用户名: 密码: 验证码:
肺腺癌淋巴管生成相关基因的筛选和初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     淋巴管生成不仅参与了胚胎淋巴管发育、组织损伤修复、慢性炎症等生理和病理过程,而且在肿瘤淋巴道转移也具有十分重要的作用。大量临床病理研究证实:非小细胞肺癌(NSCLC)、乳腺癌、结肠癌、恶性黑色素瘤、头颈部肿瘤和前列腺癌等实体肿瘤高表达VEGF-C和VEGF-D,并与淋巴管密度(lymphatic microvesse l density,LVD)、淋巴管侵袭(lymphatic vessel invasion, LVI),以及淋巴结转移密切相关。肺腺癌极易发生区域性淋巴结和远处器官转移,难以手术切除,对放、化疗敏感性较低,预后很差,目前认为淋巴管生成可能是肺腺癌淋巴结转移的早期核心机制。近年研究证实,肿瘤诱导的淋巴管生成促进了癌细胞的转移性扩散,导致肿瘤患者预后差、生存率低。
     血管内皮生长因子(VEGF)-C、VEGF-D、成纤维细胞生长因子(FGF)、血小板衍生的生长因子(PDGF)等是目前公认的淋巴管生成因子,它们通过结合淋巴管内皮细胞(lymphatic endothelial cell , LEC)上的受体,继而促进LEC增殖、迁移和管状结构形成,从而诱导淋巴管生成。目前被广泛认可的LEC特异性标记物包括血管内皮生长因子受体-3 (VEGFR-3)、Prox-1、淋巴管内皮透明质酸受体-1 (LYVE-1)和Podoplanin等,LEC特异性标记物的发现促进了LEC生物学功能研究的发展。随着LEC的成功分离和多种用于研究淋巴管生成的动物模型的建立,淋巴管生成迅速成为肿瘤领域的研究热点。我们研究小组此前的研究也表明NSCLC能够通过表达VEGF-C诱导瘤周淋巴管生成;瘤周淋巴管生成对NSCLC的发生、发展起重要作用;瘤内的淋巴管呈塌陷状态,并不具有介导淋巴道转移的能力。
     临床资料显示,虽然肺腺癌极易发生淋巴道转移,但是临床患者淋巴结转移存在很大的差异性;很多情况下原发肿瘤的大小与肿瘤是否发生远处转移不平行。通过对肿瘤细胞在淋巴管生成中发挥诱导作用的复习,我们设想除VEGF-C、VEGF-D外是否存在其他的淋巴管生成促进因子?另一方面,是否存在直接抑制淋巴管生成的因子?本课题旨在筛选与肺腺癌淋巴管生成相关的基因,为控制肺腺癌淋巴管转移寻找新的作用靶点。
     目的
     利用全基因组芯片筛选技术,采用Human Genome U133 Plus 2.0 Array差异筛选肺腺癌淋巴管生成相关的基因。通过GenBank数据库生物信息学分析,结合已有文献报道,确定被选的基因,初步验证其在肿瘤淋巴管生成中的作用。
     方法
     1.免疫组织化学法检测淋巴管内皮标记物Podoplanin在34例肺腺癌组织和5例肺良性病变组织中的表达,计算LVD,按LVD评分对肺腺癌淋巴管高、低转移进行分组,分析LVD与肿瘤分期、分化程度及淋巴结转移等的关系。
     2.采用全基因组芯片筛选的方法,构建肺腺癌高淋巴管生成和低淋巴管生成差异表达的基因文库(cDNA library),采用Human Genome U133 Plus 2.0 Array筛选肺腺癌淋巴管生成相关的基因,GenBank数据库生物信息学分析,结合文献报道选取上调和下调基因,采用real time PCR进一步验证差异表达情况。
     3.以NSCLC为研究对象,利用免疫组织化学方法检测NSCLC组织中上调基因(以IGFBP7为对象)、下调基因(以CDH1为对象)的表达情况,分析IGFBP7、CDH1表达与患者年龄、性别、肿瘤分期、分化程度及淋巴结转移的关系。
     4. RT-PCR检测人肺癌细胞株和小鼠肺癌细胞株(lewis lung cancer, LLC)的IGFBP7的表达。
     5.构建IGFBP7干扰载体pGenesil-si IGFBP7,通过siRNA干扰IGFBP7表达。
     6.应用不完全弗氏佐剂(IFA)诱导小鼠腹腔淋巴管瘤形成,消化法分离获得LEC,以鼠尾胶为粘贴剂原代培养。淋巴管形成实验判定LEC能否形成管样结构。
