用户名: 密码: 验证码:
辽南—吉南中生代侵入岩锆石U-Pb年代学和地球化学:对华北克拉通破坏时空范围的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以辽南-吉南地区中生代侵入岩为研究对象,利用锆石LA-ICPMS U-Pb定年技术,确定了辽南-吉南地区中生代侵入岩的形成时代;利用中生代侵入岩的主量元素、微量元素以及Sr-Nd同位素地球化学示踪技术,讨论了辽南-吉南地区晚三叠世和早白垩世侵入岩的岩浆源区性质及其空间变异和形成的构造背景。最终为解决华北克拉通破坏的起始时间、破坏的空间范围以及破坏产生的动力学机制等科学问题提供岩石学和地球化学方面的制约。
     辽南-吉南存在一条南西-北东向展布的晚三叠世侵入岩带,代表性岩体—蚂蚁河岩体的形成时代为225Ma,岩石组合由辉长闪长岩、花岗闪长岩及二长花岗岩组成。主量元素显示双峰式火成岩组合特征。微量元素以及同位素地球化学的研究结果表明,辉长闪长岩主要来源于亏损的岩石圈地幔;而花岗闪长岩及二长花岗岩主要来源于下地壳。结合辽南-吉南地区晚三叠世侵入岩和火山岩中捕获锆石/继承锆石研究成果,提出辽南-吉南晚三叠世岩浆作用形成于扬子与华北克拉通俯冲碰撞后的伸展环境。综合上述成果,认为华北克拉通破坏的起始时间为晚三叠世,破坏的空间范围应包括辽南地区,此时破坏的机制以拆沉作用为主。
     辽南-吉南地区早白垩世侵入岩的形成时代介于137~119 Ma,岩石组合包括镁铁质-超镁铁质岩石、花岗质岩石以及少量的闪长质岩石,显示典型的双峰式岩浆作用特征。早白垩世侵入岩岩石学和地球化学特征的研究表明,镁铁质-超镁铁质岩石来源于受早期拆沉的榴辉岩/石榴辉石岩熔体/流体交代的岩石圈地幔,而花岗质岩石主要来源于下地壳。辽南-吉南地区,下地壳组成具有良好的空间变异,从南西到北东,下地壳中新增生的陆壳物质逐渐增多。结合区域构造以及古太平洋板块的演化历史,认为华北克拉通东部早白垩世岩浆作用形成于与古太平洋板块俯冲作用有关的陆内伸展环境。早白垩世时期,华北克拉通破坏的机制以软流圈上涌导致对岩石圈地幔的热-化学侵蚀作用为主。
LA-ICP MS zircon U-Pb ages, major- and trace- element, and Sr-Nd isotopic data of the Mesozoic intrusions from southern Liaoning and Jilin provinces have been determined to constrain the natures of magma sources and its spatial variation as well as their tectonic settings. These chronological and geochemical data, together with regional tectonic analysis, provide constraints on the initial time, spatial extent, and dynamic mechanism of the North China Craton destruction. Main achievements are as follows:
    
     1. The Mayihe pluton from southern Jilin province consists mainly of gabbro-diorite, granidiorite and monzogranite and have ages of 224- 226 Ma dated by the LA-ICP MS zircon U-Pb method. The Early Cretaceous intrusive rocks from the southern Liaoning and Jilin Provinces are composed mainly of mafic-ultramafic intrusive rocks and granitoids. The dating results for twelve samples range from 137 to 119Ma.
     2. The gabbro-diorites from the Mayihe pluton have low SiO2 contents and high MgO contents, and are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs) and heavy rare earth elements (HREEs). Their initial 87Sr/86Sr ratios andεNd(t) values are 0.7037 and +3.45~ +3.82, respectively. Their TDM1 modal ages vary from 726 to 772Ma. The granitoids from Mayihe pluton have high SiO2 contents and low MgO contents, and belong to metaluminous to weakly peraluminous I-type granitoids. Their initial 87Sr/86Sr ratios andεNd(t) values range from 0.7053 to 0.7058 and from -0.73 to -3.40, respectively.Their TDM1 modal ages are 990 - 1083Ma.
     3. The Late Triassic intrusive rocks from southern Liaoning and Jilin provinces, together with the Late Triassic intrusive rocks from southern Liaoning (210~213Ma, zircon LA-ICP-MS U-Pb dating method),are composed mainly of mafic rocks and granitoids. The mafic rocks include shoshonitic and tholeiitic rocks, whereas granitoids consist mainly of granodiorite, monzogranite, and minor quartz diorite. The shoshonitic rocks have low SiO2 contents (~ 49.6 wt %) and high Mg# (Mg#>57) and are characterized by enrichment in LILEs, LREEs, and depletion in HFSEs such as Nb, Ta, Zr, Hf and Ti. TheirεNd(t) values (-13.2 to -13.4) andεHf(t) values (-11.0 to -11.5) imply that the primary magma could be derived from partial melting of an enriched lithosphere mantle. The granitoids with high SiO2 and low MgO contents have initial 87Sr/86Sr ratios of 0.7095 ~ 0.7112,εNd(t) values of -10 ~ -15.9, andεHf(t) values of -12.0 ~ -13.9. Their T DM1 modal ages range from 999 to 1558Ma.
     4. The Early Craterous mafic- ultramafic intrusive rocks from southern Liaoning and Jilin provinces are characterized by low SiO2, high MgO, enrichment in LREEs and LILEs, as well as depletion in HREEs and HFSEs. Their initial 87Sr/86Sr ratios andεNd(t) values range from 0.7056 to 0.7112 and from -6.56 to -20.1, respectively. Their initial 87Sr/86Sr ratios and TDM1 values decrease whereasεNd(t) values increase from southwest to northeast. The Early Craterous granitoids from southern Jilin province have SiO2 = 53.7~ 76.6wt%) and Mg# = 6.09~ 54.37. Chemically, they belong to metaluminous to weakly peraluminous I-type granite and are enriched in LREEs and LILEs and depleted in HREEs and HFSEs. A few highly fractionated granitoids are characterized by depletion in Ba and Sr. Their initial 87Sr/86Sr ratios andεNd(t) values are between 0.7052 and 0.7107, and between -1.93 and -13.9, respectively. Their TDM1 modal ages vary from 994 to 2002Ma. The initial 87Sr/86Sr ratios and TDM1 modal ages for these granitoids decrease whileεNd(t) values increase from southwest to northeast.
