archaean granitoids[J], Lithos,1999,46(3): 411-429.
    McCollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine[J]. Geochimica et Cosmochimica Acta,2001, 65(21):3769-3778.
    McCollom T M, Seewald J S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions[J]. Earth and Planetary Science Letters,2006, 243(1-2):74-84.
    McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphere[J]. Journal of Petrology,1988,29(3):625-679.
    Morner N-A, Etiope G Carbon degassing from the lithosphere[J]. Global and Planetary Change, 2002,33(1-2):185-203.
    Munker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:source constraints and application of refined ICPMS techniques[J]. Chemical Geology,1998, 144(1-2):23-45.
    Oze C, Sharma M. Have olivine, will gas:Serpentinization and the abiogenic production of methane on Mars[J]. Geophysical Research Letters,2005,32:L10203, doi:10210.11029/12005GL022691.
    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]. Thorpe R. Andesites. New York:John Wiley& Sons.1982,160-170.
    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology,1979,69(1):33-47.
    Pearce J A, Parkinson I J. Trace element models for mantle melting:application to volcanic arc petrogenesis[J]. Geological Society, London, Special Publications,1993,76(1):373-403.
    Petford N. Controls on primary porosity and permeability development in igneous rocks[J]. Geological Society, London, Special Publications,2003,214(1):93-107.
    Petford N, McCaffrey K. Hydrocarbons in crystalline rocks:an introduction[J]. Geological Society, London, Special Publications,2003,214(1):1-5.
    Plank T. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents[J]. Journal of Petrology,2005,46(5):921-944.
    Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology,1998,145(3):325-394.
    Ponnamperuma C, Pering K. Possible Abiogenic Origin of Some Naturally Occurring Hydrocarbons[J]. Nature,1966,209(5027):979-982.
    Potter J, Konnerup-Madsen J. A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks[J]. Geological Society, London, Special Publications,2003,214(1):151-173.
    Potter J, Rankin A H, Treloar P J. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia[J]. Lithos,2004,75(3-4):311-330.
    Ren J X. The continental tectonics of China[J]. Journal of Southeast Asian Earth Sciences,1996, 13(3-5):197-204.
    Rickwood P C. Boundary lines within petrological diagrams which use oxides of major and minor elements[J]. Lithos,1989,22(4):247-263.
    Ringwood A E. Slab-mantle interactions. Ⅲ, Petrogenesis of intraplate magmas and structure of the upper mantle[J]. Chemical Geology,1990,82(3-4):187-207.
    Robinson R. The Origins of Petroleum[J]. Nature,1966,212(5068):1291-1295.
    Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao
    (Philippines)[J]. Journal of Petrology,1996,37(3):693-726.
    Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology,1993,21(11):1007-1010.
    Sajona F G, Bellon H, Maury B C, et al. Magmatic response to abrupt changes in geodynamic settings:Pliocene-Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines)[J]. Tectonophysics,1994,237(1-2):47-72.
    Sajona F G, Maury R C, Pubellier M, et al. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines)[J]. Lithos,2000,54(3-4): 173-206.
    Salvi S, Williams-Jones A E. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada[J]. Geochimica et Cosmochimica Acta,1997,61(1):83-99.
    Schutter S R. Hydrocarbon occurrence and exploration in and around igneous rocks[J]. Geological Society, London, Special Publications,2003a,214(1):7-33.
    Schutter S R. Occurrences of hydrocarbons in and around igneous rocks[J]. Geological Society, London, Special Publications,2003b,214(1):35-68.
    Scott H P, Hemley R J, Mao H-k, et al. Generation of methane in the Earth's mantle:In situ high pressure-temperature measurements of carbonate reduction[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(39):14023-14026.
    Sengor A M C, Natal'In B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364(6435):299-307.
    Sherwood Lollar B, Frape S K, Weise S M, et al. Abiogenic methanogenesis in crystalline rocks[J]. Geochimica et Cosmochimica Acta,1993,57(23-24):5087-5097.
