用户名: 密码: 验证码:
滇藏铁路金沙江河谷段工程地质条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇藏铁路是我国正在重点规划建设的铁路干线之一,目前采取分段实施的新思路。其中,滇藏铁路丽江-香格里拉段经过的金沙江河谷区地质条件比较复杂,铁路如何跨越金沙江以及如何合理地选择桥位,成为制约本段铁路线位走向的关键问题。鉴于此,本文选择滇藏铁路金沙江河谷段为研究区,采用多学科理论和方法,在拟选金沙江大桥桥位稳定性分析的基础上,对滇藏铁路金沙江河谷段工程地质条件进行综合评价研究。
     本文在区域地质背景分析的基础上,阐述了研究区新构造运动和主要活动断裂的特征,认为对金沙江河谷段铁路工程建设存在影响的活动断裂主要有中甸断裂和龙蟠-乔后断裂。同时,根据金沙江河谷段的地形地貌、工程地质岩组、斜坡结构、水文地质条件和地质灾害发育状况等因素分析,认为位于金沙江虎跳峡上峡口一带的下落鱼桥址工程地质条件相对较好。论文针对可能影响该桥位安全的河谷两岸高边坡及左岸桥位上游冷都复杂斜坡体的稳定性进行了深入研究。工程地质分析和弹塑性有限元模拟结果表明,在自重应力场作用和地震作用下,河谷左岸坡脚附近岩体内存在塑性区,右岸松散堆积体的下部也存在小范围的塑性区;在水库蓄水条件下,塑性区的位置集中分布在左岸库水位与边坡接触带附近。位于桥址上游的冷都复杂斜坡体,在空间上可分为三个部分:香格里拉三中-江口的斜坡带、长胜-核咱古滑坡发育区和石布各东北部的基岩发育区。作者采用瑞典条分法、简化Bishop法和Janbu法,对长胜-核咱古滑坡体在天然状况、地震作用、蓄水以及降雨作用等多种工况下的稳定性分别进行了计算分析。结果表明,该古滑坡体在目前状况下处于稳定状态,稳定系数为1.257~1.413,在降雨条件下稳定系数稍低,为0.929~1.043,在7~9级地震作用下该古滑坡体稳定系数值分布在0.960~1.315之间,但在地震和降雨联合作用下稳定性变得很差,稳定系数为0.861~0.960。为了验证上述结果,作者采用条分法数值解和Monte-Carlo模拟法相结合,对长胜-核咱古滑坡的可靠度进行了计算。通过上述计算和综合分析认为,从工程地质条件角度,下落鱼桥位基本上是适宜的。
     为了更好地指导铁路规划和指导今后的工程地质勘察工作,在金沙江大桥桥位确定的基础上,采用基于GIS层次分析法原理。综合考虑地形坡度、工程地质岩组、斜坡结构、地质灾害发育现状、地震动峰值加速度、活动断裂发育状况、微地貌类型、人类工程活动、降水量(主要考虑垂直降水量差别)、距离沟谷距离等10个方面的因素,在专家打分的基础上用层次分析法计算出各影响指标权重,借助MapGIS 6.7和ArcGIS 9.1软件平台,完成了研究区工程地质条件分区评价。将研究区划分为工程地质条件好、较好、中等和差4类。根据分区结果,下落鱼桥位主要通过工程地质条件较好和工程地质条件中等区,说明前文的分析和计算是正确的。本文所采用的技术方法和研究思路对其它地区相似工程地质问题的研究具有一定的参考价值和借鉴意义。
The Yunnan-Tibet railway is one of the most important planning railways of China. And it has been aparted to several subsections and each subsection will be constructed individiualy. The Jinsha River valley, which is on the route of the Lijiang– Shangrila subsection and the geological conditions are comparatively complex. How to bridging over and where to locate the bridge are the key issues which restrict the railway orientation. Therefore, this study selects the Jinsha River valley as the study area and applies multi-subjects theories and methods to assess the Jinsha River valley geological conditions, and analyses the slope stability of the potential bridge location as well.