     5. The bimodal rock association for the late Triassic intrusions in the southern Liaoning and Jilin provinces suggests that they could form under an extensional environment. The Sr-Nd compositions of the gabbro-diorite in the Mayihe pluton imply that their primary magma should be derived from partial melting of a depleted lithosphere mantle, which is consistent with the juvenile depleted lithosphere mantle beneath the Xing’an-Mengolia (Xing-Meng) Orogenic belt. However, it is different from an enriched lithosphere mantle beneath southern Liaoning province. The Late Triassic granitoids from southern Jilin province could be originated from partial melting of a juvenile lower crust, which is concord with its tectonic position adjacent to the Xing-Meng orogenic belt. In contrast, the Late Triassic granitoids from southern Liaoning could be mainly derived from partial melting of an ancient lower crust.
     6. The late Triassic igneous rocks from southern Liaoning and southern Jilin provinces, together with the Late Triassic volcanic rocks in the southern Jilin and Jiazishan syenite in eastern Shandong, make up a late Triassic igneous rocks belt in the eastern NCC oriented in SW-NE direction. This igneous rock belt maily consists of a bimodal rock association, implying that they could form under an extensional setting. Combined with the occurrence of the late Triassic metamorphic zircons and the Neoproterozoic magmatic zircon in the Mesozoic igneous rocks from southern Liaoning and Jilin provinces, we conclude that the late Triassic magmatism could form under an post-collsional extensional setting of the Yangtze Craton and the NCC.
     7. The geochemical data of the early Cretaceous mafic-ultramafic rocks in the southern Liaoning and Jilin provinces indicate that their primary magmas could be originated from partial melting of the EMII-like lithosphere mantle. Their Sr-Nd isotopic compositions reveal that an enrichment extent gradually decreases from southern Liaoning to southern Jilin provinces. The early Cretaceous lithospheric mantle in southern Liaoning is geochemically similar to that in western Shandong. The EMII-like lithosphere mantle can be related to modification of the delaminated eclogite- or garnet pyroxenite-derived melt. The early Cretaceous granitoids could be mainly derived from partial melting of the lower continental crust, including an ancient and a juvenile crust materials. However, their spatial variations of Sr-Nd isotopic compositions reveal that the proportion of the juvenile crust increase in the magma sources from southwest to northeast. Combined with regional tectonics and Paleo-pacific plate subduction history, it is proposed that the Early Cretaceous magmatism in the eastern NCC could form under an intra-continental extensional environment resulted from the subduction of the Paleo-pacific plate.
     8. Together with regional tectonic evolution and new research achievements on igneous rocks, the above mentioned lines of evidence imply that the NCC destruction initiate in the late Triassic, and that the destruction mechanism should be delamination resulted from the northwestward subduction and collision of the Yangtze and the North China Cratons. The early Craterous is an important period of the NCC destruction resulted from subduction of the Paleo-Pacific plate beneath the Eurasian continent. The thermal-chemical erosion could be a dominant mechanism to result in the NCC destruction in the early Craterous. The spatial extent of the NCC destruction should include southern Liaoning and minor Jilin provinces.
引文
[1] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chem Geol, 2002, 192: 59-79.
    [2] Arne D., Worley B., Wilson Ch., Chen S. F., Foster D., Luo Z. L., Liu S. G., Dirks P. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibet plateau. Tectonophysics, 1997, 280: 239-256.
    [3] Atherton M. P. and Petford N. Generation of sodium-rich magmas from newly underplayted basaltic crust. Nature, 1993, 362: 144-146.
    [4] Ballard J. R., Palin J. M., Williams I. S., Campbel I. H., Faunes A. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29: 383-386.
    [5] Boyd F. R., Gurney J. J., Richardson S. H. Evidence for a 150-200 km thick Archaean lithosphere from diamond inclusion thermobarometry[J]. Nature, 1985, 315: 387-389.
    [6] Chen B., Jahn B. M., Arakawa Y., Zhai M. G. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China Craton: elemental and Sr-Nd-Pb isotopic constraints[J]. Contrib. Mineral. Petrol. , 2004, 148(4): 489-501.
    [7] Chen B., Zhai M. G. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains north China and implications for the sub-continental lithospheric mantle[J]. Geological magazine, 2003, 140(1): 87-93.
    [8] Chen J. F., Xie Z., Li H. M., Zhang X. D., Zhou T. X., Park Y. S., Ahn K. S., Chen D. G., Zhang X. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh Pressure terrane, China[J]. Geochem. J. 2003, 37: 35-46.
    [9] Chen L. H., Zhou X. H., 2004. Ultramafic xenoliths in Mesozoic diorite in West Shandong Province. Sci. in China(Series D), 47(6): 489-499.
    [10] Chen L. H., Zhou X. H. Suduction-related metasomatism in the thinning lithosphere:Evidence from a composite dunite-ortopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China craton[J]. G3(Geochemistry, Geophysics, Geosystems), 2005, 21(6): 938-957.
    [11] Cherniak D. J., Watson E. B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172: 5-24.
    [12] Davies G. A., Zheng Y. D., Wang C., Darby B. J. , Zhang C. H., Gehrels G. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China, in: M. S. Hendrix, Davis G. A.(Eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia: FromContinental Assembly to Intracontinental Deformation. Geol. Soc. Am. Mem., 2001, 194: 171-198.
