用户名: 密码: 验证码:
辣椒疫病生防菌Penicillium striatisporum Pst10的筛选、抗菌物质分离纯化及分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒疫病是由辣椒疫霉菌(Phytophthora capsici)引起的、世界范围内普遍发生的、毁灭性土传病害,20世纪90年代曾在中国20多个省连续爆发,造成了巨大的经济损失。由于疫霉菌特殊的生物学性状及其所在的土壤生态环境的复杂性,该病害的化学防治一直较为困难。尽管有许多用生防微生物控制该病害发生的报道,但防效均不理想。
     本研究从挖掘生防微生物资源、获得天然抗菌化合物角度出发,开展了从各种生境中进行辣椒疫霉拮抗菌的筛选、盆栽防效试验、拮抗物质生成的最适培养条件确定、拮抗物质的分离纯化、鉴定及分子标记研究,取得如下结果。
     以辣椒疫霉为靶标病原菌,从连作辣椒不同年限的土壤、用不同原料及制作工艺制得的堆肥、各种蔬菜作物体内等各种生态环境中筛选到辣椒疫霉的拮抗菌205株,其中拮抗真菌32株,拮抗放线菌78株,拮抗细菌95株,其中内生芽孢细菌37株。将在室内平板上拮抗作用强、持续时间长的放线菌A576、A329、芽孢细菌B105、BS211、真菌Tpc、Pst10进行液体培养,通过各菌株无菌培养滤液(sterile liquid culture filter,SLCF)对辣椒疫霉的抑菌活性及各菌株菌体及液体培养物对辣椒疫病的盆栽防效比较,显示真菌Pst10有较好的辣椒疫病生防潜力。经中国农业科学院微生物菌种保藏中心鉴定,Pst10为青霉稀有种Penicillium striatisporum。首次报道在中国境内分离到该种青霉,并将其应用于植物病害的生物防治。
     抗菌谱测定表明青霉Pst10对P. capsici、P. infestans、P. drechsleri、P. nicotianae、 P. megasperma五种疫霉菌的菌丝生长均有强烈的抑制作用,拮抗带宽度30mm,并且对Cladosporium cucumerium和Sclerotinia sclerotiorum也有较强的拮抗作用,且在室内平板上,拮抗带30天不消失。Pst10液体培养制备的SLCF能杀死辣椒疫霉菌丝细胞,抑制孢子囊的形成,抑制孢子囊及孢子的萌发,SLCF稀释10-100倍仍能使辣椒疫霉菌丝呈现直径明显增粗、菌丝前端扭曲、菌丝分枝增加、分枝菌丝节间缩短等畸形症状。在辣椒基质盆栽实验中,单独施用Pst10的SLCF,在6天内能完全抑制疫病的发生,13天后,防效仍保持45%。在菜园土盆栽实验中,有机肥能明显促进Pst10在辣椒根际的定殖:盆钵栽苗10d后,青霉Pst10+有机肥处理中,辣椒根际青霉Pst10的数量是单独施加青霉Pst10处理的3倍;20d后上升为17倍。接种后40d,青霉Pst10在根际的数量仍有2.55×104cfu/g干土,占根际真菌总数的53%,有很强的定殖及保持优势种群的能力。青霉Pst10不同处理的防病实验结果显示:SLCF+Pst10+有机肥的处理对辣椒疫病的防效最好,移栽后14天,疫病发病率也仅有10%,对照发病率为100%。
     Pst10在5种固体培养基上的菌丝生长速度、分泌物及孢子产生数量等生物学形状有很大差别,OAT是最适宜的产孢培养基。Pst10在9种液体培养基中的生物量、菌丝球形状及SLCF的抗菌活性也有显著性差异。综合考虑菌丝生物量和SLCF的抗菌活性,PEDB是Pst10最适宜的液体培养基。在9种培养基中都能生长,在Vogel及Jackson培养基中生长良好但却没有抗菌物质生成,可见菌丝生长和抗菌物质生成之间没有必然相关性。抗菌物质生成的培养条件研究表明,接种量对抗菌物质生成没有影响,Pst10在20-37℃温度范围内都能代谢产生拮抗物质,但28℃是最适合的温度。装液量对抗菌物质的生成有影响,250mL三角瓶中装20-100mL液体培养基对青霉Pst10代谢产生抗菌物质没有明显差异,装液超过100mL,抗菌物质的生成减少,说明Pst10产生抗菌物质需要氧气。在最适培养条件下,Pstl0从第4天开始大量产生抗菌物质,第8天达到高峰,高峰期维持7-8天。
     对SLCF的抗菌活性检测方法开展了研究。在SLCF制备中发现,当接种量为1-4个菌饼时,用细菌滤膜过滤制备SLCF的抗菌活性显著低于用高速离心法获得SLCF的活性,部分抗菌物质被吸附在滤膜上,但这种差异随着接种量的增加而减小。推测可能接种量对Pst10的SLCF(?)勺总体活性没有明显影响,但对Pst10产生的抗菌物质的种类有影响:接种量小时,Pst10产生的抗菌物质中,易被细菌滤膜吸附的抗菌物质占较大比例;接种量大时,Pst10产生较多不被滤膜吸附的抗菌物质。由此可见Pst10代谢产生的抗菌物质是复杂多样的。采用平板打孔-抑菌圈法、含毒平板-菌丝生长抑制法及SLCF直接滴加三种方法对SLCF的抗菌活性进行检测,研究发现SLCF直接滴加法最灵敏;研究还发现,活性检测所用的培养基种类对检测结果有明显影响,SLCF在PDA上的抗菌活性大于在V8培养基上的活性。
     与平板法检测抗菌物质相比,薄层层析法(TLC)检测能获取更多信息,因为在检测的同时就对抗菌物质进行了初步的分离。通过观察薄层层析板上抑菌圈的数量及位置就可初步判断抗菌物质的大概有几大类及各类抗菌物质的相对极性强弱。
     将Pst10的PEDB培养液经纱布过滤,把滤液离心、真空浓缩100倍后用乙酸乙酯萃取获得抗菌物质粗提物;该粗提物经TLC分离后,在254nm紫外光线下观察到6条带,分别将6条带中的化合物回收后用辣椒疫霉进行生物测定,结果显示只有条带5有抗菌活性;将从条带5中回收的抗菌物质经硅胶柱层析,洗脱液中第5-8管有抗菌活性,将4管洗脱液合并浓缩后经HPLC分离,初步共收集到4组有活性的组分,改变洗脱条件,凸显有活性的洗脱峰,用HPLC制备型分离柱收集获得2个含量最大的活性组分fraction1和fraction5;将组分1和组分5进行'HNMR和13CNMR及二维NMR分析、紫外吸收光谱扫描,最后鉴定为Calbistrin A和CalbistrinB,二者互为同分异构体,分子式C31H40O8,分子量540.26。在中间每个分离步骤所得的活性物质中都能检测到Calbistrin A和Calbistrin B存在,说明二者均是由Pst10代谢产生。
     对常见微生物的生物活性测定显示:Calbistrin A和Calbistrin B对假单胞菌细菌没有活性,但对芽孢细菌有抗生活性,且Calbistrin B的活性显著高于Calbistrin A. Calbistrin A和Calbistrin B对辣椒疫霉孢子萌发的MIC分别为7.5μg/mL和1.25μg/mLCalbistrin B的活性是Calbistrin A的6倍。种子发芽实验显示,Calbistrin B的浓度对萝卜种子的发芽率及根长没有显著影响。
     采用根癌农杆菌介导的方法获得Pst10的潮霉素B抗性标记、遗传稳定的转化子41株,转化率为0.82%。所有转化子的生长速度和抗菌性能与野生型没有明显差异;获得12个绿色荧光蛋白-遗传霉素抗性(GFP-Gen)(?)双标记菌株,转化率0.24%,获得14个黄色荧光蛋白-遗传霉素(YFP-Gen)抗性双标记菌株,转化率0.28%。筛选到生长速度和拮抗性能与野生型没有明显差异的双标记转化子,为该菌株的专利保护实现了分子标记。
Phytophthora root rot (PRR), caused by Phytophthora capsici Leonian,is a common and destructive disease of greenhouse and field-grown chilli peppers(Capsicum frutescens L.) in China and the worldwide. The disease caused serious economic losses of chilli peppers in more than20Provinces of China. It has been difficult to control PRR with chemical methods since the special biologial characteristics of pathogen of Phtophthora sp. and complicated condition of soil. The biocontrol efficacy of disease suppression of PRR could not meet the requirement of agricultural production although there are a few reports about application of various of biocontrol agents that were used for disease control.