    Song X Y, Zhou M F, Cao Z M, et al. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume?[J]. Journal of the Geological Society, London,2004,161(5): 773-781.
    Sruoga P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina[J]. AAPG Bulletin,2007,91(1):115-129.
    Sruoga P, Rubinstein N, Hinterwimmer G. Porosity and permeability in volcanic rocks:a case study on the Serie Tobifera, South Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research,2004,132(1):31-43.
    Stolz A J, Jochum K P, Spettel B, et al. Fluid-and melt-related enrichment in the subarc mantle; evidence from Nb/Ta variations in island-arc basalts[J]. Geology,1996,24(7):587-590.
    Sugisaki R, Mimura K. Mantle hydrocarbons:Abiotic or biotic? [J]. Geochimica et Cosmochimica Acta,1994,58(11):2527-2542.
    Sugisaki R, Mimura K, Kato M. Shock synthesis of light hydrocarbon gases from H2 and CO:Its role in astrophysical processes[J]. Geophysical Research Letters,1994,21(11):1031-1034.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. Saunders A D, Norry M J. Magmatism in the Ocean Basin. Geological Society Special Publication.1989,42:313-345.
    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos,1998,45(1-4):29-44.
    Szatmari P. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics[J]. AAPG Bulletin,1989,73(8):989-998.
    Takahashi H, Liu L, Yashiro Y, et al. CO2 reduction using hydrothermal method for the selective formation of organic compounds[J]. Journal of Materials Science,2006,41(5):1585-1589.
    Thorkelson D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics,1996,255(1-2):47-63.
    Thorkelson D J, Breitsprecher K. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas[J]. Lithos,2005,79(1-2):25-41.
    Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraints on "postorogenic" magmatism[J]. Geology,1992,20(10):931-934.
    Turner S, Arnaud N, Liu J, et al. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts[J]. Journal of Petrology,1996,37(1):45-71.
    Wang P J, Hou Q J, Shu P, et al. Facies-controlled volcanic reservoirs of northern Songliao Basin, NE China[J]. Journal of Geoscientific Research in Northeast Asia,2005,8(1):72-77.
    Wang P J, Hou Q J, Cheng R H, et al. Methane-rich fluid inclusions and their hosting volcanic reservoir rocks of the Songliao Basin, NE China[J]. Journal of Geoscientific Research in Northeast Asia,2004,7(2):136-142.
    Wang P J, Hou Q J, Wang K Y, et al. Discovery and significance of high CH4 primary fluid inclusions in reservoir volcanic rocks of the Songliao Basin, NE China[J]. Acta Geologica Sinica,2007,81(1):113-120.
    Wang P J, Feng Z Q, Mattern F, et al. Reservoir volcanic rocks:geology and geochemistry, the Mesozoic non-marine Songliao basin, NE China[J]. Journal of Geoscientific Research in Northeast Asia,2003,6(2):129-137.
    Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet-Lower:crustal melting in an intracontinental setting[J]. Geology,2005,33(6): 465-468.
    Wang X B, Chen J F, Xu S, et al. Geochemical characteristics of gases from hot spring in seismic region[J]. Science in China Series B:Chemistry,1994,37(2):242-249.
    Wang Z H, Sun S, Li J L, et al. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronological constraints from the ophiolites[J]. Tectonics,2003,22(2): 1014,doi:1010.1029/2002TC001396.
    Welhan J A, Craig H. Methane and Hydrogen in East Pacific Rise Hydrothermal Fluids[J]. Geophysical Research Letters,1979,6(11):829-831.
    Wilson M. Magmatism and the geodynamics of basin formation[J]. Sedimentary Geology,1993, 86(1-2):5-29.
    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London,2007,164(1):31-47.