    [13] Defant M. J. and Drummond M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662-665.
    [14] Engebretson D. C., Cox A., Gordon R. G. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Spec. Paper, 1985, 206:1-59.
    [15] Fan W. M., Zhang H. F., Baker J., Jarvis K. E., Mason P. R. D., Menzies M. A. On and off the North China craton: Where is the Archaean keel? [J]. J. Petrol., 2000, 41: 933-950.
    [16] Fan W., Menzies M. A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-180.
    [17] Foley S. F., Barth M. G., Jenner G. A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochim. Cosmochim. Acta, 2000, 64(5): 933-938.
    [18] Gao S., Luo T. C., Zhang B. R., Zhang H. F., Han Y. W., Hu Y. K., Zhao Z. D. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmo. Chimica. Acta, 1998, 62: 1959-1975
    [19] Gao S., Luo T. C., Zhang B. R., Zhang H. F., Han Y. W., Zhao Z. D., Hu Y. K. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochim. Cosmochim. Acta, 1998, 62: 1959-1975.
    [20] Gao S., Rudnick R. L., Xu W. L., Yuan H. L., Liu Y. S. Puchtel I., Liu X. M., Huang H., Wang X. R., Recycling deep cratonic lithosphere and generation of intraplate magmatism[J]. Earth Planet. Sci. Lett. 2008, In press.
    [21] Gao S., Rudnick, R. L., Carlson R. W., McDonough W. F., Liu Y. S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth Planet. Sci. Lett., 2002, 198: 307-322
    [22] Gao S., Rudnick, R. L., Yuan H. L., Liu, X.M., Liu Y. S., Xu W. L., Ling W. L., Ayers J., Wang X.C., and Wang, Q.H. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897
    [23] Gilder S A, and Courtillot V. Timing of the North-South China collision from new middle to late Mesozoic paleomagnetic data from the North China Block[J]. J. Geophys. Res., 1997, 102(B8): 17713-17727.
    [24] Grriffin W. L., Zhang A. D., O’Reilly S. Y., et a1. Phanerozoic evolution of the lithosphere beneath the Sino—Korean craton[A].Flower M.,Chung S. L.,Lo C. H.,et a1. Mantle Dynamics and Plate Interaction s in East Asia [M]. Am Geophys Union, (Geodyn. Series), 1998, 100: 107-126.
    [25] Guo F., Eizonakamuru, Fan W. M., Kobayoshi K., Li C. W. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneathcontinental collisional belt[J]. Lithos, 2004, 78(3): 291-305.
    [26] Guo F., Fan W. M. Late Mesozoic Mafic Intrusive Complexes in North China Block: Constraints on the Nature of Subcontinental Lithospheric Mantle[J]. Phys. Chem. Earth., 2001, 26(9/10): 159-771.
    [27] Harris A. C., Allen C. M., Bryan S. E., Campbell I. H., Holcombe R. J., Palin J. M. LA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: implication for porphyry-related mineralization[J]. Mineral. Dep., 2004, 39: 46-67.
    [28] Harrison T. M., Aleinikoff J. N., Compston W. Observations and controls on the occurrence of inherited zircon in concord-type granitoids, New Hampshire[J]. Geochmica et Cosmochimica Acta, 1987, 52: 2549-2558.
    [29] Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier. 1984.
    [30] Holm P. E. The geochemical fingerprints of different tectonomagmatic environments using hgromagmagophile element abundances of tholeiitic and basaltic andesites[J]. Chem. Geol., 1985, 51: 303-323.
    [31] Irvine T. H., Baragar, W. R. A. A guide to the chemical classification of the common volcanic rocks[J]. Can. J. Earth Sci., 1971, 8: 523-548.
    [32] Jackson S. E., Pearson N. J., Griffin W. L., Belousova E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in-situ U-Pb zircon geochronology[J]. Chem. Geol., 2004, 211: 331-335.
    [33] Jahn B. M., Wu F. Y., Lo C. H., Tsai C. H. Crust-mantle interaction induced bydeep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chem. Geol., 1999, 157: 119-146.
    [34] Jordan T. H. Structure and formation of the continental lithosphere in Oceanic and Continental Lithosphere: Similarities and Differences (eds. Menzies, M. A. & Cox, K.) [J]. J. Petrol., Special Lithosphere Issue, 1988, 11–37.
    [35] King S. D. Archean cratons and mantle dynamics[J]. Earth Planet. Sci. Lett., 2005, 234: 1-14.
    [36] Klemme S., Prowarke S., Hametner K., Gunther D. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones[J]. Geochim. Cosmochim. Acta, 2005, 59(9): 2361-2371.
    [37] Lanyon R., Black R. P., Seitz H. M. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contrib. Mineral. Petrol., 1993, 115: 84-203.
    [38] Lee J., Williams I., Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 390(13): 159-162.
    [39] Li S. G., Nie Y. H., Hart S. R. and Zheng S. G. Upper mantle-deep subducted continental crust interaction: (II) Sr and Nd isotopic constraints on the syn-collisional mafic to ultramafic intrusions in thenorthern Dabieshan, eastern China [J]. Science in China (Series D), 1998, 28: 18-22.
    [40] Liu D. Y., Nutman A. P., Compston W, Wu J. S. and Shen Q. H. Remmants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20: 339-342
    [41] Liu D. Y., Shen Q. H., Zhang Z. Q., Jahn B. M. and Auvray B. Archean crustal evolution in China: U-Pb geochronology of the Qianxi complex[J]. Precambrian. Res., 1990, 48: 223-244.
    [42] Liu J. L., Davis G. A., Lin Z. Y., Wu F. Y. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas[J]. Tectonophysics, 2005, 407: 65-80.
    [43] Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. Island Arc, 1997, 6: 91-120.