     Based on the analysis of the regional geological background, this paper reviews the features of the neotectonic movements and main active faults in the study area, and reveals that the Zhongdian fault and the Longpan-Qiaohou fault are the main active faults which to some extent affect the Jinsha River Bridge project. The analyses of the topography features, geological and hydrogeological conditions and the Geo-hazards distribution of the whole study area indicates that the engineering geological conditions of the Xialuoyu Bridge near the Shangxiakou of tiger leaping gorge is relative better. This paper lucubrate the stability of the high slopes of the valley and the Lengdu complex slope body which affect the bridge safty. Engineering geological analysis and the elastic-plastic finite element simulation results indicate that: 1) There is plastic zone in the left valley bottom slope with the effects of gravity and earthquake, and there is small plastic area at the lower part of the right valley loose debris; 2) When the portential downriver reservoir were on the high water level, the plastic location concentrates in the left side at the vicinity of the same hight of the water level. The Lengdu complex slope body can be divided into three parts: the slope section from the ShangriLa No.3 high school to the estuary, the ancient landslide section from Changsheng to Hezan, and the bedrock section at the Northeast of Shibuge. The author calculates and analyses the stability of the ancient landslide section from Changsheng to Hezan using the Swedish slice method, Janbu method and the simplified Bishop method, with the conditions of the current status, earthquake, water storage and rainfall. The quantitative calculation results show that the ancient landslides is stable and of high reliability with the safty coefficient of 1.257 ~1.413 in current status, and the stability decrease to 0.929~ 1.043 and 0.960 ~ 1.315 under the condition of rainfall and 7 ~ 9 degree earthquake, while the safty coefficient turn to 0.861 to 0.960 under the combined of earthquake and rainfall, and this means unstability. In order to validate the above mentioned results, the slice numerical solution method and the Monte-Carlo simulation method were combined to calculate the stability of the Changsheng-Hezan ancient landslide. The above calculation and analysis reveal that the selected location of Xialuoyu Bridge is appropriate with respect to the engineering geological conditions.
     In order to guide the railway planning and engineering geological survey, this paper carry out the engineering geological condition zonation assumed the Jinsha River Bridge location were decided, Applying Analytical Hierarchy Process and GIS, which base on the platform of MapGIS 6.7 and ArcGIS 9.1. And terrain slope, engineering geological rock groups, slope structure, the Geo-hazards distribution, earthquake peak acceleration, active fault, tiny physiognomy, human activity, rainfall(main differences in vertical), and the distance to the drainges were selected as indices and quantified with expert opinions for the zonation. According to the GIS calculation, the study area is divided into 4 engineering geological classes: best, better, middle and poor. According to the zonation, the Xialuoyu Bridge mainly bridge over the better engineering geological area and the middle engineering geological area, which proves that the former analysis and calculation are reasonable. The techniques and methodology used in this study can be referenced when studying the similar engineering geological subjects in other regions.
引文
陈祖煜.土质边坡稳定分析[M].北京:中国水利水电出版社,2003.
    陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1997.
    丁恩保.金沙江水电开发中的超高陡边坡问题[J].工程地质学报,2000,8(2):131~135.
    戴自航,沈蒲生.土坡稳定分析简化 Bishop 法的数值解[J].岩土力学,2002,23(6):760~764.
    冯玉勇,曲永新,张永双.西南山区河床深厚覆盖层的建坝工程地质问题[J].工程地质学报,2000,8(s) :195~201.
    郭长宝,雷伟志,张永双,等.滇藏铁路滇西北段主要地质灾害类型及发育规律的探讨[J].地质力学学报,2006,12(2): 228~235.
    郭长宝,张永双.陕北砂黄土高边坡可靠度分析及边坡优化设计[J].中国地质灾害与防治学报,2005,16(4): 5~10.
    郭长宝,张永双,陈情来,等.基于瑞典条分法数值解的边坡 Monte-Carlo 可靠性分析.水文地质工程地质,2007(3)(出版中).
    国家地震局地质研究所,云南省地震局,滇西北地区活动断裂,地震出版社,1990.
    国家电力公司中南勘测设计研究院,金沙江虎跳峡水电站预可行性研究坝址比选研究报告(内部资料),2004.
    韩新民,周瑞琦.丽江 7.0 级地震的烈度分布[J].地震研究,1997,20(1):35~47.