    Wu C Z, Gu L X, Zhang Z Z, et al. Formation mechanisms of hydrocarbon reservoirs associated with volcanic and subvolcanic intrusive rocks:Examples in Mesozoic-Cenozoic basins of eastern China[J]. AAPG Bulletin,2006,90(1):137-147.
    Xiao W S, Chai P X, Wang B S, et al. Hydrocarbon formation by reactions of graphite with water-containing minerals under high pressure and high temperature[J]. Progress in Natural Science,1999,9(5):395-398.
    Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003,22(6):1069, doi:1010.1029/2002TC001484.
    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. American Journal of Science,2004a,304(4):370-395.
    Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the growth of Central Asia[J]. Journal of the Geological Society, London,2004b,161(3):339-342.
    Yakubchuk A. Architecture and mineral deposit settings of the Altaid orogenic collage:a revised model[J]. Journal of Asian Earth Sciences,2004,23(5):761-779.
    Zhang Z C, Xiao X C, Wang J, et al. Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China:Geochemical constraints on mantle source characteristics and petrogenesis[ J]. Journal of Asian Earth Sciences,2008,31(4-6):379-403.
    Zheng J P, Sun M, Zhao G C, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China:Implications for the formation and evolution of the basin basement[J]. Journal of Asian Earth Sciences,2007,
    29(5-6):778-794.
    Zhu Y F, Zhang L F, Gu L B, et al. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains[J]. Chinese Science Bulletin,2005,50(19):2201-2212.
    Ziegler P A, Cloetingh S. Dynamic processes controlling evolution of rifted basins[J]. Earth-Science Reviews,2004,64(1-2):1-50.
    蔡希源,刘传虎.准噶尔盆地腹部地区油气成藏的主控因素[J].石油学报,2005,26(5):1-4.
    蔡忠贤,陈发景,贾振远.准噶尔盆地的类型和构造演化[J].地学前缘,2000,7(4):431-440.
    曹宝军,刘德华.浅析火山岩油气藏分布与勘探、开发特征[J].特种油气藏,2004,11(1):18-20.
    曹剑,胡文瑄,张义杰,等.准噶尔盆地油气沿不整合运移的主控因素分析[J].沉积学报,2006,24(3):399-406.
    操应长,姜在兴,邱隆伟.山东惠民凹陷商741块火成岩油藏储集空间类型及形成机理探讨[J].岩石学报,1999,15(1):129-136.
    操应长,姜在兴,邱隆伟,等.渤海湾盆地第三系火成岩油气藏成藏条件探讨[J].石油大学学报:自然科学版,2002,26(2):6-10.
    岑芳,罗明高,姚鹏翔.深埋藏火山岩高孔隙形成机制探讨[J].西南石油学院学报,2005,27(3):8-10.
    常印佛,董树文.论中—下扬子“一盖多底”格局与演化[J].火山地质与矿产,1996,17(1):1-15.
    常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.
    陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化[J].地学前缘,2005,12(3):77-89.
    陈庆春,朱东亚,胡文瑄,等.试论火山岩储层的类型及其成因特征[J].地质论评,2003,49(3):286-291.
    陈业全,王伟锋.准噶尔盆地构造动力学过程[J].地质力学学报,2004,10(2):61-70.
    陈振岩,李军生,张戈.辽河坳陷火山岩与油气关系[J].石油勘探与开发,1996,23(3):1-5.
    池秋鄂,徐怀大.松辽盆地梨树—德惠凹陷火成岩初探及与油气关系[J].石油学报,1998,19(3):16-20.
    戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势和天然气地学理论重要进展[J].天然气地球科学,2005,16(2):127-142.
    戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995,1-212.
    丁文龙,金之钧,张义杰,等.新疆准噶尔盆地断裂控油气作用机理研究[J].地学前缘,2002,
    9(03):102.
    东方地球物理公司.陆东—五彩湾地区石炭系火山岩预测及下步勘探部署建议[R].2006,内部汇报.