    [44] Maruyama S., and Seno T. Orogeny and relative plate motion: example of the Japanese islands[J]. Tectonophysics, 1986, 127: 305-329.
    [45] Matin H. The adakitic magmas: Modern analoge of Archean granitoids. Lithos, 1999, 46: 411-429.
    [46] Meng Q. R. What drove late Mesozoic extension of the northern China–Mongolia tract[J]? Tectonophysics, 2003, 369: 155-174.
    [47] Menzies M. A., Fan W. M., Zhang M. G. Palaeozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Magmatic Processes and Plate Tectonics (Prichard H.M., Alabaster T., Harris N.B.W., Neary C.R.), Geological Society Special Publication, 1993, 76: 71-78.
    [48] Menzies M. A., Hawkesworth C. J., Mantle metasomatism. Academic Press, 1987. 472.
    [49] Menzies M. A., Xu Y. Geodynamics of the North China Craton. In: Flower M F J, Chung S-L, Lo C-H, et al (eds). Mantle dynamics and plate interaction in east Asia. American Geophysical Union, Geodynamics Series 27, 1998, 100: 155-164
    [50] Morrison G. W. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, Vol. 13, No.1.
    [51] Patino Douce A. E. What do experiments tell us about the relative contribution of crust and mantle to the origin of granitic magmas? In Undrstanding Granites: Integraing New and Classical Techniques(eds. A. Catro, C. Fernandez, and J. L. Vignersse), 1999, pp. 55-76. Spec. Publ. 168. Geol. Soc. Lond.
    [52] Pearce J. A. Sources and settings of granitic rocks[J]. Episodes. 1996, 19, 120-125.
    [53] Peng Z. C., Zartman R. F., Futa K., Chen D. G.. Pb-, Sr-, and Nd-isotopic systematic and chemical characteristics of Cenozoic basalts, eastern China[J]. Chem Geol., 1986, 59:3-33
    [54] Pollack H. N. Cratonization and thermal evolution of the mantle[J]. Earth Planet. Sci. Lett., 1986, 80: 175-182.
    [55] Ratschbacher L., Hacker B. R., Webb L. E., McWilliams M., Ireland T., Dong S. W., Calvert A.,Chateigner D., Wenk H. R. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault[J]. J. Geophy. Res., 2000, 105: 13303-13338.
    [56] Ringwood A. E. Composition and petrology of the Earth’ mantle [M]. New York: McGraw-Hill, 1975, 618.
    [57] Rudnick R. L., Fountain D. M. Nature and composition of the Continental crust: A lower crustal perspective[J]. Rev. Geophys., 1995, 33:267-309.
    [58] Rudnick R. L., Fountain D. M. Nature and composition of the Continental crust: A lower crustal perspective. Rev. Geophys., 1995, 33: 267-309.
    [59] Rudnick R.L., Gao S., Ling W.L., Liu Y. S., Mcdonough W. F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton[J]. Lithos, 2004, 77: 609-637.
    [60] Sleep N. H. Evolution of the continental lithosphere[J]. Annu. Rev. Earth Planet. Sci., 2005, 33: 369-393.
    [61] Sleep, N. H. Survival of Archean cratonal lithosphere[J]. J. Geophys. Res., 2003, 108: doi: 10.1029/2001JB000169
    [62] Sobolev A. V., Hofmann A. W., Sobolev S. V., et al. An olivine-free mantle source of Hawaiian shield basalts[J]. Nature, 2005, 434(31): 590-597.
    [63] Tang, Y.J., Zhang, H.F., Ying, J.F. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton[J]. Chem. Geol., 2006, 233: 309-327.
    [64] Van der Hilst, R. and McDonough W. F. (Editors). Deep Structure, Composition, and Evolution of Continents[J]. Lithos, 1999, 48 (Special issue): 1-336.
    [65] Whalen J. B., Currie K. L., Chappell B. W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contrib, Mineral. Petrol., 1987, 95: 407-419.
    [66] Wilde S. A., Valley J. W., Peck W. H., Graham C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago[J]. Nature, 2001, 409: 175-178.
    [67] Wilde S. A., Zhou X. H., Nemchin A. A., Sun M. Mesozoic crust–mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia[J]. Geology, 2003, 31: 817–820.
    [68] Williams I. S. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks. Transactions of the Royal Society of Edinburge: Earth Sciences, 1992, 88: 447-458.
    [69] Wu F. Y. , Sun D. Y., Li H. M., Jahn B. M., Wilde S. A. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187: 143-173.
    [70] Wu F. Y., Han, R. H., Lin J. Q., Wilde S. A., Zhang, X. O., Yang, J. H. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters. 2005a,233:103-119.
    [71] Wu F. Y., Jahn B. M, Wilde S. A., Sun D. Y. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328: 89-113.
    [72] Wu F. Y., Walker R. J., Ren X. W., Sun D. Y., Zhou X. H. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chem. Geol., 2003, 197: 107-129.
    [73] Wu F. Y., Walker R. J., Yang Y. H., Yuan H. L., Yang J. H. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochim. Cosmochim. Acta, 2006, 70: 5013-5034.
    [74] Wu F. Y., Yang J. H., Wilde S. A., Zhang X. O. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chem. Geol., 2005b, 221: 127-156.
    [75] Xu W. L., Gao S., Wang Q. H., Wang D. Y., Liu Y. S. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 2006a, 34: 721-724
    [76] Xu W. L., Hergt J. M.,Gao S.,Pei F. P.,Wang W., Yang, D. B. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J]. Earth Planet. Sci. Lett., 2008, 265: 123-137.
    [77] Xu W. L., Wang Q. H., Wang D. Y., Guo J. H., Pei F. P. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust[J]. J. Asian Earth Sci., 2006b, 27: 230-240.
    [78] Xu X. S., Griffin W. L., O'Reilly S. Y., Pearson N. J., Geng H. Y., Zheng J. P. Re–Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle[J]. Lithos, 2007, in press.