     In order to exploit new microorganism for disease control of crops and obtain natural and microbial-soured chemicals against plant pathogens, we carried out some research works as following:
     Two hundred and five antagonistic microbes against P.capsici were selected from soil which grew chilli pepper continuously in past decades, composting which was made with different raw material and composting technique and plant of varieties of vegetables crops, among them there were32antagonistic fungi,78antagonistic actinomyces and95antagonistic bacteria. Strain A576,A329,B105,BS211,Tpc and-Pst10showed strongly and lasting antagonism against P.capsici on plates in vivtro and was cultured in liquid medium respectively.The antagonistic activity of SLCF of each culture was examined and the effects on disease controlof PRR in pot experiment were compared. The results showed PstlO was better than other microbes and could be a potential candidate for PRR control. PstlO was identified as Pencillium striatisporum, a rare species, by Agricultural Culture Collection of China (ACCC) and named as PstlO in this research.This is the first study that reported Penicillium striatisporum was isolated in China and applied as biocontrol agent for disease control of plants.
     PstlO showed very high antagonistic effects on mycelium growth of Phytophthora spp., Cladosporium cucumerium, and Sclerotinia sclerotiorum, and the inhibition zone was30mm and lasted more than30days in in vitro assays. The toxicity of sterilized liquid culture filtrates (SLCF) of Pst10grown in potato dextrose broth (PDB) was tested against Phytophthora capsici mycelium growth and sporangia/spore formation or germination. The SLCF completely inhibited mycelium growth and even at a100-fold dilution led to abnormal mycelium. The disease incidence of PRR was zero after6days transplantation in pot experiment with substrate treated with SLCF and still45%plants were healthy after13days transplantation. Composted pig manure slightly increased the colonization of Pst10in the chilli rhizosphere. In pot tests, the number of Pst10in chilli rhizosphere with treatment of Pst10and organic fertilizer was three folds of that in treatment of Pst10singly after10days of transplantation and the number increased to17folds after20days of transplantation. Strain PstlO showed strong ability of colonization and maintainment of dominatnt group since the number of Pst10in chilli pepper rhizosphere remained2.55×104cfu/g after40days. The lowest incidence of PRR was in the treatment consisting of SLCF, conidial suspension of Pst10and organic fertilizer with10%plants were infected by P.capsici after14days of transplantation, while the disease incidence of control was100%.
     There were obvious difference about growth and secretes of mycelium and conidia production of Pst10when cultured on5different solid medium respectively, and OAT was optimum medium for conidia production. Also, the diffence of biomass of mycelium, sphere appearance of mycelium and antibiotic activity of SLCF was significant when Pst10was cultired in9kinds of different liquid media. PEDB was optimum medium when considering biomass of mycelium and bioactivity of SLCF. Pst10grew well in9types of media. The SLCF of Pst10cultured in Vogel or Jackson medium had no antagonistic activity against P.capsici although Pst10displayed favourable growth in this two media. There was no corelation between mycelium growth and antibiotics production. The studies on culture conditon for antibiotics production showed that:inoculum had no impact on antibiotics prodcution, The antibiotics could be produced by Pst10at20-37℃,and28℃was the best temperature.Gas flux could influence production of antibiotics of Pst10,butthe difference was not significant when the flask of250mL was filled with20-100mL medium.The antibiotics was produced in a large amount by Pst10after4days incubation and the antagonistic activity was highest on the8th days of incubation and this activity lasted for7-8days.
     The methods for activity examination of SLCF were studied. The antagonistic activity of SLCF prepared by centrifugation with high speed was higher than that prepared by filtration through0.22μm Millipore membrane when the inoculum of Pst10was1-4disks in100mL medium contained in250mL flask, and the following experiment showed part of chemicals were adhered to Millipore membrane But the activity disparity between the two methods reduced with inoculum increasement. This result maybe suggest that the total activity of SLCF was not impacted by inoculum, while the varities of chemicals produced by Pst10were influenced by inoculum,that means Pst10produced much more antagonistic chemicals which were adhered to Millipore membrane with small inoculum,and more chemicals which were easily passed through Millipore membrane were produced by Pst10when with a large amount of inoculum. So, varieties of antifungal chemicals were produed by Pst10. The method of direct dropping of SLCF was the most sensitive among three methods of plate-hole-inhibiton zone, plate containing antibiotics-growth inhibition of mycelium and dropping SLCF directly. We also find antibiotic activity was affected by medium composition.
     Compared with plate method used for activity examination, the TLC method suggested more information about antibiotics since chemicals could be seperated primarily at the same time of activity examination. We could know how many types of chemicals and the polarity of antibiotic chemicals exsisted in SLCF by numbers, size and position of inhibition zone on TLC plate.
     Liquid cultures of Pst10grown in PEDB were filtered through two-layers of cheesecloth in a funnel and centrifuged,and the supernatants were collected and concentrated at45℃on a rotary evaporator to a final volume with1%of SLCF. The concentrated supernatants were extracted with ethyl acetate and consequently the antagonistic fraction was seperated by TLC. Under254UV,6bands were observed and the chemicals contained in each band were recovered.The bioassay results of chemicals recovered from each band showed the5th band contained antagonistic chemicals. The chemicals coming from the5th band was seperated by Silica column and elute was collected in tube. The elutes in the5-8th tubes had antagonism against P.capsici. The elutes in the four tubes was combined and concentrated and then fractioned by HPLC. Four fractions with antibiotic activity were obtained. Two purified fractions, named fractionl and fraction5, were collected in a large amount when HPLC condition was changed. The two fractions were analysized by1HNMR,13CNMR, dimension NMR, UV spectrum and finally were identifed as Calbistrin A and Calbistrin B respectively,which were isomer with formula of C31H40O8and molecular weight of540.26.