    何蕴龙,陆述远,岩石边坡地震作用近似计算方法[J].岩土工程学报,1998, 20(2):66~68.
    贺少辉.边坡工程模糊可靠度研究[J].南方冶金学院学报,1994(1):38~41.
    黄润秋,林峰,陈得基,等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,9(3):227~232
    黄润秋,许强,陶连金,等.地质灾害过程模拟与过程控制研究[M].北京:科学出版社,2002.
    黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991.
    黄润秋.中国西部地区典型岩质滑坡机理研究[J].地球科学进展,2004,19(3):443~450.
    计凤桔,郑荣章,李建平,等.滇东、滇西地区主要河流低阶地地貌面的年代学研究[J].地震地质,2000,22(3):265~276.
    蒋忠信,曾令录,李安洪.南昆铁路路基边坡工程技术研究[J].岩石力学与工程学报,2002,21(9): 1408~1414.
    阚荣举,王绍晋.中国西南地区现代构造应力场与板内断块相对运动.地震地质[J].1983,5(2):79~89.
    阚荣举,张四昌.我国西南地区现代构造应力场与现代构造活动特征的讨论[J].地球物理学报,1977,20(2):96~108.
    李国和,王思敬,孙承志.金沙江水电开发区域工程地质环境综合评价[J].地球科学,2001,26(3):309~313.
    李铁明,邓志辉,吕弋培.川滇地区现今地壳形变及其与强震时空分布的相关性研究[J].中国地震,2003,19(2):132~147.
    刘衡秋,胡瑞林,谭儒蛟,等.金沙江虎跳峡河段岸坡变形破坏的相关动力因子研究[J].工程地质学报,2006,14(4):488~495.
    刘立平,姜德义,郑硕才,等.边坡稳定性分析方法的最新进展[J].重庆大学学报(自然科学版),2000,23(3):115~118.
    刘振军.层次分析法在青藏高原中西部航磁异常分类及找矿预测中的应用[J].物探与化探.2001,25(3):161~167.
    明庆忠.滇西北玉龙山第四纪冰川作用的探讨[J].云南师范大学学报,1996,16(3):94:104.
    潘保田,曹继秀.黄河发育与青藏高原隆起研究,国家自然科学基金资助项目研究成果年报(地球科学),科学出版社,1995.
    彭省临,刘亮明,赖健清,等.层次分析法在矿床大比例尺定位预测中的应用-以铜陵凤凰山铜矿为例[J].大地构造与成矿学. 2005,29(1):71~77.
    乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报,2004,47(5):805~811.
    冉勇康,李祥根,虢顺民,等.大理-丽江地区一些第四纪构造运动现象及认识[J].现代地壳运动研究,1991.
    冉勇康,李祥根.滇西北新构造时期构造应力场变化特征的探讨[J].西北地震学报, 1987(3).
    申重阳,王琪,吴云,等.川滇菱形块体主要边界运动模型的 GPS 数据反演分析[J].地球物理学报,2002,45(3):352~361.
    石菊松,张永双,董诚,等.基于 GIS 技术的巴东新城区滑坡灾害危险性区划[J].地球学报,2005,26(3):275~282.
    宋二祥.土工结构安全系数的有限元计算[J]. 岩土工程学报,1997,19(1):1~7.
    孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    孙玉科,姚宝魁.我国岩质边坡变形破坏的主要要地质模式[J].岩石力学与工程学报,1983,2(1):67~76.
    孙玉科.21 世纪中国大型工程与工程地质问题[J].工程地质学报,1995,3(4).
    孙玉科.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    柏松平.松园金沙江大桥设计[J].公路,1998(12):15~18.
    唐川,黄楚兴,万晔.云南省丽江大地震及其诱发的崩塌滑坡灾害特征[J].自然灾害学报,1997,6 (3) : 76~84.
    唐川,朱静.云南滑坡泥石流研究[M].北京:商务印书馆, 2003.
    汪小刚,夏万仁,郭映龙,等.水电工程高边坡稳定问题研究现状和发展方向[J].水利发电,1999(5):15~18.
    王国强.实用工程数值模拟技术及其在 ANSYS 上的实践[M].西安:西北工业大学出版社,2000.