    [79] Xu Y. G. Thermo-tectonic destruction of the Archaean lithosphere, keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, 2001, 26A: 747-757
    [80] Xu Y. G. Diachronous lithospheric thinning of the North China Craton and formation of Daxing’anling -Taihangshan gravity lineament[J]. Lithos, 2006, 96: 281-298.
    [81] Xu Y. G., Blusztajn J., Ma J. L., Suzuki K., Liu J. F., Hart S. R. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr–Nd–Os isotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos, 2008, in press.
    [82] Xu Y. G., Chung, S.L., Ma J., Shi L. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: constraints from geochemistry of basalts and mantle xenoliths[J]. J. Geol., 2004, 112: 593-605
    [83] Xu Y. G.., Menzies M. A., Vroon P., Mercier J. C. C. Texture-temperature-geochemistry relationship inthe upper mantle as revealed from spine1 peridotite xenoliths from Wangqing, NE China[J]. J. Petrol., 1998, 39: 469-493.
    [84] Yang J. H., Chung S. L., Zhai M. G., Zhou X, H. Geochemical and Sr–Nd–Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithos., 2004, 73: 145-160.
    [85] Yang J. H., Chung S. L.,Wilde, S. A., Wu F. Y., Chu M. F., Lo C. H., Fan H. R. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 2005, 214(1-2): 99-125.
    [86] Yang J. H., Sun J. F., Chen F., Wilde S. A., Wu F. Y. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of Eastern North China Craton[J]. Journal of Petrology. 2008, In Press.
    [87] Yang J. H., Wu F. Y. , Chung S. L., Wilde S. A., Chu M. F. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4469-4483.
    [88] Yang J. H., Wu F. Y. Wilde S. A., Liu X. M. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton[J]. Chemical Geology, 2007a, 242, 155-175.
    [89] Yang J. H., Wu F. Y., Chung S. L., Lo C. H., Wilde S. A., Davis G. A. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton[J]. Geol. Soc. Am. Bull., 2007b, 119: 1405-1414.
    [90] Yang J. H., Wu F. Y., Chung S. L., Wilde S. A., Chu M. F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89( 1-2): 89-106.
    [91] Yuan H. L., Gao S., Liu X. M., Li H. M., Günther D., Wu F. Y. Accurate U–Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry[J]. Geostand. Geoanal. Res. 2004, 28, 353-370.
    [92] Zhai M. G., Fan Q. C., Zhang H. F., Sui J. L., Shao J. A. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination[J]. Lithos, 2007, 96: 36-54.
    [93] Zhang H. F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton[J]. Earth Planet. Sci. Lett., 2005, 237: 768-780.
    [94] Zhang H. F., Menzies M. A., Zhou X. H., et al. Textural and chemical zoning in garnets related to mantle metasomatism and deformation processes[J]. Chin. Sci. Bull., 2000, 45(2): 174-180.
    [95] Zhang H. F., Nakamura E., Sun M., Kobayashi K., Zhang J., Ying J. F., Tang Y. J., Niu L. F. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the North China Craton[J]. Inter. Geol. Rev., 2007, 49: 658-679.
    [96] Zhang H. F., Sun M., Zhou M. F., et al. Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China craton: Evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks[J]. Geological Magazine, 2004, 141: 55-62.
    [97] Zhang H. F., Sun M., Zhou X. H., Fan W. M., Zhai M. G., Yin J. F. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts[J]. Contrib. Mineral. Petrol., 2002, 144: 241-253.
    [98] Zhang H. F., Sun M., Zhou X. H., Zhou M. F., Fan W. M., Zheng J. P. Secular evolution of the lithosphere beneath the eastern North China Craton; evidence from Mesozoic basalts and high-Mg andesites[J]. Geochimica et Cosmochimica Acta, 2005, 67(22): 4373-4387.
    [99] Zhang H. F., Sun M., Zhou X. H., Zhou M. F., Fan W. M., Zheng J. P. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites[J]. Geochim. Cosmochim. Acta, 2003, 67: 4373-4387.
    [100] Zhang R. Y., Liou J. G., Yang J. S., Ye K. Ultrahigh-pressure metamorphism in the forbidden zone: the Xugou garnet peridotite, Sulu terrane, eastern China[J]. J. Metamorph. Geol., 2003, 21: 539–550.
    [101] Zhang X. H., Li T. S., Pu Z. P. 40Ar-39Ar ages thermochronology of two ductile shear zone from Yiwulushan, West Liaoning Region: age constraints on the Mesozoic tectonic events, Chin. Sci. Bull., 2002b, 47:1113-1118.
    [102] Zhang X. H., Li T. S., Pu Z. P., Wang H. 40Ar/39Ar ages of Louzidian-Dachengzi ductile shear zone near Chifeng, Inner Mongolia and their tectonic significance[J]. Chin. Sci. Bull., 2002a, 47: 1292-1297.
    [103] Zhang Y. B., Wu F. Y., Simon A. W., et al. Zircon U-Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. The Island Arc, 2004, 13(4): 484-505.
    [104] Zhao G. C., Wilde S. A.,Cawood P. A.,Sun M. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1-2): 45-73.
    [105] Zhao Z. F., Zheng Y. F., Wei C. S., Wu Y. B. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China[J]. Geophy. Res. Lett., 2004, 31: 2004GL021061.
    [106] Zheng J. P., Griffin W. L., O’Reilly S. Y., Yang J. S., Li T. F. , Zhang M., Zhang R. Y., Liou J. G. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints onmantle evolution beneath Eastern China[J]. J. Petrol., 2006, 47: 2233-2256.
    [107] Zheng J. P., Griffin W. L., O’Reilly S. Y., Yu C. M., Zhang H. F., Pearson N., Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochim. Cosmochim. Acta, 2007, 71: 5203-5225.