     Calbistrin A and Calbistrin B had activity against Bacillus sp.,but had no activity against Pseudomonas sp. and Actinomyces sp.tested. The activity of Calbistrin B is higher than that of Calbistrin A. The MIC of Calbistrin A and Calbistrin B was7.5μg/mL and1.25μg/mL seperately. Calbistrin B had no toxicity to seed germination and root growth when the concentration applied was lower than10μg/mL which was8folds of MIC to P.capsici.
     Forty-one transformants with Hygromycin B resistance marker were obtained with Agrobacterium tumefaciens-mediated transformation (ATMT), and the transformation rate was0.82%. There was no difference between wild type and all the transformants of Pst10about growth and antagonism against P. capsici. Twelve transformants with GFP-Geneticin resistance dual marker were obtained with ATMT with0.24%of transformation rate. Fourteen transformants with YFP-Geneticin resistance dual marker were obtained with ATMT with0.28%of transformation rate. There was no obvious difference about growth and antagonism against P. capsici between wild types and several transformants with GFP/YFP-Gen dual markers and the green or yellow fluorescent protein was expressed normally, which resulted in a molecular marker for patent protection of Pst10.
引文
1.鲁素云.植物病害生物防治学[M].北京:农业大学出版社,1993.
    2. Keer A. Biological control of crown gall through production of agrocin84[J]. Plant disease.1980,64: 25-30.
    3.李长松.拮抗性细菌防治植物土传病害的研究进展[J].生物防治通报,1992,8(4):168-172.
    4.葛红莲,纪秀娥,乔传英.根围细菌防治植物土传病害的研究进展[J].河南农业科学,2005,8:21-24.
    5.于淑池.植物真菌病害生防芽孢杆菌的研究进展[J].通化师范学院学报,2007,28(8):52-54.
    6. Backman P A, Brannen P M, Mahuffee W F. Plant response and disease control following seed inoculation with Bacillus subtilis[A]. Ryder M H, Stephens PM, Improving plant productivity with Rhizosphere Bacteria[C].Adelaide,Aust:CSIRO Div Soill.1994:3-8.
    7. Grosch R, Junge H. Krebs B, et al. Use of Bacillus subtilis as a biological agent,Ⅲ:Influence of Bacillus subtilis on fungal root disease and on yield in soilless culture[J]. Pflanzenkr, Pflanzen-schutz.1999,106:568-580.
    8. Asaka O, Shoda M. Biological of Rhizoctonia solani damping-off of tomato with Bacillius subtilis RB14[J]. Appl. Environ.Microbiol,1996,62 (11):4081-4085.
    9. Tang W H. Advance in biological control of plant disease:proceding of the international workshop on biological control of plant disease[C]. Beijing:China Agricultural University Press.1996.
    10. Paulitz T C, Belanger R R. Biological control in greenhouse system [J]. Annu Rev Phytopathol, 2001,39:103-133.
    11. Silveira EBDa, Mariano R de LR, Michereff S J, et al. Antagonism of Bacillus spp. against Pseudomonas solanacearum and effect on tomato seedling growth [J]. Fitopat-ologia Brasileira. 1995,20(4):605-612.
    12.王雅平,刘伊强,潘乃.枯草芽孢杆菌TG26防病增产效应的研究[J].生物防治通报,1993,9(2):63-68.
    13.陈志谊,许志刚,高太东等.水稻纹枯病拮抗细菌的评价与利用[J].中国水稻科学,2000,14(2):98-102.
    14.陈志谊,高太东,严大富等.枯草芽孢杆菌Bs-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    15.和凤美,何月秋,朱永平.生防菌B 9601的防治效果研究[J].西南农业大学学报,2002,24,(4):312-315.
    16.邱思鑫,何红,阮宏椿,关雄,胡方平.内生芽孢杆菌TB2防治辣椒疫病效果及其机理初探[J]. 植物病理学报,2004,34,(2):173-179.
    17.程洪斌,刘晓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展[J].上海农业学报,2006,22(1):109-112.
    18. San-Lang Wang, Tzu Yin Lin, Yue Horng Yen, et al. Bioconversion of shellfish chitin wastes for the production of Bacillus Subtilis w-118 chitinase[J].Carbohydrate Research.2006,34:2507-2515.
    19. Wichitra Leelasuphakul, Pranom Sivanunsakul, Souwalak Phongpaichit, et al, Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillius subtulis NSRS89-24 against rice blast and sheath blight[J]. Enzyme and Microbial Technology,2006,38:990-997.
    20. Ciampi L, Burzio LO, Burzio LA. Carriers for Pseudomonas fluorescens, antagonistic to Pseudomonas (Ralstonia)solamwearum, causal agent of bacteria wilt [J]. Phytopathology,1997, 32(1):64-70.
    21. PaI KK, Tilak KVBR, Saxena AK. Antifungal characteristics of a Pseudomonas fluorescent strain involved in the biological control of Rhizoctonia solani [J]. Microbiologoical Research,2000,155 (3):233-242.
    22. Goel AK, Dadarwal KR. Pigment diverse mutants of Pseudomonas spp.:inhibition of fungal growth and stimulation of growth of Cicer avietinium[J]. Biologia Plantarum(Prague),2000,43(4): 563-569.
    23. Lee J Y, Moon S S, Hwang B K. Isolation and in vitro and in vivo activity against Phytophthora capsici and Volletoteichum orbiculare of phenazine-1-carooxylic acid from Pseudomonas aeruginosa strain GC-B26[J]. Pest Management Science,2003,59:872-882.
    24.彭于发,黄大肪.工程菌荧光93防治小麦全蚀病研究简报[J].生物防治通报,1991,7(4)181-182.
    25.彭于发,陈善铭.荧光假单胞菌Tn5诱变菌株防治小麦全蚀病的初步研究[J].植物病理学报,1990,20(3):229-233.
    26.许煜泉,唐玮宁,郑有丽.筛选假单胞菌株M18防治大棚黄瓜枯萎病害[J].上海交通大学,1999,33(2):210.
    27.姚德明.新农用抗菌素的筛选[J].微生物学杂志,1997,17(3):41-43.
    28.方常福.抗病毒抗生素的筛选[J].微生物学杂志,1996,16(3):41-46.
    29.商瑞,曾会才,毛佳.农用抗生素分离纯化的研究进展[J].广东农业科学,2008,2:124-127.
    30. Postma J, Willemsen-de KM, Rattink H, etal. Disease suppressive soilless culture systems: charactetization of its micro flora[J]. Acta Hortic.2001,306:66-76.
    31. Lahdenpera M L. The control of Fusarium wilt on Carnation with a Streptomyces preparation [J].ActaHortic.1987,216:85-92.
    32. Abyard MS, Sayed MA, ShanshouryAR, etal. Antimicrobial activities of Streptomyces pulcher, S. caneslens and S. citreofluorescens againt fungal and bacterial pathogens of tomato in vitro Folia[J]. Mivrobiologia.1996,41(4):321-328.