    付广,段海凤,孟庆芬.不整合及输导油气特征[J].大庆石油地质与开发,2005,24(1):13-16.
    高长海,查明.不整合运移通道类型及输导油气特征[J].地质学报,2008,82(8):1113-1120.
    高成全.三塘湖盆地石炭系成藏要素及有利勘探方向[J].吐哈油气,2008,13(3):208-213.
    高剑峰,陆建军,赖鸣远,等.岩石样品中微量元素的高分辨率等离子质谱分析[J].南京大学学报(自然科学版),2003,36(6):844-850.
    郭沫贞,朱国华.三塘湖盆地石炭系火山岩油藏储集空间特征与成因机理[J].吐哈油气,2008,13(3):230-233.
    郭璇,朱永峰.新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究[J].高校地质学报,2006,12(1):62-73.
    郭占谦,王先彬.松辽盆地非生物成因气的探讨[J].中国科学B辑:化学,1994,24(3):303-309.
    韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,2007,14(3):64-72.
    韩宝福,何国琦,王式洗,等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论评,1998,44(4):396-404.
    韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1077-1086.
    韩春明,肖文交,崔彬,等.新疆北部晚古生代铜矿床主要类型和地质特征[J].地质学报,2006,80(1):74-89.
    郝建荣,周鼎武,柳益群,等.新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析[J].岩石学报,2006,22(1):189-198.
    贺凯,王菁,谭强.五彩湾凹陷石炭系油气成藏控制因素及勘探建议[J].新疆石油学院学报,2002,14(4):4-7.
    何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149.
    何登发,翟光明,况军,等.准噶尔盆地古隆起的分布与基本特征[J].地质科学,2005,40(2):248-261.
    何琰,伍友佳,吴念胜.火山岩油气藏研究[J].大庆石油地质与开发,1999,18(4):6-8.
    何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,1994,1-437.
    何国琦,李茂松,贾进斗,等.论新疆东准噶尔蛇绿岩的时代及其意义[J].北京大学学报(自然科学版),2001,37(6):852-858.
    何国琦,李茂松,周辉.论大陆岩石圈形成过程中的克拉通化阶段[J].地学前缘,2002,9(4):217-224.
    何国琦,刘建波,张越迁,等.准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J].岩石学报,2007,23(7):1573·1576.
    侯增谦,由晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    胡素云,蔚远江,董大忠,等.准噶尔盆地腹部断裂活动对油气聚集的控制作用[J].石油学报,2006,27(1):1-7.
    黄本宏,丁秋红.中国北方安加拉植物群[J].地球学报:中国地质科学院院报,1998,19(1):97-104.
    贾承造,魏国齐.中国东北裂谷区中新生代火山岩油气赋存规律[M].陈骏.地质与地球化学研究进展.南京:南京大学出版社.2005,420-429.
    靳军,刘洛夫,余兴云,等.陆东—五彩湾地区石炭系火山岩气藏勘探进展[J].天然气工业,2008,28(5):21-23.
    况军.地体拼贴与准噶尔盆地的形成演化[J].新疆石油地质,1993,14(2):126-132.
    李宏伟,邓宏文,陈富新.含油气盆地火山岩与油气关系浅论[J].地学前缘,2000,7(4):410.
    李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报,1995,11(增刊):73-84.
    李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3):304-322.
    李锦轶,李卫东,陈文,等.新疆北部晚石炭世至晚三叠世地壳热演化——东准噶尔考克塞尔盖山荒草坡群的40Ar-39Ar定年[J].地质学报,2000,71(4):303-312.
    李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,1999,34(4):405-419.
    李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评,1990,36(4):305-316.
    李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(1):148-168.
    李丕龙,刘传虎.准噶尔盆地天然气勘探潜力及运聚规律[J].石油学报,2005,26(2):6-10.
    李伍平,路凤香.钙碱性火山岩构造背景的研究进展[J].地质科技情报,1999,18(2):15-18.
