用户名: 密码: 验证码:
上地幔流体成分和性质的理论预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体是推动地球的演化和发展的重要组成部分。脱水脱气、部分熔融、岩浆活动、深变质作用和地幔对流等一系列深部过程都离不开流体的参与。观测、实验和计算是认识上地幔流体的三种基本方法。然而,由于很难获取地幔样品且无法实现原位测量,直接观测的数据非常有限;而高温高压下的流体成分往往具有强腐蚀性和高流动性,相关实验测量的难度也很大;所以理论预测在地球深部流体的研究中具有特别重要的意义。
     本研究通过综合量子力学、分子动力学、统计力学和热力学等方法,研究和预测了上地幔流体体系的化学组成、物理化学性质及其地球化学作用机制。
     我们首先利用量子力学从头计算结果,获取不同流体分子之间的相互作用势能,在此基础上,进行大量分子动力学模拟以获取不同条件下C-O-H流体体系的物理化学性质,随后通过综合分子模拟数据和现有的实验数据,建立了适用于上地幔条件的C-O-H流体通用型状态方程,可以用来计算和预测上地幔条件下H_2O.CO_2、CH_4、C_2H_6、H_2、O_2、CO等流体组分在宽广温度压力范围内的PVTx性质和逸度系数,以这些工作为基础,结合统计热力学计算的标准态热力学性质,本研究最后建立了相应的热力学模型,通过自由能优化方法实现对上地幔温度压力条件下流体的组成和物理化学性质的预测。利用来自地球深部共生矿物对测量的氧逸度资料作为边界条件,模型计算显示水是古老克拉通底部上地幔流体中最重要的物种,而地球深部的还原环境中有无机成因甲烷生成的可能。在宏观性质以外,我们也利用分子动力学方法对二氧化硅熔融体在上地幔条件下的微观结构进行了分析,并通过高效的Voronoi图分析了熔融体中孔隙数量随压力的变化,探讨了氩在地球深部熔融体中溶解的微观机制。研究发现,氩的溶解度与二氧化硅熔融体结构中的填间孔隙数量随压力的变化密切相关,以此为基础建立的热力学模型成功地解释了高压下氩在二氧化硅熔融体中溶解度的突降。
Fluid is the key part the evolution of the Earth system. It plays critical role in degassing, partial melting, magma activity, deep metamorphism and mantle convection. Observation, experiment and calculation are three basic methods to investigate the properties of fluid in the Earth's upper mantle. However, due to the scarcity of sample from the mantle and it is impossible to measure properties in situ, the data from direct observations are very limited. The causticity and flexibility of fluids also make the experimental study to be very hard. So the theoretical predictions become particularly important in the study of fluid in the Earth deep interior.
     This study synthesizes the quantum mechanics, molecular dynamics, statistical mechanics and thermodynamics method and it gives prediction to the composition, the thermodynamics properties and the mechanism in fluids and melts in geological processes.
     We first evaluate the interaction force between different species from the ab initio potential surface, then we done extensive molecular simulations to get to PVTx properties in C-O-H system under various TP conditions. After that, we build a general equation of state for major species of C-O-H fluids in the upper mantle. It well reproduce and predict the PVTx properties and fugacity of H_2O, CO2, CH4, C2H6, H_2, O_2, CO and their mixtures. Based on these results and statistical method, we build the thermodynamics model of the composition and properties of C-O-H system in various temperature, pressure and geological environment with Gibbs energy minimization. In an application to the fluid composition in mantle under ancient craton, the model predict the H_2O is the always the dominant fluid species and it is possible to generate methane even ethane under reductive mantle conditions.
     Besides the macroscopic properties, this thesis gives microscopic picture of the solution of Ar in silica melts under upper mantle conditions. The structure of silica melts under pressure is investigated with an effective Voronoi diagram method, and it indicated the solubility of Ar is closely related to number of the interstitial voids large enough to accommodate Ar. The thermodynamics model based on the molecular simulation data well explains the drop of Ar solubility in silica melts under pressures in the mantle.
引文
Abdulagatov, I. M., Bazaev, A. R., Gasanov, R. K., et al., Measurements of the (p,p,T) properties and virial coefficients of pure water, methane, n-hexane, n-octane, benzene, and of their aqueous mixtures in the supercritical region. Journal of Chemical Thermodynamics,1996.28(9):1037-1057.
    Abdulagatov, I. M., Bazaev, A. R. and Ramazanova, A. E., P-V-T-X measurements of aqueous mixtures at supercritical conditions. International Journal of Thermophysics,1993a.14(2):231-250.
    Abdulagatov, I. M., Bazaev, A. R. and Ramazanova, A. E., Volumetric properties and virial coefficients of (water+methane). The Journal of Chemical Thermodynamics,1993b.25(2):249-259.