    33.涂璇,薛泉宏,张宁燕,牛晓磊.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响[J].西北农林科技大学学报,2007,35(6):141-146.
    34.许英俊,薛泉宏,邢胜利等.3株放线菌对草莓的促生作用及对PPO活性的影响[J].西北农业学报,2007,17(1):129-136.
    35. Weinding R.Studies on a lethal princiole effective paramitic action of Trichoderma lignorum on Rhizoctonia soloni and other soil fungi[J]. Phytopathology,1932,22:837-845.
    36.郭润芳,刘晓光,高克祥.拮抗木霉菌在生物防治中的应用与研究进展[J].中国生物防治2002,18(4):180-184.
    37.宋晓妍,孙彩云,陈秀兰,张玉忠.木霉生防作用机制的研究进展[J].中国农业科技导报,2006,8(6):20-25.
    38. Bailev B A, Lumsden R D. Trichodermn and Gliocladium[J].1998,2:185-204.
    39.朱虹,刘俊龙,李婧梅,李增智,樊美珍.木霉菌的生防效果与菌株生物学及生化指标的相关性[J].中国森林病虫,2006,25(2):1-3.
    40. Harman G E. Myths and Dogmas of Biocontrol-changes in perceptions derived from research on Trichoderma harzianum T—22[J]. Plant Disease.2000,84(4):377-393.
    41.唐永庆,许艳丽,张红骥,高亚冰,于德才.木霉制剂的生防应用研究及发展前景[J].黑龙江农业科学,2008(1):111-113.
    42.陈碧云,周乐聪,陆致平.绿色木霉发酵配方与防治油菜菌核病的研究[J].中国生物防治,2001,17(2):67-70.
    43. Harman G E. Jin X, Stasz T E. Production of conidial biomassof Trichoderma harzianum for biological control[J]. Biol. Control,1991,1:23-28.
    44. Lewis J A, Papavizas G C. Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media[J]. Soil Biol. Biochem,1983,15:351-357.
    45. Lewis J A, Papavizas G C. Chlamydospore formation by Trichoderma spp. in natural substrates [J]. Can J. Microbiol,1984,30:1-7.
    46.叶素丹冯明光.,生防真菌耐旱特性的生理生化基础及其利用[J].应用生态学报,2004,15(12):2383-2387.
    47. Kredics L. Influence of Environmental Parameters on Trichoderma Strains with biocontrol Potential [J]. Food Techno1. Biotechno.2003,41(1):37-42.
    48. Jackson A M, Whipps J M, Lynch J M. Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential[J]. World J. Microbiol Biotechnol,1991,7:494-501.
    49.燕嗣皇,吴石平.三唑酮对西瓜根际木霉菌与尖孢镰刀菌竞争定殖的影响[J].植物病理学报2001,31(3):265-270.
    50. Papvizas GC. Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl enhanced capabilities [J]. Phytopathology,1982,72:126-132.
    51. Papvizas GC.Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to MBC fungicides [J]. Phytopathology,1983,73:407-411.
    52.田连生.紫外诱导哈茨木霉产生对多菌灵抗药性的菌株[J].农业环境科学学报,2007,26(1):318-321.
    53.李梅,杨谦,李良银.多菌灵抗性基因转化哈茨木霉的研究[J].农业环境科学学,2003,22(4):493-495.
    54. Paulitz T C, Belanger R R.Biological control in greenhouse system [J]. Annu Rev Phytopathol, 2002,39:103-133.
    55. Lumsden R D, Locke J C. Biological control of damping -off caused by Pythium ultimum and Rhizoctonia solani with Gliclodium virens in soilless mix [J]. Phytopathogy,1989,79:361-366.
    56. McQuilken M P, Moharmmadi O.Evaluation of a commercial formulation of Gliocladium catentdatum (J1446) for biocontrol of damping off in bedding plants[J]. Meded Rijlesfac Landboutoet, Univ Gent.1997,62:987-992.
    57.李俊喜,刘润进.菌根真菌菌剂防治作物土传病害潜力分析[J].植物病理学报,2007,37(1):1-8.
    58. Melgarejo P, Sagasta E M. Fungal antagonism in relation to peaches. Pages 127-136 in: Antimicrobials and Agriculture. M. W. Woodbine, ed Butterworths, London.1984,583pp
    59. M.Sagasta I. Antagonismo de Penicillium frequentans Westling sobre Penicillium crustrosum Thorny Geotrichum candidum Link ex Leman. Aislades de aceitunas almacenadas en troje.Tesina de Licenciatura en Ciencias Quimicas[J]. Universidad Complutense de Madrid Spain.1986,140pp.
    60. De Cal A, Sagasta E M, Melgarejo P. Antifungal substance produced by Penicillium frequents and their relationship to the biocontrol of Monilinia laxa[J]. Phytopathology,1988,78:888-893.
    61. De Cal A, Sagasta E M, Melgarejo P. Biological control of peach twig blight (Monilinia lexa) with Penicillium frequentans[J].Plant Pathol,1990,39:612-618.
    62. Pascual S, Melgarejo P, Magan N. Accumulation of Compatible Solutes in Penicillium frequentans Grown at Reduced Water Activity and Biocontrol of Monilinia laxa [J]. Biocontrol Science and Technology,2000,10:71-80.
    63. Fang J G, Tsao, P H. Penicillium funiculosum as a biological control agent for Phytophthora root rot of azalea [J]. Phytopathology (Abstr.),1989.79:1159.
    64. FangJ G, Tsao P H. Mechanisms of biological control of Phytophthora root rot by Penicillium funiculosum[J]. Phytopathology (Abstr.),1992,82:1119.
    65. Fang J G, Tsao P H. Efficacy of Penicillium funiculosum as a biological agent against Phytophthora root rots of azalea and citrus[J]. Phytopathology,1995,85:871-878.
    66. Carol E. Windels and Thor Kommedahl. Factors Affecting Penicillium oxalicum as a Seed Protectant Against Seeding Blight of Pea [J]. Phytopathology,1978,68:1656-1661.
    67. Carol E. Windels and Thor Kommedahl.Pea Cultivar Effect on Seed Treatment With Penicillium oxalicum in the Field [J]. Phytopathology,1982,72(5):541-543.
    68. Walter J Kaiser. Biological Control of Seed Rot and Preemergence Damping-off of Chickpea with Penicillium oxalicum[J]. Plant Disease,1984,68(9):806-811.
    69. De Cal A, Pascual S, Melgarejo P. Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt [J]. Plant Pathol.1997,46:72-79.
    70. De Cal A, Pascual S, Melgarejo P. Rapid laboratory method for assessing the biological control potential of Penicillium oxalicum against Fusarium wilt of tomato[J]. Plant Pathol.,1997,46: 699-707.
    71. De Cal A, Garcia L R, Pascual S, et al. Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato[J]. Plant Pathol.,1999,48: 260-266.
    72. Pascual S, Jose R R, De Cal A, et al. Ecophysiological factors affectin growth,sporulation and survival of the biocontrol agent Penicillium oxalicum[J].Mycopathologia,1997,139:43-50.