    李晓勇,郭锋,王岳军.造山后构造岩浆作用研究评述[J].高校地质学报,2002,8(1):68-78.
    李亚萍,李锦轶,孙桂华,等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据[J].岩石学报,2007,23(7):1577-1590.
    李振宏,汤良杰,丁文龙,等.准噶尔盆地腹部地区断裂特征分析[J].石油勘探与开发,2002,29(1):40-43.
    梁云海,李文铅,李卫东.新疆准噶尔造山带多旋回开合构造特征[J].地质通报,2004,23(3):279-285.
    廖忠礼,莫宣学,喻学惠,等.从31届地质大会看火成岩石学的研究动向[J].岩石矿物学杂志,2001,20(3):360-366.
    林克湘,李艺斌,龚文平,等.新疆三塘湖盆地晚古生代火山岩地球化学特征及构造环境[J].高校地质学报,1997,3(2):202-211.
    刘德良.构造化学体系结构的探索[J].地学进展,1990,(1):47-54.
    刘德良,苏永军,王赐银.流体—岩石体系痕量元素模式方程的归纳分析[J].地质找矿论丛,1994,9(1):49-53.
    刘德良,李振生,杨强,等.南天山库车地区褶皱冲断带的伸展构造[J].天然气地球科学,2005,16(2):157-161.
    刘德良,沈修志,陈江峰,叶尚夫.地球与类地行星构造地质学(第二版)[M].合肥:中国科学技术大学出版社,2009.
    刘洪福,尹凤娟.新疆三塘湖盆地卡拉岗组时代问题商榷[J].西北大学学报:自然科学版,2001,31(6):496-499.
    刘家远,钱建平,程志平,等.新疆东准噶尔陆相火山作用与金铜成矿[M].北京:地质出版社,2002,1-218.
    刘俊田.三塘湖盆地牛东地区石炭系卡拉岗组火山岩风化壳模式与识别[J].天然气地球科学,2009,20(1):57-62.
    刘万洙,王璞珺,门广田,等.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质,2003,24(1):28-31.
    刘为付,刘双龙.三塘湖盆地条湖凹陷二叠系安山岩储集层类型及参数特征[J].新疆石油地质,2000,21(6):483-486.
    刘希军,许继峰,侯青叶,等.新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物[J].岩石学报,2007,23(7):1591-1602.
    龙晓平,孙敏,袁超,等.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J].岩石学报,2006,22(1):31-40.
    路波,赵萍.火山岩的分布及其对油气藏的作用[J].特种油气藏,2004,11(2):17-19.
    罗静兰,曲志浩,孙卫,等.风化店火山岩岩相,储集性与油气的关系[J].石油学报,1996,17(1):32-39.
    罗静兰,张成立.风化店中生界火山岩油藏特征及油源[J].石油与天然气地质,2002,23(4):357-360.
    罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报,2003,24(1):31-38.
    罗静兰,翟晓先,蒲仁海,等.塔河油田火山岩的层位归属、火山岩岩石学与岩相学特征[J].地质科学,2006,41(3):378-391.
    马龙,刘全新,张景廉,等.论基岩油气藏的勘探前景[J].天然气工业,2006,26(1):8-11.
    欧阳舒,王智,詹家桢,等.新疆北部石炭纪—二叠纪孢粉组合的植物区系性质初步探讨[J].微体古生物学报,1993,(3):237-255.
    欧阳舒,周宇星,王智,等.论新疆北部晚石炭世早期(Bashkirian—Moscovian)具肋花粉优势(GSPD)组合的发现[J].古生物学报,1994,33(1):24-47.
    欧阳舒,朱怀诚,詹家桢,等.新疆准噶尔盆地和塔里木盆地二叠纪孢粉组合的比较及其植物区系和地层意义[J].地层学杂志,2004,28(3):193-207.
    曲江秀,查明,田辉,等.准噶尔盆地北三台地区不整合与油气成藏[J].新疆石油地质,2003,24(5):386-388.