    Achtermann, H. J., Bose, T. K., Rogener, H., et al., Precise determination of the compressibility factor of methane, nitrogen, and their mixtures from refractive-index measurements. International Journal of Thermophysics,1986.7(3):709-720.
    Allegre, C. J., Hofmann, A. and Onions, K., The Argon constraints on mantle structure. Geophysical Research Letters,1996.23(24):3555-3557.
    Allen, L. C. and Huheey, J. E., The definition of electronegativity and the chemistry of the noble-gases. Journal of Inorganic and Nuclear Chemistry,1980.42(10):1523-1524.
    Andersen, T, Neumann, Else-Ragnhild, Fluid inclusions in mantle xenoliths. Lithos,2001,55(1-4):301-320
    Angus, S., Armstrong, B. and Reuck, K. M, International thermodynamic tables of fluid state-5 methane. International Union of Pure and Applied Chemistry, Chemical Data Series 16.,1978.
    Ballhaus, C. and Frost, B. R., The generation of oxidized CO_2-bearing basaltic melts from reduced CH_4-bearing upper mantle sources. Geochimica et Cosmochimica Acta,1994.58(22):4931-4940.
    Berendsen, H.J.C, Postma, J. P. M. and van Gunsteren, W. F., Molecular dynamics with coupling to an external bath, Journal of Chemical Physics,1984,81(8):3684-3690
    Belonoshko, A. B. and Saxena, S. K., A unified equation of state for fluids of C-H-O-N-S-Ar compostion and their mixtures up to very high-temperatures and pressures. Geochimica et Cosmochimica Acta,1992.56(10):3611-3626.
    Birkett, G. R. and Do, D. D., PVT behaviour of fluids with potential models optimised for phase equilibria. Fluid Phase Equilibria,2004.224(2):199-212.
    Bodnar R. J. and Costain J. K. Effect of varying fluid compostion on mass and energy transfer in the Earth's crust. Geophyics Research Letter,1991.18(5):983-986
    Botchamikov, R. E., Behrens, H. and Holtz, F., Solubility and speciation of C-O-H fluids in andesitic melt at T=1100-1300 ℃ and P=200 and 500 MPa. Chemical Geology,2006.229(1-3):125-143.
    Bouhifd, M. A. and Jephcoat, A. P., Aluminium control of argon solubility in silicate melts under pressure. Nature,2006.439(7079):961-964.
    Bouhifd, M. A., Jephcoat, A. P. and Kelley, S. P., Argon solubility drop in silicate melts at high pressures:A review of recent experiments. Chemical Geology,2008.256(3-4):252-258.
    Bruce Watson, E. and Brenan, J. M., Fluids in the lithosphere,1. Experimentally-determined wetting characteristics of CO_2-H_2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth and Planetary Science Letters,1987.85(4):497-515.
    Cao, Z. T., Tester, J. W. and Trout, B. L., Computation of the methane-water potential energy hypersurface via ab initio methods. Journal of Chemical Physics,2001.115(6):2550-2559.
    Carre, A., Horbach, J., Ispas, S., et al., New fitting scheme to obtain effective potential from Car-Parrinello molecular-dynamics simulations:Application to silica. Epl,2008.82(1):17001.
    Carroll, M. R. and Holloway, J. R., Volatiles in Magmas. In:Ribbe, P. H. (Ed.),Reviews in Mineralogy,1994. Mineralogical Society of America, Washington, D.C.
    Carroll, M. R. and Stolper, E. M., Argon solubility and diffusion in silica glass-implications for the solution behavior of molecular gases. Geochimica et Cosmochimica Acta,1991.55(1):211-225.
    Carroll, M. R. and Stolper, E. M., Noble-gas solubilities in silicate melts and glasses-new experimental results for argon and the relationship between solubility and ionic porosity. Geochimica et Cosmochimica Acta,1993.57(23-24):5039-5051.
    Chamorro-Perez, E., Gillet, P. and Jambon, A., Argon solubility in silicate melts at very high pressures. Experimental set-up and preliminary results for silica and anorthite melts. Earth and Planetary Science Letters,1996.145(1-4):97-107.
    Chamorro-Perez, E., Gillet, P., Jambon, A., et al., Low argon solubility in silicate melts at high pressure. Nature,1998.393(6683):352-355.
    Chan, S. L. and Elliott, S. R., Theoretical-study of the interstice statistics of the oxygen sublattice in vitreous SIO_2. Physical Review B,1991.43(5):4423-4432.
    Chen, B., Martin, M. G. and Siepmann, J. I., Thermodynamic properties of the Williams, OPLS-AA, and MMFF94 all-atom force fields for normal alkanes. Journal of Physical Chemistry B,1998. 102(14):2578-2586.
    Christotoforakos, M., Uberkritische systeme uderhohem Drucj. Eine statistisch-thermodynamisch entwickelte Zustandsgleichung und experimentelle Untersuchungen,1985. Ph.D University of Karlsruhe.