    73. Larena I, Melgarejo P, De Cal A. Production, survival, and evaluation of solid-substrate inoculate of Penicillium oxalicum, a biocontrol agent against Fusarium wilt of tomato[J]. Phytopathology, 2002,92:863-869.
    74. Nicoletti R, Stefano M D, Stefano S D, et al. Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates[J]. Mycopathologia,2004,158:465-474.
    75. Lafont P, Debeaupuis J P, Gaillardin M, et al. Production of mycophenolic acid by Penicillium roqueforti strains [J]. Appl. Environ. Microbiol.,1979,37:365-368.
    76. Frisvad J C, Filtenborg O. Terverticillate Penicillia:Chemotaxonomy and mycotoxin production [J]. Mycologia,1989,81:837-861.
    77. Harrison Y A, Stewart A. Selection of fungal antagonists for biological control of onion white rots in New Zealand[J]. New Zealand J. Exp. Agr.,1988,16:249-256.
    78. Kharbanda P D, Dahiya J S. A metabolite of Penicillium verrucosum inhibitory to growth of Leptosphaeria maculans and Rhizoctonia solani[J]. Can. J. Plant Pathol.,1990,12:335.
    79. Kim HY, Choi GJ, Lee H B, et al. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight [J]. Letters Appl. Microbiol.2007,44:332-337.
    80. De Stefano S, Nicoletti R, Milone A,et al.3-O-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum [J]. Phytochemistry,1999,52:1399-1401.
    81.曾金凤.青霉Z88菌株对水稻纹枯病菌的抗生作用[J].福建农业大学学报.1995,24(2):180-183.
    82.彭霞薇张洪勋白志辉.草酸青霉菌果胶酶诱导黄瓜抗黑星病研究[J].植物病理学报2004,34(1):69-74.
    83.艾力·吐热克,唐文华,赵震宇.草酸青霉菌(P-o-41)发酵液对小麦病害的诱导抗性作用[J].新疆农业科学.2006,43(5):386-390.
    84.王勇,张文革,何璐等.生物农药草酸青霉水剂对玉米小斑病的防治效果[J].安徽农业科学,2007,35(7):1965-1966.
    85. Ezziyyani M, Requena M E, Egea Gilabert C,et al. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination [J]. J Phytopathol.,2007,155:342-349.
    86.陈晓斌,张炳欣,何勇强.假单胞菌属生防菌株的遗传工程改良[J].微生物学通报,2000,27,(4):293-296.
    87.杨合同,Maarten H Ryder,唐文华等.原生质体融合技术改良植病生防木霉菌株[J].中国生物防治.2005,21(4):247-253.
    88.黄玉杰,杨合同,陈凯,周红姿.利用根癌农杆菌介导的转化方法改良木霉菌[J].山东科学,2005,18(3):30-35.
    89.吴石平,陆德,刘世怙,燕嗣皇.三唑酮对豌豆根际木霉定殖和尖孢镰刀菌厚垣孢子萌发的影响[J].云南农业大学学报.2000,15(3):247-249.
    1. Mishra NC, Tatum EL. Non-Mendelian Inheritance of DNA-Induced Inositol Independence in Neurospora. [J]Proc Natl Acad Sci U S A.1973,70(12):3875-3879.
    2. Shimomura O, Johnson FH, Saiga Y. Extration, Purification and properties of aequorin, a bioluminescent protein from the luminous hadromedusan, Aequorea victoria[J]. J Cell Comp Physiol.,1962,59:233.
    3. Chalfie M, Tu Y, Euskichen G. et al. Green fluorescent protein as a marker for gene expression. Science,1994,263 (5148):802-805.
    4. Sarrocco S, Mikkelsen L, Vergara M. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain[J]. Mycol Res. 2006,110(2):179-187.
    5. Yeoung S B,Guy R K. Cotransformation of Trichoderma harzianum with β-Glucuronidase and Green Fluorescent Protein Genes Provides a Useful Tool for Monitoring Fungal Growth and Activity in Natural Soils[J]. Applied and Environmental Microbiology,2000,66(2):810-815.
    6. Mette L, Inge M K, Birgit J. GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studies[J].Mycological Research, 2002,106:815-826.
    7. Raymond J S L. Studies on adaptations of Metarhizium anisopliae to life in the soil [J]. Journal of Invertebrate Pathology,2008,98(3):271-276.
    8. Bundock P, Dull R A, Beijersbergen A, et al. Transkingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae [J]. EMBO J.,1995,14:3206-3214.
    9. Marcel JA de Groot, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi [J]. Nature Biotechnology,1998,16:839-842.
    10. Gouka R J, Gerk C, Hoykaas P J,et al. Transformation of Aspergillus awamofi by Agrobacterium tumefaciens-mediated homologous recomhition [J]. Nature Biotechnology,1999,17:598-601.
    11. Abuodeh R O, Orbach M J, Mandel M A, et al. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens[J]. J Infect Dis.,2000,181:2106-2110.
    12. Mullins E D, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxyspornm:an efficient tool for insertional mutagenesis and gene transfer [J]. Phytopathology, 2001,91:173-180.
    13. Covert S F, Kapor P, Lee Mei H, et al. Agrobactefium tumefaeiens-mediated transformation of Fusarium eireinatum[J]. Mycological Research,2001,105(3):259-264.
    14. Zwiers L H, De Waard M A.. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogenMycosphaerella graminicola[J]. Current Genetic,2001,39:388-393.
    15. Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea [J]. Mol Cell,2001,12 (3):407.
    16. Hanif M, Pardo A G, Gorfer M, etal. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker [J]. Curr Genet.,2002,41 (3):183-188.
    17. Sun C B, Kong Q L, Xu W S. Efficient transformation of Penicillium chrysogenum mediated by Agrobacterium tumefaciens LBA4404 for cloning of Vitreoscill. hemoglobin gene [J]. Electronic Journal of Biotechnology,2002,5(1):21-28.
    18. Combier J P, Melayah D, Raffier C, etal. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungua Hebeloma cylindrosporum [J]. FEMS Microbiol Lett,2003,220 (1):141-148.
    19. Rolland S, Jobic C, Fevre M, et al. Agrobacterium-mediated transformation of Botryis cinema, simple purification of monokaryotic transformation and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences[J].Curt Genet,2003,44:164-171.
    20. Vijn I, Govers F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans[J]. Mol Plant Pathol,2003,4:459-467.
    21. Tsuji G, Fujii S, Fujihara N, etal. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenariumi [J]. J Gen Plant Pathol,2003, 69:230-239.
    22. Fang W G, Zhang Y J, Yang X Y, et al. Agrobacterium tumefaciens-mediated transformation of Beauveria bassina using all herbicide resistance gene as a selection marker[J]. J Invert Pathol, 2004,85(1):18-24.
    23. Susanne Zeilinger. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation [J].Curr Genet,2004,45:54-60.
    24. Michielse C B, Salim K, Ragas P,et al. Development of a system for intergrative and a stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer [J]. Mol Gen Genomics.2004,271:499-510.
    25. Christopher W R, Michael P C, Jonathan R G, et al.Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans[J].FEMS Microbiology Letters,2004,241:207-214.