    任纪舜.中国大陆的组成、结构、演化和动力学[J].地球学报,1994,15(3~4):5-13.
    任纪舜,牛宝贵,刘志刚.软碰撞,叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    上官志冠,赵慈平,高玲.中国活动火山区甲烷的碳同位素研究[J].岩石学报,2006,22(6):1458-1464.
    石听,王绪龙,张霞,等.准噶尔盆地石炭系烃源岩分布及地球化学特征[J].中国石油勘探,2005,10(1):34-39.
    舒良树,王玉净.新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J].地质论评,2003,19(4):408-412.
    宋岩,戴春森,陈英.准噶尔盆地腹部油气富集规律及其成藏特征[J].天然气工业,1996,16(6):9-13.
    宋岩,王喜双,房德权.准噶尔盆地含油气系统的形成与演化[J].石油学报,2000,21(4):20-25.
    孙红军,陈振岩,蔡国钢.辽河断陷盆地火成岩油气藏勘探现状与展望[J].特种油气藏,2003,10(1):1-6.
    谭开俊,吴青鹏,孙东,等.准噶尔盆地陆东地区构造特征[J].西北油气勘探,2005a,17(2):14-19.
    谭开俊,卫平生,吕锡敏,等.地层古厚度定量恢复方法研究及应用——以准噶尔盆地陆东地区为例[J].天然气工业,2005b,25(10):24-26,35.
    谭绿贵,周涛发,袁峰,等.新疆西准噶尔卡拉岗组火山岩40Ar-39Ar年龄[J].地质科学,2007,42(3):579-586.
    唐红峰,苏玉平,刘丛强,等.新疆北部卡拉麦里斜长花岗岩的锆石U—Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110-117.
    王传远,杜建国,王万春,等.深部岩石圈温压条件下烃类存在的实验研究[J].科学通报,2006,51(1):75-79.
    王道永,邓江红.东准噶尔地区板块构造特征及演化[J].成都理工学院学报,1995,22(4):38-45.
    王东良.准噶尔盆地火山岩储层预测、气藏主控因素及勘探目标评价[R],2007,内部汇报.
    王方正,杨梅珍,郑建平.准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境[J].岩石学报,2002,18(1):9-16.
    王京彬,徐新.新疆北部后碰撞构造演化与成矿[J].地质学报,2006,80(1):23-31.
    王强,赵振华,白正华,等.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生[J].科学通报,2003,48(12):1342-1349.
    王强,赵振华,许继峰,等.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报,2006,22(1):11-30.
    王仁冲,徐怀民,邵雨,等.准噶尔盆地陆东地区石炭系火山岩储层特征[J].石油学报,2008,29(3):350-355.
    王仁民,凤永刚,程素华.富Nb玄武岩在冀北前寒武纪地区的发现[J].高校地质学报,2007,13(3):458-462.
    王涛,洪大卫,童英,等.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义[J].岩石学报,2005,21(3):640-650.
    王先彬,徐胜,陈践发,等.腾冲火山区温泉气体组分和氦同位素组成特征[J].科学通报,1993,38(9):814-817.
    王艳忠,操应长,王淑萍,等.不整合空间结构与油气成藏综述[J].大地构造与成矿学,2006,30(3):326-330.
    王屿涛,蒋少斌,刘树辉.石西油田烃类聚集及成藏史探讨[J].石油勘探与开发,1995,22(2):13-16.
    王宗秀,周高志,李涛.对新疆北部蛇绿岩及相关问题的思考和认识[J].岩石学报,2003,19(4):683-691.
    吴昌志,顾连兴,任作伟,等.辽河油田欧利坨子潜火山岩及其成藏机制[J].地质论评,2003,49(2):162-167,T005.
    吴昌志,顾连兴,任作伟,等.中国东部中、新生代含油气盆地火成岩油气藏成藏机制[J].地质学报,2005,79(4):522-530.