    Churakov, S. V. and Gottschalk, M., Perturbation theory based equation of state for polar molecular fluids:Ⅰ. Pure fluids. Geochimica Et Cosmochimica Acta,2003a.67(13):2397-2414.
    Churakov, S. V. and Gottschalk, M., Perturbation theory based equation of state for polar molecular fluids:Ⅱ. Fluid mixtures. Geochimica Et Cosmochimica Acta,2003b.67(13):2415-2425.
    Connolly, J. A. D., Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO_2-SiO_2. Contributions to Mineralogy and Petrology,1995.119(1):94-116.
    Connolly, J. A. D. and Cesare, B., C-O-H-S fluid composition and oxygen fugacity in graphite metapelites. Journal of Metamorphic Geology,1993. 11(3):379-388.
    Cook, G. A., Argon, helium and the rare gases:1. History, occurrence and properties,1961. Wiley.
    Da Silva, C. R. S., Wentzcovitch, R. M., Patel, A., et al., The composition and geotherm of the lower mantle:constraints from the elasticity of silicate perovskite. Physics of the Earth and Planetary Interiors,2000.118(1-2):103-109.
    Deffet, L., Liangne, L. and Ficks, F., La compressibilite du methane jusqu'a 3000 Kg/cm~2. Industrie Chim. Belge,1964.9879-888.
    Deines, P., The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews,2002.58(3-4):247-278.
    Douslin, D. R., Harrison, R. H., Moore, R. T., et al., P-V-T relations for methane. Journal of Chemical and Engineering Data,1964.9(3):358-363.
    Du, Z., Allan, N. L., Blundy, J. D., et al., Atomistic simulation of the mechanisms of noble gas incorporation in minerals. Geochimica et Cosmochimica Acta,2008.72(2):554-573.
    Duan, Z. H., Moller, N. and Weare, J. H., An equation of state for the CH4-CO_2-H_2O system:I. Pure systems from 0 to 1000℃ and 0 to 8000 bar. Geochimica et Cosmochimica Acta,1992a. 56(7):2605-2617.
    Duan, Z. H., Moller, N. and Weare, J. H., Molecular-dynamics simulation of PVT properties of geological fluids and a general equation of state of nonpolar and warkly polar gases up to 2000 K and 20000 bar. Geochimica Et Cosmochimica Acta,1992b.56(10):3839-3845.
    Duan, Z. H., Moller, N. and Weare, J. H., A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica Et Cosmochimica Acta,1996.60(7):1209-1216.
    Dubessy, J., Buschaert, S., Lamb, W., et al., Methane-bearing aqueous fluid inclusions:Raman analysis, thermodynamic modelling and application to petroleum basins. Chemical Geology, 2001.173(1-3):193-205.
    Errington, J. R., Boulougouris, G. C, Economou,1. G., et al., Molecular simulation of phase equilibria for water-methane and water-ethane mixtures. Journal of Physical Chemistry B,1998. 102(44):8865-8873.
    Ertan, IE, William P. Leeman, Fluid inclusions in mantle and lower crustal xenoliths from the Simcoe volcanic field, Washington. Chemical Geology,1999.154(1-4):83-95.
    Fenghour, A., Wakeham, W. A. and Watson, J. T. R., Densities of (water plus methane) in the temperature range 430 K to 699 K and at pressures up to 30 MPa. Journal of Chemical Thermodynamics,1996.28(4):447-458.
    Fermi, E., Pasta, J. and Ulam, S., Los Alamos preprint,1955.
    Frezzotti, Maria-Luce, Peccerillo, Angelo, Diamond-bearing COHS fluids in the mantle beneath Hawaii. Earth and Planetary Science Letters,2007.262(1-2):273-283
    French, B. M., Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures. Reviews of Geophysics,1966.4(2):223-254.
    Frezzotti, M. L., Di Vincenzo, G. and Ghezzo, C, Burke, E.A.J.,, Evidence of magmatic CO_2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range. Contributions to Mineralogy and Petrology,1990.117(1):111-123.
    Fried, L. E. and Howard, W. M., Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Physical Review B:Condensed Matter,2000.61(13):8734-8743.
    Frost, D. J. and Wood, B. J., Experimental measurements of the fugacity of CO2, and graphite/diamond stability from 35 to 77 kbar at 925 to 1650℃. Geochimica Et Cosmochimica Acta,1997.61(8):1565-1574.
    Gerlach, T. M, McGee, K. A., Elias, T., et al., Carbon dioxide emission rate of Kilauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth,2002.107(B9).
    Ghiorso, M. S., Nevins, D., Cutler, I., et al., Molecular dynamics studies of CaAl_2Si_2O_8 liquid. Part Ⅱ: Equation of state and a thermodynamic model. Geochimica et Cosmochimica Acta,2009. 73(22):6937-6951.