    26. Katherine F D, Sandra J G, Seogchan K. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae[J].2004,45 (2):104-110.
    27. Benedetto G, Michiel A de R, Patrizia F, et al. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii:a first step towards truffle genetics[J].Curr Genet.2005,48:69-74.
    28.李维,张义正.根癌农杆菌介导的白腐丝状真菌——黄孢原毛平革菌的转化[J].微生物学报.2005,45(5):784-786.
    29.李姗姗,根癌农杆菌介导的紫衫醇产生菌HQD33遗传转化系统的建立.黑龙江大学硕士学位论文,2005.
    30.高兴喜,杨谦.根癌农杆菌介导的CryⅠA(b)基因在毛壳菌中的转化[J].农业环境科学学报,2005,24(1):22-25.
    31. Dos R M C, Pelenelli F M H, Delgado D R T, et al. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana[J]. J Microbiol Method.2004, 58(2):197-202.
    32. Kemppainen M,Circosta A, Tagu D, et al. Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N[J]. Mycorrhiza,2005,16(1):19-22.
    33. Nicklas S, Malin E, Daniel L C, et al. Development of a rapid and simple Agrobacterium tumefaciens mediated transformation system for thefungal pathogen Heterobasidion annosum [J]. FEMS Microbiol Lett,2006,255:82-88.
    34. White D, Chen W D. Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation [J]. Curr Genet,2006,49:272-280.
    35. Zhong YH, Wang X L, Wang T H,ET AL. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertionalutagenesis [J]. Applied microbiology and biotechnology.2007,73(6):1348-1354.
    36. Richard JW, Colin CE, Hayley J R.Agrobacterium-mediated transformation of Sclerotinia sclerotiorum [J]. Journal of Microbiological Methods.2006,65:202-207.
    37. Hitoshi M, Tomohiro I, Kazuo S, et al. Agrobacterium-mediated transformation of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces commercially valuable fruit bodies, matsutake [J].Mycoscience,2006,47:228-231.
    38. Hitoshi M, Masahide S,Takashi Y,et al. Expression of the autofluorescent protein, DsRed2,in the recombinants of the ectomycorrhizal basidiomycete, Suillus grevillei, generated by Agrobacterium mediated transformation[J]. Mycorrhiza.2006,16:407-412.
    39. Rosa E C, Juan A V, Maria R H,et al. A Comparison of the Phenotypic and Genetic Stability of Recombinant Trichoderma spp. Generated by Protoplast and Agrobacterium-Mediated Transformation [J].The Journal of Microbiology,2006, p.383-395.
    40. Krishna K S, Shefali G, Ramesh C K. Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets:a model transformation system for white-rot fungi [J]. Biotechnol. Appl. Biochem.2006,43:181-186.
    41. Marcia M M, Marta H T, Beatriz T L, etal. Agrobacterium-mediated insertional mutagenesis of the ochratoxigenic fungus Aspergillus westerdijkiae[J]. Can. J. Microbiol.2007,53:148-151.
    42. Elena M,Claude M, Marta V, et al. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis [J]. Curr Genet,2007,52:65-75.
    43. Markus G, Sylvia K, Dragana B, et al.Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression [J]. Mycological Research, 2007,3:850-855.
    44.任文斌.淡紫拟青霉E2-4生防效果分析及其根癌农杆菌介导的遗传转化.华南热带农业大学,博士论文,2007.
    1.邹学校.中国辣椒[M].北京:中国农业出版社,2002.P178.
    2.关天舒,李凤云,赵奎华等.沈阳地区辣椒疫病的鉴定及其防治药剂筛选[J].沈阳农业大学学报,2001,32(5):356-357.
    3.王志田.哈密地区辣椒疫霉病的鉴定及部分生物学测定[J].新疆农业科学,1990,(2):69-71.
    4.刁治民,罗桂花.青海辣椒疫病的初步研究[J],青海师范大学学报(自然科学版),1994,(4):55-59.
    5.刘宝康.陕西辣椒疫病的诊断[J].陕西农业科学,1993,(3):13-14.
    6.张国珍,梁月,戴万安.西藏辣椒疫病病原鉴定、生物学特性及室内杀菌剂生物测定[J].西藏农业科技,2003,26(4):23-30.
    7.林相璀,牛赡光,董茂忠.生防细菌和甲霜灵对辣椒疫病联合防治作用评价[J].山东农业科学,2003,(2):35-36.
    8.戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究[J].中国生物防治,1999,15(2):81-84.
    9.朱宗源,周新根,宋荣浩等.用生物制剂防治青椒疫病[J].上海农业学报,1995,11(1):64-68.
    10.刘任,卢兆金.哈茨木霉T2菌株对辣椒土传真菌病害的控制作用[J].仲恺农业技术学院学报,2003,16(1):6-11.
    11.邱思鑫,何红,阮宏椿等.内生芽孢杆菌TB2防治辣椒疫病效果及其机理初探[J].植物病理学报,2004,34(2):173-179.
    12. Jung H K, Kim S D. Selection and antagonistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease [J]. Korean J. Microbiol. Biotechnol.,2004,32:312-316.
    13. Jung H K, Kim S D. An antifungal antibiotic purified from Bacillus megaterium KL39, a biocontrol agent of red-pepper Phytophthora-blight disease[J]. J. Microbiol. Biotechnol,2005,15:1001-1010.
    14. Khang Y H, Kim S D. Pyoverdin 2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus [J]. J.Microbiol. Biotechnol,2003,13:415-421.
    15. Lee J Y, Hwang B K, Diversity of antifungal actinomycetes in various vegetative soils of Korea[J]. Can J Microbiol,2002,48:407-417.
    16. Lee J Y, Moon S S, Hwang B K. Isolation and antifungal and antiomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16[J]. Appl Environ Microbiol,2003,69: 2023-2031.
    17. Lee J Y, Moon S S, Hwang B K. Isolation and in vitro and in vivo activity against Phytophthora capsici and Volletoteichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26 [J]. Pest Manage. Sci.,2003,59:872-882.
    18. Paul D, Sarma Y. Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici, foot rot pathogen of black pepper (Piper nigrum L.) [J].Archiv. Phytopathol. Plant Protect.,2006,39:311-314.
    19. Jung H K, Kim S D.Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL 39, a biocontrol agent of red-papper Phytophtora blight disease [J].Korean J. Microbiol. Biotechnol.2003,31:235-241.
    20. Smith V L, Wilcox W F, Harman G E. Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. [J]. Phytopathology,1990,80:880-885.
    21. De Cal A, Garcia L R, Pascual S, et al. Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato [J]. Plant Pathology,1999, 48:260-266.
    22. De Cal A, Pascual S, Melgarejo P. Rapid laboratory method for assessing the biological control potential of Penicillium oxalicum against Fusarium wilt of tomato [J]. Plant Pathology,1997,46: 699-707.
    23.沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999.
    24.郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社1997.
    25. De Cal, A, Pascual S, Melgarejo P. Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt [J]. Plant Pathol.,1997,46:72-79.