    王兰生,张倬元.斜坡岩体变形破坏的基本地质力学模式[J].水文工程地质论丛,1983.
    王绍晋,龙晓帆.丽江地震序列的震源机制、发震应力场和破裂特征[J].地震研究,1997,20(1):26~34
    王士天,严明,黄润秋.金沙江向家坝水电站高边坡变形破坏机制及稳定性评价[M].成都:成都科技大学出版社,1994.
    王思敬,张菊明.边坡岩体滑动稳定性的动力学分析[J].地质科学,1982(2):162~170.
    王思敬.金川露天矿边坡变形机制及过程[J].岩土工程学报, 1982,4(3).
    王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].东北工学院出版社,1991.
    王 运 生 . 测 氡 在 区 域 构 造 稳 定 性 研 究 中 的 应 用 — 以 滇 西 北 北 部 区 域 构 造 稳 定 性 研 究 为 例 [J]. 山 地 学报,2002,20(4):505~508.
    吴强.蒙特卡洛法在岩质边坡稳定分析中的应用研究[J].广西水利水电,2002,(3):5~7.
    吴云生,易明初.重大工程选区工程活断裂调查要点及评价刍议[J].地质力学学报,2002,8(2):49~56.
    伍法权.中国 21 世纪若干重大工程地质与环境问题[J].工程地质学报,2000,9(2):115~120.
    夏金梧,周乐群,胡宗云.金沙江虎跳峡河段水电开发中存在的主要地质问题[J].人民长江,1999,28(12):29~31.
    向宏发,徐锡伟,虢顺民,等.丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义——陆内活动地块横向构
    造的屏蔽作用[J].地震地质,2002,24(2):188~198.
    肖洪天,周维垣.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,6(33).
    肖树芳,扬淑碧.岩石力学[M].北京:地质出版社,1987.
    谢富仁,刘光勋.滇西北及邻区现代新构造应力场.地震地质[J].1994,16(4):329~337.
    徐涛.滇藏公路中甸至松园桥段路线方案影响因素及对策研究[J].铁道标准设计,2005(8):21~25.
    许文达.基于蒙特卡洛—有限元法的边坡可靠度分析[J]. 福州大学学报(自然科学版),2004,32(1):73~77.
    杨澍,初禹,杨湘奎,等.层次分析法(AHP)在三江平原地质环境质量评价中的应用[J].地质通报,2005,24(5):485~490.
    殷跃平,康宏达,张颖,等.地质工程设计支持系统与链子崖锚固设计[M].北京:地质出版社,1995.
    殷跃平,张颖,康宏达.链子崖危岩体稳定性分析及锚固工程优化设计[J].岩土工程学报,2000,22(5):599~603.
    张建国,周瑞琦,吴伯黔,等.丽江 7.0 级地震地表破裂与形变特征[J].地震研究,1997,20(1):58~65.
    张菊明,王思敬.层状边坡岩体滑动稳定性三维动力学分析[J].工程地质学报,1994,2(3):1~12.
    张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J]. 岩土工程学报, 2002, 24(4): 487~490.
    张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版社,1987.
    张永双,郭长宝,石菊松,曲永新,等.玉龙雪山西麓冰碛(水)砾岩的工程地质特性研究[J].现代地质,2007(1)(出版中).
    张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社.1994.
    赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343~346.
    赵希涛,曲永新,李铁松.玉龙山东麓更新世冰川作用[J].冰川冻土 1999,21(3):242~248.
    赵希涛,张永双,曲永新,等.玉龙山西麓更新世冰川作用及其与金沙江河谷发育的关系[J].第四纪研究. 2007, 27(1):35~44.
    郑本兴.云南玉龙雪山第四纪冰期与冰川演化模式[J].冰川冻土 2000,22(1):53~61.
    郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381~3388.
    中国科学院地质与地球物理研究所,云南金沙江虎跳峡梯级河段河谷发育史、河床沉积岩相及厚度研究(科研报告),1998.
    周本刚,冉洪流.工程活动断裂鉴定的时限标准讨论[J].工程地质学报,2002,10(2):274~278.
    周庆,虢顺民,向宏发.滇西北地区潜在震源区的划分原则和方法.地震地质.2004,26(4):761~771
    朱维中,邱祥波.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报,1997.10,5(16),431~436.
    祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    邹俊.三峡船闸高边坡预应力锚固施工技术[J].中国地质灾害与防治学报,2004,15(2): 98~103.
    Brunner,F.K.,Schedigger,A.E.."Exfoliation”,Rock Mechanics[J],1973.
    Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction [J]. Geotechnique, 1999, 49(6):835~840.
    Duncan J M. State of the art: limit equilibrium and finite element anlysis of slopes[J]. Journal of Geotechnical Engineering, American Society of Civil Engineers, 1996, 122(7): 477~596.
    E. Hoek ,J . W.Bray ,卢世宗,等.岩石边坡工程[M].北京:冶金工业出版社,1983.
    Giam S K, Donald I B. Determination of Critical Slip Surfaces for Slopes Via Stress~strain Calculations[A]. 5th Australia New Zealand Conference Geomechanics [C]. Sydney: [s.n.]. 1988. 461~464.
    Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999, 49(3): 387~403.
    Harris, J. R., Wilkinson, L., and Grunsky, E. C.. Effective use and interpretation of lithogeochemical data in regional exploration programs: Ore Geology Reviews, 2000. 16: 107~143.
    Heather Hill landslide.An example of a lalge scale toppling failure in a natural slope[J]. Canadian Geotechnical Journal, 1991, 28(3) : 410~422.
    Hock E .Rock slope engineering[M].London:The Institution Mining and Metallurgy,1977 :142~158.
    Hudsson JA, Harrison JP. A new approach to study complete rock engineering problems. Quarterly Journal of Engineering Geology, 1992,25(1):93~105.
    Itasca Consulting Group, Inc1 FLAC3D, FastLagrangian Analysis of Continua in 3 Dimensions, version 210, users manual [ R ]. USA: Itasca Consulting Group, Inc., 1997.
    Janbu, N, Slope stability computations. In Embankment Dam Engineering [M]. Casagrande Memorial Volume, Hirschfield, E, Poulos, S. Eds. John Wiley, New York,1973. 47~86.
    Janbu,N. Application of composite slip surface forstability analysis[M]. Proceedings of European conference on stability of earth slopes, Stockholm, 1954, 43~49.
    KandelA,ByattWJ.Fuzzy Processes,Fuzzy Sets and Systems.1980(4):117~152
    Kawashima M, Dorgan C E,Mitchell J W. Hourly thermal load prediction for the next 24 hours by ARIMA,EWMA,LR,and an artificial neural network[J].ASHRAE Transactions,1995,101(l):186~200.
    Lechman J B, Griffiths D V. Analysis of the progression of failu re of earth slopes by finite elements [C]. Int Anal conference of slope stabil ity 2000, 250~265.
    Martin. Dennis C. Deformation of open pit mine slopes by deep seated topping [J].International Journal of Surface Mining & Reclamation. 1990,4(4):153~164.
    Murton, Bramley; Biggs, Juliet Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz[ J ].Marine Geology, 195 (4) : 223~236.
    Prichard MA, Savigny K W. Numerical Modelling of Toppling Paper in Review of Publication in the Canadian Geotechnical Journal.1990
    R.E.Goodman. Methods of Geological Engineering in Discontinuous Rock. West Publishing Company,1976
    Saaty T. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 1977.15:234~281.
    Saaty, T.L..Vargas, L.G.. Prediction, Projection and Forecast. Kluwer Academica Publishers, Dordreaht, 1991.
    Stewart Dp,Adhikary Dp,&Jewell R J. Studies on the stability of Model Rock Slopes. Proceedings of the International Conference centrifuge 94,singapore,1994.
    Wong F S. Uncertainties in FE modeling of slope stability [J]. Computer & Structures, 1984,19:771~791.
    Z_SOIL.PC 2001 User manual [Z]. Zace Services Ltd Report 1985~2001.Lausanne:Elmepress International.
    Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non~associated visco~plasticity and plasticity in soil mechanics [J]. Geotechnique, 1975,25(4):671~689.
    Zischinsky U .On the deformation of high slops .Proc First Int Congr Rock Mech.Lissobon:1966.
    Zou J Z, Williams D J, Xiong W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal, 1995, 32: 233~246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700