    Gonnermann, H. M. and Mukhopadhyay, S., Preserving noble gases in a convecting mantle. Nature, 2009.459(7246):560-U88.
    Grevel, K. D., Modified Redlich-Kwong equations of state for CH_4 and CH_4-H_2O fluid mixtures. Neues Jahrbuch Fur Mineralogie-Monatshefte,1993. (10):462-480.
    Griffin, W. L., O'Reilly, S. Y., Natapove, L. M., et al., The evolution of lithospheric mantle beneath the Kalahari craton and its margins. Lithos,2003.71 (2-4):215-241.
    Guillot, B. and Sarda, P., The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochimica et Cosmochimica Acta,2006. 70(5):1215-1230.
    Gurvich, L. V., Iorish, V. S., Yungman, V. S., et al., Thermodynamic Properties As A Function of Temperature. In:Lide, D. R. (Ed.y.CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition),,2007. Taylor and Francis, Boca Raton, FL.
    Hanniel, I. and Elber, G., Computing the Voronoi cells of planes, spheres and cylinders in. Computer Aided Geometric Design,2009.26(6):695-710.
    Hedenquist, J. W. and Lowenstern, J. B., The role of magmas in the formation of hydrothermal ore deposits. Nature,1994.370519-526.
    Hess, B., Kutzner, C, van der Spoel, D., et al., GROMACS 4:Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008.4(3):435-447.
    Hnedkovsky, L., Wood, R. H. and Majer, V., Volumes of aqueous solutions of CH_4, CO_2, H_2S, and NH3 at temperatures from 298.15 K to 705 K and pressures to 35 MPa. Journal of Chemical Thermodynamics,1996.28(2):125-142.
    Holland, T. and Powell, R., A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO_2 and H_2O in the range 1 bar to 50 kbar and 100-1600℃. Contributions to Mineralogy and Petrology,1991.109265-273.
    Holland, T. J. B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest. Journal ofMetamorphic Geology,1998.16(3):309-343.
    Holloway, J. R., Fugacity and activity of molecular species in supercritical fluids. In:Fraser, D. (Ed.):Thermodynamics in Geology,1977. Reidel, Boston.
    Holloway, J. R., Compositions and volumes of supercritical fluids. In:Hollister, L. S. and Crawford, M. L. Eds.):Fluid Inclusions:Application to Petrology,1981. Mineralogical Society of Canada, London.
    Hoover, W. G., Canonical dynamics:Equilibrium phase-space distributions, Physics Review A,1985. 31(3):1695-1697
    Horbach, J., Molecular dynamics computer simulation of amorphous silica under high pressure. European-Science-Foundation Exploratory Workshop on Glassy Liquids Under Pressure,2007. lop Publishing Ltd, Ustron, Poland.
    Huber, K. and Herzberg, G., Molecular spectra and molecular structure IV Constants of diatomic molecules,1979. Van Rostrand-Reinhold, New York.
    Huizenga, J. M, Thermodynamic modeling of C-O-H fluids. Lithos,2001.55(1-4):101-114.
    Huizenga, J. M., COH, an Excel spreadsheet for composition calculations in the C-O-H fluid system. Computers& Geosciences,2005.31(6):797-800.
    Huizenga, J. M. and Touret, J. L. R., Fluid inclusions in shear zones:the case of the Umwindsi shear zone in the Harare-Shamva-Bindura greenstone belt, NE Zimbabwe. European Journal of Mineralogy,1999.111079-1090.
    Ichiki, M., Baba, K., Obayashi, M., et al., Water content and geotherm in the upper mantle above the stagnant slab:Interpretation of electrical conductivity and seismic P-wave velocity models. Physics of the Earth and Planetary Interiors,2006.155(1-2):1-15.
    Jacobs, G. K. and Kerrick, D. M, Methane:an equation of state with application to the ternary system H_2O-CO_2-CH_4. Geochimica Et Cosmochimica Acta,1981.45(5):607-614.
    Jakobsson, S. and Oskarsson, N., The system C-O-H at low fO_2, high P and T. EOS,1988.69(16):515.
    Jakobsson, S. and Oskarsson, N., Experimental determination of fluid compositions in the system C-O-H at high P and T and low fO2. Geochimica Et Cosmochimica Acta,1990.54(2):355-362.
    Joffrion, L. L. and Eubank, P. T., P-V-T data and virial-coefficients for gaseous methane-water mixtures with correction for adsorption effects. Fluid Phase Equilibria,1988.43(2-3):263-294.
    Joffrion, L. L. and Eubank, P. T., Compressibility factors, densities, and residual thermodynamic properties for methane water mixtures. Journal of Chemical and Engineering Data,1989. 34(2):215-220.