    26. Fang J G, Tsao P H. Mechanisms of biological control of Phytophthora root rot by Penicillium funiculosum [J]. Phytopathology (Abstr.),1992,82:1119.
    27. Nicoletti R, Stefano M D, Stefano S D, et al. Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates[J]. Mycopathologia,2004,158:465-474.
    28. Windels C E. Growth of Penicillium oxalicum as a biological seed treatment on pea seed in soil [J]. Disease Control and Pest Management,1981,71:929-933.
    29. Windels C E, Kommedahl T. Factors affecting Penicillium oxalicum as a seed protectant against seedling blight of pea [J]. Disease Control and Pest Management,1978,68:1656-1661.
    30. Windels C E, Kommedahl T. Pea cultivar effect on seed treatment with Penicillium oxalicum in the field[J]. Ecol. Epidemiol.,1982,72:541-543.
    31. Fang J G, Tsao P H. Penicillium funiculosum as a biological control agent for Phytophthora root rot of azalea[J]. Phytopathology (Abstr.),1989,79:1159.
    32. Fang J G, Tsao P H. Efficacy of Penicillium funiculosum as a biological agent against Phytophthora root rots of azalea and citrus[J]. Phytopathology,1995,85:871-878.
    33. Stolk A C. Four new species of Penicillium[J]. Antonie van Leeuwenhoek,1969,35:261-274.
    34. Morino T, Nakamura K, Nishikawa K, et al. Application:JP patent, JP6172374,1994.
    35. Michael S, Robert J C, Ernest L, et al. Calbistrin E and two other new metabolites from an Australian isolate of Penicillium striatisporum[J]. J. Nat. Prod.,2005,68:581-584.
    36. Lewis J A, Papavizas G C. A new approach to stimulate population proliferation of Trichoderma species and other potential biocontrol fungi introduced into natural soils[J]. Phytopathology, 1984,74,:1240-1244.
    37. Sivan A, Elad Y, Chet I. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphaniedermatum[J]. Phytopathology,1984,74:498-501.
    38. Smith V L, Wilcox W F, Harman G E. Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp.[J]. Phytopathology,1990,80:880-885.
    1. Katarina K, Carlos G E, Ricardo V U.The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum [J]. Biochimie, In Press, Accepted Manuscript.2008,10.
    2. Pamela V, Wolfgang M, Wolfgang B. Characteristics of glucose uptake by glucose- and NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration [J].Fungal Genetics and Biology,2008,45(10):1380-1392.
    3.江洁,杜连祥,路福平等.培养条件对里氏木霉306菌体形态和t-PA生物合成的影响[J].工业微生物,2005,35(2):14-18.
    4.李栎,何月秋,苏春丽.不同条件对哈茨木霉菌株Th-B菌丝生长的影响[J].云南农业大学学报,2004,19(6):677-680.
    5.李忠,刘爱英,梁宗琦.虫生真菌玫烟色拟青霉培养条件研究[J].植物保护,2005,31(5):28-30.
    6.李忠,刘寿章,刘爱英等.玫烟色拟青霉营养需求及培养条件研究[J].贵州农业科学,2004,32(5):15-16.
    7.李海峰,王素英.生防菌青霉TS67发酵条件优化研究[J].河南农业科学,2007,6:70-73
    8.朱新燕,李增智,樊美珍等.3株环链拟青霉固体培养条件的研究[J].安徽农业大学学报,2008,35(1):38-41.
    9.赵文婧,高宇英,韩建荣等.外源β-胡萝卜素、光照对青霉PT95菌株菌核分化和类胡萝卜素产率的影响[J].微生物学报,2005,45(2):279-282.
    10. Hart J R, YuanJM. Influence of inocula and grains on sclerotia biomass and carotenoid yield of Penicillium sp. FP95 during solid state-ferment-ation[J]. Journal of Microbial Biotechnol,2003,30: 589-592.
    11.刘春来,李新.蜡蚧轮枝菌固态发酵基质筛选和发酵条件研究[J].植物保护,2008,34(2):114-116.
    12. Deshpamde M V. Mycopesticide production by fermentation:potential and challenges [J].Critical Reviews in Microbiology,1999,25(3):229-243.
    13.陶玉贵.生物农药固态发酵条件的研究[J].安徽师范大学学报(自然科学版),2001,24(1):31-33.
    14.方传记,陆兆新,孙力军等.淀粉液化芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化[J].中国农业科学,2008,41(2):533-538.
    15. Sen R S T. Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on suffactin production[J]. Biochemical Engineering Journal,2004,21: 141-148.
    16. Barbara C E, Suraia S,Sergio D A,et al.The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck[J]. Microbiological Research,2006,161: 273-280.
    17. Gaden E L. Fermentation process kinetics [J]. J. Biochem. Microbiol. Technol. Eng.,2000,11: 413-418.
    18. Magnusson J, Schnurer J. Lactobacillus coryniformis subsp. Coryniforms strain Si3 produces a broadspectrum proteinaceous antifungal compound [J]. Appl. Environ. Microbiol.,2001,67:1-5.
    19. Silva MG, Furtado NA, Pupo MT, et al. Antibacterial activity from Penicillium corylophilum Dierckx [J]. Microbiological Research,2004,159:317-322.
    20.卢成瑛,唐永红,刘辉.产黄青霉菌株39B分离培养及其白藜芦醇代谢积累条件研究[J].菌物研究,2008,6(2):98-100.
    21. Jackson M, Karwowski J P, Patrick E, et al. Calbistrins, Novel Antifungal Agents Produced by Penicillium restrictum I:Production, Taxonomy of the Producing Organism and Biological Activity [J]. The Journal of Antibiotics,1993,46 (1):34-38.
    1. Hadley G, Harrold C E. The Sporulation of Penicillium notatum Westling in Submerged Liquid Culture in the initial sporulation phase[J]. Journal of Experimental Botany,1958,9 (3):418-425.
    2. Anderson H A, Bracewell J M, Fraser A R, et al.5-Hydroxymaltol and mycophenolic acid, secondary metabolites from Penicillium echinulatum[J]. Trans. Brit. Mycol. Soc.,1988,91: 649-651.
    3. Anderson B. Consistent production of phenolic compounds by Penicillium brevicompactum for chemotaxonomic characterization [J]. Antonic van Leeuwenhock,1991,60:115-123.
    4. Lafont P, Debeaupuis J P, Gaillardin M, et al. Production of mycophenolic acid by Penicillium roqueforti strains [J]. Appl. Environ. Microbiol.,1979,37:365-368.
    5. Samson R A, Hockstra E S, Frisvad J C, et al. Introduction to food-and airborne fungi[J].6th edn. Utrecht, the Netherlands:Centraalbureau voor Schimmelcultures,2000.
    6. Frisvad J C, Filtenborg O. Terverticillate Penicillia:Chemotaxonomy and mycotoxin production[J]. Mycologia.,1989,81:837-861.
    7. De Stefano S, Nicoletti R, Milone A, et al.3-O-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum [J]. Phytochemistry,1999,52:1399-1401.