    [108] Zheng J. P., O’Reilly S. Y., Griffin W. L., Lu F. X., Zhang M. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China[J]. Inter. Geol. Rev., 1998, 40: 471-499.
    [109] Zheng J. P., O’Reilly S. Y., Griffin W. L., Lu F. X., Zhang M., Pearson N.J. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J]. Lithos, 2001, 57: 43-66.
    [110] 陈道公, 李彬贤, 夏群科, 等.变质岩中锆石 U-Pb 计时问题评述兼论大别造山带锆石定年[J]. 岩石学报, 2001, 17(1): 129-138.
    [111] 池际尚. 中国东部新生代玄武岩及上地幔研究. 武汉: 中国地质大学出版社. 1988.
    [112] 戴圣潜, 邓晋福, 吴宗絮, 等. 大别造山带燕山期造山作用的岩浆岩石学证据[J]. 中国地质, 2003, 30(2): 159-165.
    [113] 邓晋福, 莫宣学, 赵海玲, 等. 中国东部岩石圈根/去根作用与大陆 “活化” [J]. 现代地质, 1994, 8: 349-356.
    [114] 鄂莫岚, 赵大升. 中国东部新生代玄武岩及深源岩石包体. 北京: 科学出版社. 1987.
    [115] 范蔚茗, Menzies M.A. 中国东部古老岩石圈下部的破坏与软流圈地幔的增生[J]. 大地构造与成矿, 1992, 16: 171-180.
    [116] 方文昌.吉林省花岗岩类及成矿作用. 长春:吉林科学技术出版社. 1992.
    [117] 高福红, 许文良, 杨德彬, 裴福萍, 柳小明, 胡兆初. 松辽盆地南部基底花岗质岩石锆石LA-ICP-MS U-Pb 定年: 对盆地基底形成时代的制约[J]. 中国科学(D 辑), 2008, 37(3): 331-335.
    [118] 高晓峰. 东北地区中生代火成岩 Sr-Nd-Pb 同位素填图及其对区域构造演化的制约. 中国科学院广州地球化学研究所博士论文, 2007.
    [119] 郭春丽, 吴福元, 杨进辉, 林景仟, 孙德有. 中国东部早白垩世岩浆作用的伸展构造性质-以辽东半岛南部饮马湾山岩体为例[J]. 岩石学报,2004, 20(5):1193-1204.
    [120] 何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11, 966-969.
    [121] 吉林省地质局. 1∶20 万浑江市幅、集安县幅区域地质调查报告. 1976.
    [122] 吉林省地质局. 1∶5 万集安县幅区域地质调查报告. 1978.
    [123] 吉林省地质局第四地质大队. 1∶20 万抚松县幅区域地质调查报告. 1970.
    [124] 吉林省地质局区测大队四分队. 1∶20 万漫江、长白幅区域地质调查报告. 1964.
    [125] 吉林省地质局区域地质调查大队. 1∶20 万通化市区域地质调查报告. 1976.
    [126] 吉林省地质矿产局.吉林省区域地质志. 北京: 地质出版社. 1988.
    [127] 景立珍, 郭裕嘉, 丁彩霞. 辽宁赛马碱性岩的年代学及碱性岩浆的形成[J]. 辽宁地质, 1995, (4): 257-271.
    [128] 李超文. 吉林省东南部晚中生代火山作用及其深部过程研究. 中国科学院广州地球化学研究所博士论文, 2006.
    [129] 李东津.吉林省岩石地层. 武汉: 中国地质大学出版社. 1997.
    [130] 李锦轶, 莫申国, 和政军, 等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘, 2004, 11(3): 157-168.
    [131] 李三忠, 韩宗珠, 刘永江, 杨振升. 胶辽地块古元古代前造山期深部过程的地质与地球化学制约. 地质科学, 2001, 36(2): 184-194.
    [132] 李三忠, 韩宗珠, 刘永江, 杨振升.胶辽地块古元古代前造山期深部过程的地质与地球化学制约[J]. 地质科学, 2001, 36(2): 184-194.
    [133] 李三忠, 刘建忠, 赵国春, 吴福元, 韩宗珠, 杨中柱. 华北克拉通东部地块中生代变形的关键时限及其对构造的制约-以胶辽地区为例[J]. 岩石学报, 2004, 20(3): 633-646.
    [134] 李晓勇, 范蔚茗, 郭锋, 王岳军, 李超文. 古亚洲洋对华北陆缘岩石圈的改造作用: 来自于西山南大岭组中基性火山岩的地球化学证据[J]. 岩石学报, 2004, 20(3): 557-566.
    [135] 李晓勇, 李超文, 范立勇. 燕山地区中生代中基性火山岩地球化学对岩石圈性质的约束. 高校地质学报, 2006, 12(3): 319-327.
    [136] 辽宁省地质局. 1:20 万桓仁-朔州幅区域地质调查报告. 1972.
    [137] 林景仟, 谭东娟, 迟效国, 等. 胶东半岛中生代花岗岩[M]. 北京: 科学出版社. 1992.
    [138] 林景仟, 谭东娟, 金烨. 鲁西地区中生代火成活动的 40Ar/39Ar 年龄[J]. 岩石矿物学杂志, 1996, 15(3): 213-220.
    [139] 林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222.
    [140] 刘民武, 赫英. 激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J]. 地球科学进展. 2003, 18(1): 116-121.
    [141] 刘勇胜, 高山. 华北地区中生代玄武岩高Nb/Ta值对地壳岩石再循环的直接记录[J]. 矿物岩石地球化学通报, 2007, 26(1): 19-28.
    [142] 柳小明. 华北克拉通中生代壳幔交换作用的地球化学研究. 西北大学博士学位论文, 2004.