    Johnson, J. W., Oelkers, E. H. and Helgeson, H. C, SUPCRT92-a software package for calculation the standard molar thermodynamic properities of minerals, gases, aqueous species, and reaction from 1 bar to 5000 bar and 0℃ to 1000℃. Computers& Geosciences,1992.18(7):899-947.
    Jorgensen, W. L., Madura, J. D., and Swenson, C. J.,1984. Optimized intermolecular potential functions for liquid hydrocarbons. Journal of American Chemical Society 106(22):6638-6646.
    Kamenetsky, V. S., Kamenetsky, Maya B., Sharygin, Victor V., et al., Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia):Chemical Geology,2007.237(3-4):384-400
    Kaminski, G., Duffy, E. M., Matsui, T., et al., Free-energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. Journal of Physical Chemistry,1994. 98(49):13077-13082.
    Kenney, J. F., Kutcherov, V. A., Bendeliani, N. A., et al., The evolution of multicomponeint systems at high pressures:VI. The thermodynamic stability of the hydrogen-carbon system:The genesis of hydrocarbons and the origin of petroleum. Proceedings of the National Academy of Sciences of the United States of America,2002.99(17):10976-10981.
    Kerrick, D. M. and Jacobs, G. K., A modified Redlich-Kwong equation for H_2O, CO_ and H_2O-CO_2 mixtures at elevated temperatures and pressures. American Journal Of Science,1981. 281(6):735-767.
    Kerrick D.M., Connolly, J.A.D.,2001, Metamorphic devolatilization of subducted marine sediments implications for CO_2 and H_2O recycling. Nature,411(6835):293-296
    Kim, D. and Kim, D. S., Region-expansion for the Voronoi diagram of 3D spheres. Computer-Aided Design,2006.38(5):417-430.
    Kim, D. S., Cho, Y. and Kim, D., Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design,2005.37(13):1412-1424.
    Kisch, H. J. and Van Den Kerkhof, A. M., CH4-rich inclusions from quartz veins in the Valley and Ridge province and the anthracite fields of the Pennsylvania Appalachians. The American Mineralogist,1991.76(1-2):320-340.
    Klein-BenDavid, O, Elad, S. Izraeli, Hauri, Erik, Navon, Oded (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochimica et Cosmochimica Acta, 71:723-744
    Konrad, O. and Lankau, T., Solubility of methane in water:The significance of the methane-water interaction potential. Journal of Physical Chemistry B,2005.109(49):23596-23604.
    Kress, V. C, Ghiorso, M. S. and Lastuka, C, Microsoft Excel spreadsheet-based program for calculating equilibrium gas speciation in the C-O-H-S-Cl-F system. Computers& Geosciences, 2004.30(3):211-214.
    Larsen, R. B., Geofluid-a FORTRAN-77 program to compute chemical-properities of gas species in C-O-H fluids. Computers& Geosciences,1993.19(9):1295-1320.
    Lin, F., Experimental Study of the PVTX Properties of the System H_2O-CH_4,2005. Ph.D thesis, Virginia Polytechnic Institute and State University.
    Liu, W. and Fei, P. X., Methane-rich fluid inclusions from ophiolitic dunite and post-collisional mafic-ultramafic intrusion:The mantle dynamics underneath the Palaeo-Asian Ocean through to the post-collisional period. Earth and Planetary Science Letters,2006.242(3-4):286-301.
    Liu, Y., Generation and evolution of basaltic magmas:some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities,2005. 11(1):9-46.
    Lux, G., The behavior of noble-gases in silicate liquids-solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochimica et Cosmochimica Acta,1987. 51(6):1549-1560.
    Malavasi, G., Menziani, M. C, Pedone, A., et al., Void size distribution in MD-modelled silica glass structures. Journal of Non-Crystalline Solids,2006.352(3):285-296.
    Marrocchi, Y. and Toplis, M. J., Experimental determination of argon solubility in silicate melts:An assessment of the effects of liquid composition and temperature. Geochimica et Cosmochimica Acta,2005.69(24):5765-5776.
    Marty, B. and Jambon, A., C~3/He in volatile fluxes from the solid Earth:implications for carbon geodynamics. Earth and Planetary Science Letters,1987.83(1-4):16-26.
    Martyna, G. J., Tobias, D. J. and Klein, M. L., Constant pressure molecular dynamics algorithms. Journal of Chemical Physics,1994.101(5):4177-4189.
    Matveev, S.,Ballhaus, C, Fricke, K., et al., Volatiles in the Earth's mantle.1. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochimica Et Cosmochimica Acta,1997.61(15):3081-3088.
    McCammon, C. and Kopylova, M. G., A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contributions to Mineralogy and Petrology,2004.148(1):55-68.
    McCollom, T. M. and Shock, E. L., Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration. Journal of Geophysical Research-Solid Earth,1998.103(B1):547-575.