    8. Stammati A, Nicoletti R, Stefano D S,et al. Cytostatic properties of a novel compound derived from Penicillium pinophilumr:An in vitro study[J]. Altern. Lab. Anim.,2002,30:1-7.
    9. Larsen T O, Franzyk H, Jensen, S R.UV-guided isolation of verrucins A and B, novel quinazolines from Penicillium verrucosum structurally related to anacine from Penicillium aurantiogriseum[J]. J. Nat. Prod.,1999,62:1578-1580.
    10. Nicoletti R, Stefano M D, Stefano S D, et al. Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates[J]. Mycopathologia,2004,158: 465-474.
    11. Pitt J I.The Genus Penicillium and its Teleomorphic States Eupencillium and Talaromyces. Acadenic Press:London,1979,634pp.
    12. Schwartz R E, Dufresne C, Flor J E, et al. Restriction, a Novel Glycine-containing Antifungal Agent [J]. J.Antibiot,1991,44(5):463-471.
    13. Hensens O D, Wichmann C F, Liesch J M, et al. Structure elucidation of restricticin, a novel antifungal agent from penicillium restrictum[J].Tetrahedron,.1991,47:3915-3924.
    14. Hensens O D, Liesch, J M, Milligan J A, et al. US Patent 4952604,1990.
    15. Stolk A C. Four new species of Penicillium[J]. Antonie van Leeuwenhoek,1969,35:261-274.
    16. Gregory M B,Randal H C, Ronald R Rasmussen, et al. Calbistrins, novel antifungal agents produced by Penicillium restrictum ILIsolation and elucidation of structure[J], The Journal of Antibiotics.1993,46(1):39-47.
    17. Jackson M, Karwowski P J, Humphrey P E, et al. Calbistrins, novel antifungal agents produced by Penicillium restrictum I:Production,taxonomy of the producing organism and biological activity[J]. The Journal of Antibiotics,1993,46(1):34-38.
    18. Michael S, Robert J C, Ernest L, Shaun T, Jennifer H G. Calbistrin E and two other new metabolites from an Australian isolate of Penicillium striatisparum[J]. J. Nat. Prod.,2005, 68:581-584.
    19. Agematu H, Watanabe Y, Chiba H, et al. Ep Patent 514884,1992.
    20. Brill G M, Burres N S, Chen R H,et al. Patent, WO 93/21770,1993.
    21. Morino T, Nakamura K, Nishikawa K, et al. Application:JP patent, JP6172374,1994.
    22. Helms G L, Linemeyer D L, Horn W S, et al. EP Patent 505135,1992.
    23. Nomura K, Mizogami K, Mizobe F, et al. JP Patent 05032656,1993.
    24. Wendy S H, Kathleen K B, Gerald F B, et al. Characterization of the light-and base-mediated instability of calbistrin A[J]. Journal of Natural products,1993,56 (10):1779-1785.
    25. Tatsuta K, Itoh M, Hirama R, et al. the first total synthesis of calbistrin, a microbial product possessing multiple bioactivities. Tetrahedron Lett.1997,38(4):583-586.
    1. Kozdroj J, Trevors J T,Van Elsas J D.Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere [J].Soil Biology and Biochemistry,2004,36(11):1775-1784.
    2. Neveu B, LabbeC, Belanger R R..GFP technology for the study of biocontrol agents in tritrophic interactions:A case study with Pseudozyma flocculosa [J]. Journal of Microbiological Methods,2007,68 (2):275-281.
    3. Lu Z X, Tombolini R,Woo S, Et al. In Vivo Study of Trichoderma-Pathogen-Plant Interactions Using Constitutive and Inducible Green Fluoresent Protein Reporter Systems[J]. Applied and Environmental Microbiology,2004,70(5):3073-3081.
    4. Spenig T, Bottin A, Kahmann R, et al. Green fluorescent protein (GFP)as a new vital marker in the phytopathogenic fungus Ustilago maydis[J]. Mol Gen Genet,1996,252:503-509.
    5. Elbehagy A, Nishioka K, Saw T, et al. Endophytic colonization and in plan nitrogen fixation by a Herbaspirilum sp. isolated from wild rice species[J]. Appl Environ Microbiol,2001, 67(11):5285-5293.
    6. Normander B, Niels B H, Nybroe O. Green fluorescent Protein—marked Pseudomonas fluorescens: localization, viability and activity in the natural barley rhizosphere [J]. Applied and Environmental Microbiology,1999,65(10):4646-4651.
    7. Unge A, Tombolini R. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual luxAB marker system[J]. Applied and Environmental Microbiology,1999,2:813-821.
    8. BaeYS, Knudsen G R. Cotransformation of Trichoderma harzimum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils[J]. Applied and Environmental Microbiology,2000,66(2):810-815.
    9. Raymond J S L. Studies on adaptations of Metarhizium anisopliae to life in the soil[J]. Journal of Invertebrate Pathology,2008,98(3):271-276.
    10. Sarrocco S, Mikkelsen L, Vergara M, et al. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain[J]. Mycological Research,2006,110 (2):179-187.
    11. Malonek S, Meinhardt F. Agrobacterium tumefaciens—mediated genetic transformation of the Phytopathogenic ascomycete Calonectria morganii[J]. Curr Genet,2001,40(2):152-155.
    12.张磊,范丙全,黄为一.绿色荧光蛋白和潮霉素抗性双标记载体转化载体转化草酸青霉菌P8的研究[J].微生物学报,2005,45(6):842-845.
    13.王富强,任志红,徐平等.产黄青霉转化载体pPIPKA的构建及青霉素工业生产菌株的转化研究[J].菌物学报,2004,23(1):66-72.
    14. Mullins E D, Chen X, Romaine P, et al. Agrobacterium—mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer[J]. Phytopathology. 2001,91:173-180.
    15. Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens—mediated transformation of the plant pathogenic fungus Magnaporthe grisea[J]. Mol Cells,2001,12 (3):407-411.
    16. Katherine F D, Sandra J G, Seogchan K. Cloning and targeted disruption via Agrobacterium tumefaciens—mediated transform ation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae[J]. Curr Genet,2004,45:104-110.
    17. Leclerque A, Wan H, Abschutz A, et al. Agrobacterium—mediated insertional mutagenesis (AIM)of the entomopathogenic fungus Beauveria bassiana[J]. Curr Genet,2004, 45(2):111-119.
    18. Campoy S, Perez M J,Gutierrez S, et al. Stable transformants of the azaphilone pigment—producing Monascus purpureus obtained by protoplast transformation and Agrobacterium—mediated DNA transformation [J]. Curr Genet,2003,43(6):447-452.
    19. Casas F S, Rosaies S L, Herrera E A. Three decades of fungi transformation:novel technologies[J]. Methods M ol Biol.,2004,267:315-325.
    20. Abello J, Kelemu S,Garcia C. Agrobacterium-mediated transformation of the endophytic fungus Acremonium implicatum associated with Brachiaria grasses[J]. Mycological Research, 2008,112:407-413.
    22. Combier J P, Melayah D, Raffier C, et al. Nonmycorrhizal (Myc) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis[J]. Mol Plant Microb Interact,2004, 17:1029-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700