    [143] 路凤香, 韩柱国, 郑建平, 任迎新. 辽宁复县地区古生代岩石圈地幔特征[J]. 地质科技情报, 1991, 10(增刊): 2-20
    [144] 路凤香, 郑建平, 李伍平, 等. 中国东部显生宙地幔演化的主要样式: “蘑茹云”模型[J]. 地学前缘, 2000, 7 (1): 97-107.
    [145] 路凤香, 郑建平, 邵济安, 张瑞生, 陈美华, 余淳梅. 华北东部中生代晚期—新生代软流圈上涌与岩石圈减薄[J]. 地学前缘, 2006, 13(2), 86-92.
    [146] 路孝平, 吴福元, 赵成弼, 张艳斌. 通化地区印支期花岗岩锆石 U-Pb 年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J]. 科学通报, 2003, 48(8): 843-849.
    [147] 路孝平. 通化地区古元古代构造岩浆事件. 吉林大学博士论文. 2004.
    [148] 罗振宽, 苗来成. 胶东招莱地区花岗岩和金矿床. 北京: 冶金工业出版社, 2002, 20-57.
    [149] 牟保磊, 阎国翰. 燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义[J]. 地质学报, 1992, 2: 108-121.
    [150] 牛耀龄. 玄武岩浆起源和演化的一些基本概念以及对中国东部中—新生代基性火山岩成因的新思路[J]. 高校地质学报, 2005, 11, 9-46.
    [151] 裴福萍, 许文良, 王清海, 王冬艳, 林景仟. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约[J]. 高校地质学报, 2004, 10(1):88-97.
    [152] 裴福萍, 许文良, 杨德彬, 纪伟强, 于洋. 松辽盆地南部中生代火山岩:锆石 U-Pb 年代学及其对基底性质的制约[J]. 地球科学-中国地质大学学报, 2008, ( in press)
    [153] 裴福萍, 许文良, 杨德彬, 赵全国, 柳小明, 胡兆初. 松辽盆地基底变质岩中锆石 U-Pb 年代学及其地质意义[J]. 科学通报, 2006, 51(24):2881-2887.
    [154] 裴福萍, 许文良, 杨德彬, 赵全国. 2005. 吉林通化赤柏松辉长岩锆石 SHRIMP U-Pb 定年及其地质意义[J]. 中国科学, D 辑, 35(5): 393-398.
    [155] 裴福萍, 许文良, 于洋, 赵全国, 杨德彬. 吉林南部蚂蚁河岩体的成因:锆石 U-Pb 年代学和地球化学证据[J]. 吉林大学学报. 2008, (In press).
    [156] 邱检生, 王德滋, 罗清华, 等. 鲁东胶莱盆地青山组火山岩的 40Ar/39Ar 定年-以五莲分岭山火山机构为例[J]. 高校地质学报, 2001, 7(3):351-355.
    [157] 邵济安, 李献华, 张履桥, 牟保磊, 刘玉琳. 南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J]. 地球化学, 2001, 30(6): 517-524.
    [158] 邵济安, 翟明国, 张履桥, 李大明. 晋冀蒙交界地区五期岩墙群的界定及其构造意义[J]. 地质学报, 2005, 79(1): 56-67.
    [159] 邵济安, 张履桥. 华北北部中生代岩墙群[J]. 岩石学报, 2002, 18(3): 312-318
    [160] 孙德有, 铃木和博, 吴福元, 路孝平. 吉林省南部荒沟山地区中生代花岗岩 CHIME 定年[J]. 地球化学, 2005, 34(4): 305-310.
    [161] 孙德有. 吉中-辽北地区显生宙花岗岩的时代、地球化学特征与构造背景. 西北大学博士后研究工作报告. 2005.
    [162] 王德滋, 周新民. 中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化. 北京: 科学出版社. 2002.
    [163] 王冬艳, 许文良, 冯宏, 等. 辽西中生代晚期岩石圈地幔的性质: 来自玄武岩和地幔捕虏体的证据[J]. 吉林大学学报(地球科学版), 2002, 32(4):319-324.
    [164] 王清晨, 林伟. 大别山碰撞造山带的地球动力学[J]. 地学前缘, 2002, 9(4): 257-265.
    [165] 王涛, 郑亚东, 张进江, 王新社, 曾令森, 童英. 华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J]. 地质通报, 2007, 26: 1154-1166.
    [166] 王微, 许文良, 纪伟强, 杨德彬, 裴福萍. 辽东中生代晚期和古近纪玄武岩及深源捕虏晶-对岩石圈地幔性质的制约[J]. 高校地质学报, 2006, 12(1): 30-40.
    [167] 王微, 许文良, 王冬艳, 纪伟强, 杨德彬, 裴福萍. 辽东菜园子古近纪玄武岩和深源捕虏晶:对新生代岩石圈地幔性质及深部作用过程的制约[J]. 矿物岩石, 2007, 27(1): 63-70.
    [168] 王晓蕊. 辽西早白垩世四合屯组火山岩地球化学研究. 西北大学硕士学位论文, 2005.
    [169] 吴福元, 葛文春, 孙德有. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 2003, (3):51-60
    [170] 吴福元, 孙德有, 张广良, 任向文. 论燕山运动的深部地球动力学本质[J]. 高校地质学报. 2000, 6: 379-388.
    [171] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 1999, 29 (4): 313-318.
    [172] 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317.
    [173] 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约. 科学通报, 2004, 49(16): 1589-1604.
    [174] 徐义刚. 华北岩石圈减薄的时空不均一性特征. 高校地质学报, 2004, 10: 324-331
    [175] 许文良, 孙德有, 周燕. 满洲里-绥芬河地学断面岩浆作用与地壳结构. 北京: 地质出版社.1994. 94.
    [176] 许文良, 王冬艳, 林景仟, 等. 鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学. 岩石学报, 2003, 19(4): 623-636.
    [177] 许文良, 王冬艳, 刘晓春, 王清海, 林景仟. 徐-淮地区早侏罗世侵入杂岩体中榴辉岩类包体的发现及其地质意义[J]. 科学通报, 2002, 47(8): 618-622.