    Meade, C. and Jeanloz, R., Frequency-dependent equation of state of fused-silica to 10 GPa. Physical Review B,1987.35(1):236-244.
    Medvedev, N. N., Voloshin, V. P., Luchnikov, V. A., et al., Algorithm for three-dimensional Voronoi S-network. Journal of Computational Chemistry,2006.27(14):1676-1692.
    Michels, A. and Nederbragt, G. W., Isotherms of methane between 0 ℃ and 150 ℃ and densities 19 and 53 amagat (pressures between 20 and 80 atm.). Physica,1935.2(1-12):1000-1002.
    Michels, A. and Nederbragt, G. W., Isotherms of methane between 0 and 150 ℃ for densities up to 225 amagat. Calculated specific heat, energy and entropy in the same region. Physica,1936. 3569-577.
    Mitra, S. K. and Hockney, R. W., Distribution of holes in simulated silicon dioxide glass. Journal of Physics C-Solid State Physics,1980.13(27):L739-L741.
    Morrell, W. E. and Hildebrand, J. H., The Distribution of Molecules in a Model Liquid. The Journal of Chemical Physics,1936.4(3):224-227.
    Mullis, J., Dubessy, J., Poty, B., et al., Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochimica et Cosmochimica Acta,1994. 58(10):2239-2267.
    Navon N., O. Klein-BenDavid, and E.S.Izraeli, Diamond-forming fluids. Geochimica et Cosmochimica Acta,2004,68(11):A277
    Nevins, D. and Spera, F. J., Molecular dynamics simulations of molten CaAl2Si2O8:Dependence of structure and properties on pressure. American Mineralogist,1998.83(11-12):1220-1230.
    Nose, S., A unified formulation of the constant temperature molecular dynamics methods, Journal of Chemical Physics,1984.81 (1):511-519
    Nose, S. and Klein, M. L., Constant pressure molecular dynamics for molecular systems, Molecular Physics,1983.50(5):1055-1076
    Ohmoto, H. and Kerrick, D., Devolatilization equilibria in graphitic systems. American Journal of Science,277(8):1013-1044.
    Olds, R. H., Reamer, H. H., Sage, B. H., et al., Phase equilibrium in hydrocarbon systems:volumetric behavior of methane. Indian Enginerr and Chemical Research,1943. 35:922-924.
    Ozima, M. and Podosek, F. A., Noble gas geochemistry.2002. Cambridge University Press Cambridge, London, New York.
    Ozima, M. and Zahnle, K., Mantle degassing and atmospheric evolution-noble-gas view. Geochemical Journal,1993.27(1):185-200.
    Paonita, A., Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes, Workshop on Gases in Magnetic Evolution. 2003. Editrice Compositori Bologna, Rome, ITALY.
    Paramore, S., Cheng, L. W., and Berne, B. J., A Systematic Comparison of Pairwise and Many-Body Silica Potentials. Journal of Chemical Theory Computation,2008.4(8):1698-1708.
    Parrinello M. And Rahman A., Polymorphic transitions in single crystals:A new molecular dynamics method, Journal of Apply Physics,1981.52(12):7182-7190
    Pasteris, J. D., Fluid inclusions in mantle xenoliths. In:Nixon, P. H. (Ed.):Mantle Xenoliths,1987. Wiley, New York.
    Pepin, R. O. and Porcelli, D., Xenon isotope systematics, giant impacts, and mantle degassing on the early Earth. Earth and Planetary Science Letters,2006.250(3-4):470-485.
    Robertso.Sl and Babb, S. E., PVT properties of methane and propene to 10 Kbar and 200 ℃. Journal of Chemical Physics,1969.51(4):1357-&.
    Roedder, E., Fluid inclusions as samples of ore fluids.. In:Barnes, H. (Ed.):Geochemistry of Hydrothermal Ore Deposits,1979. Wiley-lnterscience, New York.
    Roedder, E.,Fluid inclusions. Reviews in Mineralogy,1984.12(1):1-84
    Ross, M. and Ree, F. H., Repulsive forces of simple molecules and mixtures at high-density and temperature. Journal of Chemical Physics,1980.73(12):6146-6152.
    Rosenbaum, J.M., Alan Z Indler and James L. Rubenstone, Mantle fluids:Evidence from fluid inclusions. Geochimica et Cosmochimica Acta,1996.60(17):3229-3252
    Sachan, H K, Mukherjee, Barun K., Bodnar, Robert J., Preservation of methane generated during serpentinization of upper mantle rocks:Evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India). Earth and Planetary Science Letters,2007.257(1-2):47-59
    Sarda, P. and Guillot, B., Breaking of Henry's law for noble gas and CO_2 solubility in silicate melt under pressure. Nature,2005.436(7047):95-98.
    Sastry, S., Corti, D. S., Debenedetti, P. G., et al., Statistical geometry of particle packings.1. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings. Physical Review E,1997a.56(5):5524-5532.