    吴孔友,查明,洪梅.准噶尔盆地不整合结构模式及半风化岩石的再成岩作用[J].大地构造与成矿学,2003,27(3):270-276.
    吴青鹏,谭开俊,牟中海,等.陆东地区构造几何学和构造运动学分析[J].西南石油学院学报,2004,26(5):14-17.
    吴小奇,刘德良,魏国齐,等.准噶尔盆地陆东—五彩湾地区石炭系火山岩地球化学特征及其构造背景[J].岩石学报,2009a,25(1):55-66.
    吴小奇,刘德良,李剑,等.准噶尔盆地陆东—五彩湾地区石炭系火山岩储集性能及影响因素[J].地质科学,2009b,44(1):1·13.
    吴晓智,齐雪峰,唐勇,等.新疆北部石炭纪地层、岩相古地理与烃源岩[J].现代地质,2008,22(4):549-557.
    吴言昌,常印佛.关于岩浆矽卡岩问题[J].地学前缘,1998,5(4):291-301.
    伍新和,王成善,伊海生,等.新疆三塘湖盆地烃源岩特征[J].成都理工大学学报(自然科学版),2004,31(5):511-516.
    夏林圻,夏祖春,徐学义,等.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,23(9):903-910.
    肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062-1076.
    肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1-169.
    谢庆宾,韩德馨,朱筱敏,等.三塘湖盆地火成岩储集空间类型及特征[J].石油勘探与开发,2002,29(1):84-86.
    谢志清,刘宝宪,周立发.准噶尔盆地腹部石西油田成藏序列分析[J].西北大学学报(自然科学版),2000,30(1):69-72.
    新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993,663-665.
    新疆油田公司勘探开发研究院.陆东—五彩湾地区天然气勘探部署[R].2006,内部汇报.
    徐新,朱永峰,陈博.卡姆斯特蛇绿混杂岩的岩石学研究及其地质意义[J].岩石学报,2007,23(7):1603-1610.
    徐兴友.准噶尔盆地东部克拉美丽地区石炭系烃源岩研究[J].油气地质与采收率,2005,12(1):38-41.
    徐学义,李向民,马中平,等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J].地质学报,2006,80(8):1168-1176.
    杨辉,张研,邹才能,等.松辽盆地北部徐家围子断陷火山岩分布及天然气富集规律[J].地球物理学报,2006,49(4):1136-1143.
    杨金龙,罗静兰,何发歧,等.塔河地区二叠系火山岩储集层特征[J].石油勘探与开发,2004,31(4):44-47.
    杨雷,金之钧.深部流体中氢的油气成藏效应初探[J].地学前缘,2001,8(4):337-341.
    杨品,孟繁有,朱爱国,等.准噶尔盆地石炭系含油气系统及天然气有利勘探区带评价[J].
    新疆石油学院学报,2000,12(04):1-4.
    杨品荣,杨文强,蒙有言,等.新疆克拉美丽造山带下石炭统地层及其沉积构造背景[J].地质科技情报,2007,26(5):6-10.
    杨晓勇,刘德良,陶士振.中国东部典型地幔岩中包裹体成分研究及意义[J].石油学报,1999,20(1):19-23.
    杨玉峰,张秋,黄海平,等.松辽盆地徐家围子断陷无机成因天然气及其成藏模式[J].地学前缘,2000,7(4):523-533.
    余淳梅,郑建平,唐勇,等.准噶尔盆地五彩湾凹陷基底火山岩储集性能及影响因素[J].地球科学-中国地质大学学报,2004,29(3):303-308.
    袁明生,张映红,韩宝福,等.三塘湖盆地火山岩地球化学特征及晚古生代大地构造环境[J].石油勘探与开发,2002,29(6):32-34.
    袁超,肖文交,陈汉林,等.新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义[J].地质学报,2006,80(2):254-263.