    [178] 许文良, 王冬艳, 王清海, 高山, 林景仟. 鲁西纯橄岩捕虏体中富硅质熔(流)体的交代作用:对中生代岩石圈地幔减薄的意义[J]. 地质学报, 2004, 78(2): 72-80.
    [179] 许文良, 王清海, 王冬艳, 裴福萍, 高山. 华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据[J]. 地学前缘, 2004, 11(3):309-317.
    [180] 许文良, 杨承海, 杨德彬, 裴福萍, 王清海, 纪伟强. 华北克拉通东部中生代高 Mg 闪长岩——对岩石圈减薄机制的制约[J]. 地学前缘, 2006, 13(2): 120-129.
    [181] 许文良, 杨德彬, 裴福萍, 纪伟强. 辽东前任屯角闪岩形成的时代—锆石 SHRIMP U-Pb 定年证据[J]. 岩石矿物学杂志, 2005, 24(4): 273-278.
    [182] 许文良. 中国东部中新生代火山作用的 PTtC 模型与岩石圈演化[J]. 长春科技大学学报, 2000,30(4): 329-335
    [183] 阎国翰, 牟保磊, 许保良, 等. 燕辽阴山三叠纪碱性侵入岩年代学 Sr、Nd、Pb 同位素特征及意义[J]. 中国科学(D 辑), 2000, 30: 383-387.
    [184] 杨承海, 许文良, 杨德彬, 王伟, 王伟德, 刘金民. 鲁西上峪辉长-闪长岩的成因: 年代学与岩石地球化学证据[J]. 中国科学, 2008, 38(1): 1-12.
    [185] 杨承海. 鲁西中生代高镁闪长岩的年代学和地球化学:对华北克拉通岩石圈演化的制约[J]. 吉林大学博士学位论文. 2007.
    [186] 杨德彬, 许文良, 王清海, 裴福萍, 纪伟强.蚌埠隆起区中生代花岗岩的岩石成因: 锆石 Hf 同位素的证据[J]. 岩石学报, 2007, 23(2): 381-392.
    [187] 杨进辉, 吴福元, 柳小明, 谢烈文, 杨岳衡. 辽东半岛小黑山岩体成因及其地质意义: 锆石 U-Pb年龄和铪同位素证据[J]. 矿物岩石地球化学通报, 2007, 26(1): 29-43.
    [188] 杨进辉, 吴福元, 张艳斌, 张旗. 辽东半岛南部三叠纪辉绿岩中发现新元古代年龄锆石[J]. 科学通报, 2001, 49(18): 1878-1882.
    [189] 于洋, 许文良, 裴福萍, 杨德彬, 赵全国. 吉林省临江地区中生代火山岩: 年代学、地球化学及其构造意义[J]. 地质学报, 2008, (in press).
    [190] 袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 东北地区新生代侵入体的锆石激光探针 U-Pb 年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14) : 1511-1520.
    [191] 袁学诚. 秦岭岩石圈速度结构与蘑菇云构造模型[J]. 中国科学(D 辑), 1996a, 26: 209-215.
    [192] 袁学诚. 再论岩石圈地幔蘑菇云构造及其深部成因[J]. 中国地质, 2007, 34: 737-758..
    [193] 袁学诚.中国地球物理图集. 地质出版社. 1996b.
    [194] 翟明国, 孟庆任, 刘建民, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟, 邵济安, 朱日祥. 华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J]. 地学前缘, 2004, 11, 285-298.
    [195] 张斌辉, 刘勇胜, 高山. 中国东部新生代玄武岩高 Fe/Mn 比值的成因意义[J]. 中国科学(D 辑),2007, 37(11):1456-1466.
    [196] 张宏福, 英基丰, 徐平, 马玉光. 华北中生代玄武岩中地幔橄榄石捕虏晶: 对岩石圈地幔置换过程的启示[J]. 科学通报, 2004, 49: 784-789.
    [197] 张宏福. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变的重要方式[J]. 地学前缘, 2006, 13: 65-75.
    [198] 张理刚等. 东亚岩石圈块体地质—上地幔、基底和花岗岩同位素地球化学及其动力学. 北京:科学出版社, 1995.
    [199] 张旗, 王元龙, 王焰. 燕山期中国东部高原下地壳组成初探: 埃达克质岩 Sr、Nd 同位素制约[J]. 岩石学报, 2001, 17(4): 505-513.
    [200] 张艳斌, 吴福元, 翟明国, 路孝平. 和龙地块的构造属性与华北地台北缘东段边界. 中国科学(D辑), 2004, 34(9): 795-806.
    [201] 郑建平, 路凤香, Griffin, W. L., 余淳梅, 张瑞生, 袁晓萍, 吴秀玲. 华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用[J]. 地学前缘, 2006, 13: 76-85.
    [202] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄[M]. 武汉: 中国地质大学出版社, 1999.
    [203] 郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, 48(16): 1705-1720.
    [204] 周玲棣, 赵振华, 周国富. 我国一些碱性岩的同位素年龄学研究[J]. 地球化学, 1996, 25:164-171.
    [205] 周新华, 张国辉, 杨进辉, 陈文寄, 孙敏. 华北克拉通北缘晚中生代火山岩 Sr-Nd-Pb 同位素填图及其构造意义[J]. 地球化学, 2001, 30(1): 10-23.
    [206] 周新华, 张宏福, 英基丰, 陈立辉. 大陆深俯冲后效作用的地球化学记录—华北中生代岩石圈地幔源区特征变异的讨论[J]. 岩石学报, 2005, 21(4): 1255-1263.
    [207] 周新华, 张宏福. 中生代华北岩石圈地幔高度化学不均一性与大陆岩石圈转型[J]. 地球科学-中国地质大学学报, 2006, 31(1): 8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700