    Sastry, S., Debenedetti, P. G. and Stillinger, F. H., Statistical geometry of particle packings.2. "Weak spots" in liquids. Physical Review E,1997b.56(5):5533-5543.
    Saxena, S. K. and Fei, Y., High pressure and high temperature fluid fugacities. Geochimica Et Cosmochimica Acta,1987.51(4):783-791.
    Schamp, H. W., Mason, E. A., Richardson, A. C. B., et al., Compressibility and intermolecular forces in gases:Methane. Physics Fluid,1958. 1(2):329-337.
    Schmidt, B. C. and Keppler, H., Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth and Planetary Science Letters,2002.195(3-4):277-290.
    Scott, H. P., Hemley, R. J., Mao, H.-k., et al., Generation of methane in the Earth's mantle:In situ high pressure-temperature measurements of carbonate reduction. PNAS,2004a.101(39):14023-14026.
    Scott, H. P., Hemley, R. J., Mao, H. K., et al., Generation of methane in the Earth's mantle:In situ high pressure-temperature measurements of carbonate reduction. Proceedings of the National Academy of Sciences of the United States of America,2004b.101 (39):14023-14026.
    Shackelford, J. F., Gas solubility is glasses-principles and structural implications.18th International Congress of Glass,1998. Elsevier Science Bv, San Francisco, California.
    Shackelford, J. F. and Masaryk, J. S., Interstitial structure of vitreous silica. Journal of Non-Crystalline Solids,1978.30(2):127-134.
    Shi, P. F. and Saxena, S. K., Thermodynamic modeling of the C-H-O-S fluid system. American Mineralogist,1992.77(9-10):1038-1049.
    Shibata, T., Takahashi, E. and Matsuda, J., Solubility of neon, argon, krypton, and xenon in binary and ternary silicate systems:A new view on noble gas solubility. Geochimica et Cosmochimica Acta, 1998.62(7):1241-1253.
    Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I,1972. National Bureau of Standards, Washington, D.C.,
    Shmonov, V. M., Sadus, R. J. and Franck, E. U., High-pressure phase-equilibria and supercritical PVT data of the binary water plus methane mixture to 723 K and 200 Mpa. Journal of Physical Chemistry,1993.97(35):9054-9059.
    Simakov, S. K., Redox state of eclogites and peridotites from sub-cratonic upper mantle and a connection with diamond genesis. Contributions to Mineralogy and Petrology,2006. 151(3):282-296.
    Smith J. V., Delaney J. S., Hervig R. L. Storage of F and Cl in the upper mantle:geochemical implications, Lithos,1981.14(1):133-147
    Smith, W. R. and Missen, R. W., Chemical reaction equilibrium analysis,1982. Wiley-Interscience publication, New York.
    Sokol, A. G., Pal'yanov, Y. N., Pal'yanov, G. A., et al., Diamond crystallization in fluid and carbonate-fluid systems under mantle PT conditions:1. cluid composition. Geochemistry International, 2004.42(9):830-838.
    Sokol, A. G., Pal'yanov, Y. N., Pal'yanova, G. A., et al., Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials,2001.10(12):2131-2136.
    Spera, F. J., Nevins, D., Ghiorso, M., et al., Structure, thermodynamic and transport properties of CaAl_2Si_2O_8 liquid. Part I:Molecular dynamics simulations. Geochimica et Cosmochimica Acta, 2009.73(22):6918-6936.
    Sretenskaya, N. G., Zhakirov, I. V., Shmonov, V. M., et al., Vodosoderzhaschie fluidnye systemy (Water-bearing fluid systems.).1986. Nauka Publishing House, Moscow.
    Stalder, R., Foley, S. F., Brey, G. P., et al., Mineral aqueous fluid partitioning of trace elements at 900-1200 degrees C and 3.0-5.7 GPa:New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta,1998. 62(10):1781-1801.
    Taylor, W. R. and Green, D. H., Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature,1988.332(6162):349-352.
    Tomlinson, Emma L., McMillan, Paul F., Zhang, Ming, et al., Quartz-bearing C-O-H fluid inclusions diamond:Retracing the pressure-temperature path in the mantle using calibrated high temperature IR spectroscopy. Geochimica et Cosmochimica Ada,2007.71(24):6030-6039
    Touret, J.L.R.,2003, Fluids in the deep earth. Journal of Geochemical Exploration,78-79:659-663
    Trappeniers, N. J., Wassenaar, T. and Abels, J. C, Isotherms and thermodynamic properties of methane at temperatures between 0℃ and 150℃ and at densities up to 570 amagat. Physica A, 1979.98(1-2):289-297.
    Trave, A., Tangney, P., Scandolo, S., et al., Pressure-induced structural changes in liquid SiO_2 from ab initio simulations. Physical Review Letters,2002.89(24):245504.