    翟光明,宋建国,靳久强,等.板块构造演化与含油气盆地形成和评价[M].北京:石油工业出版社,2002,1-461.
    张朝军,石昕,吴晓智,等.准噶尔盆地石炭系油气富集条件及有利勘探领域预测[J].中国石油勘探,2005,10(1):11-15.
    张朝军,何登发,吴晓智,等.准噶尔多旋回叠合盆地的形成与演化[J].中国石油勘探,2006,11(1):47-58.
    张海祥,张伯友,牛贺才.富铌玄武岩:板片熔体交代的地幔楔橄榄岩部分熔融产物[J].地球科学进展,2005,20(11):1234-1242.
    张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,1999,1-254
    张纪易.陆梁隆起带石油地质特征及勘探方向[J].新疆石油地质,1995,16(1):13-18.
    张季生,洪大卫,王涛.由航磁异常判断准噶尔盆地基底性质[J].地球学报,2004,25(4):473-478.
    张连昌,夏斌,牛贺才,等.新疆晚古生代大陆边缘成矿系统与成矿区带初步探讨[J].岩石学报,2006,22(5):1387-1398.
    张明洁.准噶尔盆地石炭系圈闭特征[J].新疆石油学院学报,2000,12(1):1-5.
    张明洁,杨品.准噶尔盆地石炭系(油)气藏特征及成藏条件分析[J].新疆石油学院学报,2000,12(2):8-13.
    张年富,曹耀华,况军,等.准噶尔盆地腹部石炭系火山岩风化壳模式[J].新疆石油地质,1998,19(6):450-452.
    张年富,张越迁,徐常胜,等.陆梁隆起断裂系统及其对油气运聚的控制作用[J].新疆石油地质,2003,14(4):281-283.
    张旗,钱青,王焰.造山带火成岩地球化学研究[J].地学前缘,1999,6(3):113·120.
    张旺生.新疆东准卡拉麦里造山带的开合节律[J].地学前缘,1997,4(4):184.
    张旺生,高怀忠.新疆东准卡拉麦里造山带的陆间残余海盆[J].地学前缘,1999,6(4):294.
    张义杰,齐雪峰,程显胜,等.准噶尔盆地晚石炭世和二叠纪沉积环境[J].新疆石油地质,2007,28(6):673-675.
    张越迁,张年富,姚新玉.准噶尔盆地腹部油气勘探回顾与展望[J].新疆石油地质,2000,21(2):105-109.
    赵澄林,孟卫工,金春爽,等.辽河盆地火山岩与油气[M].北京:石油工业出版社,1999,1-101.
    赵海玲,刘振文,李剑,等.火成岩油气储层的岩石学特征及研究方向[J].石油与天然气地质,2004,25(6):609-613.
    赵霞,贾承造,张光亚,等.准噶尔盆地陆东—五彩湾地区石炭系中、基性火山岩地球化学及其形成环境[J].地学前缘,2008,15(2):272-279.
    赵泽辉,郭召杰,韩宝福,等.新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义[J].岩石学报,2006,22(1):199-214.
    赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.
    赵振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006,22(5):1249-1265.
    赵振华,熊小林,王强,等.新疆北部晚古生代的底侵作用——来自橄榄玄粗岩与埃达克岩的证据[J].地质学报,2007,81(5):606-619.
    周鼎武,柳益群,邢秀娟,等.新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J].中国科学:D辑,2006,36(2):143-153.
    邹才能,赵文智,贾承造,等.中国沉积盆地火山岩油气藏形成与分布[J].石油勘探与开发,2008,35(3):257-271.
    朱永峰,王涛,徐新.新疆及邻区地质与矿产研究进展[J].岩石学报,2007,23(8):1785-1794.
    朱永峰,徐新.新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J].岩石学报,2006,22(12):2833-2842.
    朱志新,李少贞,李嵩龄.东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山-沉积体系特征[J].新疆地质,2005,23(1):14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700