    Tsiklis, D. S., Linshits, L. R. and Tsimmerman, S. S., Molar volumes and thermodynamic properties of methane at high pressures and temperatures. Dokl. Akad. Nuuk SSSR,1971.198:423-425.
    van Beest, B. W. H., Kramer, G. J. and van Santen, R. A., Force fields for silicas and aluminophosphates based on ab initio calculations. Physical Review Letters,1990.64(16):1955.
    Van der Hilst, R. D., De Hoop, M. V., P. Wang, S.-H. S., et al., Seismostratigraphy and Thermal Structure of Earth's Core-Mantle Boundary Region Science,2007.315(8):1813-1817
    Veto, I., Futo, I., Horvath, I., et al., Late and deep fermentative methanogenesis as reflected in the H-C-O-S isotopy of the methane-water system in deep aquifers of the Pannonian Basin (SE Hungary). Organic Geochemistry,2004.35(6):713-723.
    Wallace, P. J., Benedetto De, V. and Robert, J. B., From mantle to atmosphere:magma degassing, explosive eruptions, and volcanic volatile budgets, Developments in Volcanology,2003. Elsevier.
    Welsch, Die system xenon-wasser und methan-wasser beiholen drticken und temperaturen.,1973. Ph.D thesis, University of Karlsruhe.
    Wood, B. J., An experimental test of the spinel peridotite oxygen barometer. Journal of Geophysics Research,1990.95(B10):l5845-15851.
    Woodcock, L. V., Angell, C. A. and Cheeseman, P., Molecular-dynamics studies of vitreous state-simple ionic systems and silica. Journal of Chemical Physics,1976.65(4):1565-1577.
    Woodland, A. B. and Koch, M., Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters,2003.214(l-2):295-310.
    Wortman, R. S. and Shackelford, J. F., Gas-transport in vitreous silica fibers. Journal of Non-Crystalline Solids,1990.125(3):280-286.
    Wulf, R., Calas, G., Ramos, A., et al., Structural environment of krypton dissolved in vitreous silica. American Mineralogist,1999.84(9):1461-1463.
    Xu, Y., Lin, C. and Shi, L., The geotherm of the lithosphere beneath Qilin, SE China:a re-appraisal and implications for P-T estimation of Fe-rich pyroxenites. Lithos,1999.47(3-4):181-193.
    Xue, X. Y., Stebbins, J. F., Kanzaki, M., et al., Pressure-induced silicon coordination and tetrahedral structural-changes in alkali oxide-silica melts up to 12 GPA-NMR, Ramanaman, and infrared-spectroscopy. American Mineralogist,1991.76(1-2):8-26.
    Zhang, L. Q., Van Orman, J. A. and Lacks, D. J., Effective radii of noble gas atoms in silicates from first-principles molecular simulation. American Mineralogist,2009.94(4):600-608.
    Zhang, Y. X. and Xu, Z. J., Atomic radii of noble-gas elements in condensed phases. American Mineralogist,1995.80(7-8):670-675.
    Zhang, C. and Duan, Z. H., Molecular dynamics simulation of the CH4 and CH4-H2O systems up to 10 GPa and 2573 K, Geochim. Cosmochim. Acta,2007.71(8):2036-2055.
    Zhang, Z. G. and Duan, Z. H., Equation of state of the H_2O, CO_2, and H_2O-CO_2 systems up to 10 GPa and 2573.15 K:Molecular dynamics simulations with ab initio potential surface. Geochim. Cosmochim. Acta,2006.70(9):2311-2324.
    Zhang, Z. G. and Duan, Z. H.,2005. Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Physics of the Earth and Planetary Interiors,2005.149(3-4):335-354.
    Zheng, Y. F., Fu, B., Xiao, Y. L., et al., Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains. Lithos, 1999.46(4):677-693.
    曹荣龙.地幔流体的前沿研究.地学前缘,1996,3(3-4):161-171.
    丁清峰,孙丰月.地幔流体研究进展.地质科技情报,2001.20(3):21-26
    杜乐天.地球的五个气圈的氢烃资源.铀矿地质,1993,5(2):257-264
    刘丛强,黄智龙,李和平等.地幔流体及其成矿作用.地学前缘,2001.8(4):231-243
    路凤香.深部地幔与深部流体.地学前缘,1996.3(4):181-186
    谢鸿森,侯渭,周文戈.地幔中水的存在形式和含水量.地学前缘,2005.12(1):55-60
    张文兰,邵济安,徐夕生等.科洛橄榄岩地幔捕虏体中富P,F地幔熔/流体的发现及其交代作用.科学通报,2007.52(8):931-938
    郑永飞.深俯冲大陆板块折返过程中的流体活动.科学通报,2004.49(10):917-929
    朱永峰.地幔流体与地球的放气作用.地学前缘,1998.5(A08):71-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700