     7.建立LLC与LEC共培养体系,用CCK-8细胞活性实验和Transwell小室细胞迁移实验,分析敲减IGFBP7前后LLC细胞对LEC生长和迁移的影响。
     8.利用C57BL/6小鼠建立敲减IGFBP7的LLC和未敲减IGFBP7的LLC皮下移植瘤模型,利用免疫荧光和共聚焦显微镜观察肿瘤新生淋巴管情况,分析敲减IGFBP7对移植瘤生长、淋巴管生成、淋巴结转移和肺转移的影响。
     结果
     1. Podoplanin阳性淋巴管LVD在5例肺炎性假瘤为10.8±4.3,在34例肺腺癌瘤内为11.2±5.0,肺腺癌瘤周为23.5±8.4,瘤周LVD明显高于前二者(P <0.05)。肿瘤分期N1-2与N0瘤周的LVD分别是24.3±8.7、18.4±6.3,前者明显高于后者(P <0.01);Ⅰ-Ⅱ期与Ⅲ-Ⅳ瘤周的LVD分别是18.4±5.6、24.1±8.2,前者明显低于后者(P <0.01)。
     2.按LVD评分对6例肺腺癌新鲜手术标本进行了分组,具体为LVDhigh组和LVDlow组。利用全基因表达谱芯片技术,对两组进行差异性表达基因的筛选。以差异
     2倍为标准,得到上调基因即促进淋巴管生成的基因94个,下调基因即抑制淋巴管生成的基因81个。我们分别选取IGFBP7、CDH1进行了real time PCR的验证,与表达谱芯片的筛选结果基本一致。
     3.免疫组化结果显示:97例NSCLC患者中IGFBP7的表达阳性54例,瘤周LVD为23.1±8.5;而IGFBP7的表达阴性的43例,瘤周LVD为16.9±6.0,IGFBP7的表达阳性的瘤周LVD明显高于阴性的瘤周LVD (P <0.05)。淋巴结转移组IGFBP7阳性率(45.2%, 28/62)显著高于无淋巴结转移组(25.7%, 9/35) (P <0.05)。Spearman相关性分析表明,IGFBP7阳性率与LVD呈正相关(r =0.423,P <0.01)。
     97例NSCLC中CDH1的表达阳性48例,瘤周LVD为21.2±10.4;而CDH1的表达阴性的49例,LVD为17.2±7.9,CDH1的表达阳性的瘤周LVD与阴性的瘤周LVD无显著性差异(P >0.05)。
     4. RT-PCR检测IGFBP7在人肺癌细胞株和小鼠肺癌细胞株的高表达,在NIH3T3和L929未见表达。
     5.成功构建了pGenesil-siIGFBP7干扰载体;载体转染LLC细胞可下调IGFBP7表达。
     6. IFA能诱导小鼠腹腔淋巴管瘤形成,所获LEC活细胞数大于96%,高表达VEGFR-3。在自制鼠尾胶包被的培养瓶(板)中,LEC生长状况良好,在鼠尾胶凝胶中,LEC可形成淋巴管样结构。
     7.经过对transwell小室的insert外表面的LEC进行HE染色发现,LLC组透膜细胞百分比明显高于LLCSiRNA-IGFBP7组(P <0.05);LLCSiRNA-IGFBP7百分比明显高于空白对照组(P <0.05)。结果表明,IGFBP7敲减的LLC能够明显增强LEC的迁移能力,但其促进能力小于未敲减IGFBP7的LLC细胞。
     8. IGFBP7敲减实验表明:pGenesil-siIGFBP7组同侧颈上、对侧颈上及腋窝淋巴结转移率分别为100%、33.3%和66.7%;而未转染组分别为100%、83.3%和100%;空质粒转染组分别是100%、66.7和83.3%。pGenesil-siIGFBP7组腋窝淋巴结转移率明显低于未转染组和空质粒转染组(P <0.05)。pGenesil-siIGFBP7组移植瘤瘤周LVD(9.4±2.3)显著低于未转染组(16.7±3.5)和空质粒转染组(13.2±2.8)转染组(P <0.05)。免疫荧光和共聚焦显微镜显示,移植瘤组织中新生淋巴管多位于瘤周,结构不完整,成窦状。
     结论
     1、利用全基因组表达基因表达芯片对LVDhigh与LVDlow组进行了差异性的筛选,差异性筛选出IGFBP7等上调基因94个、CDH1等下调基因81个。
     2、人肺腺癌组织IGFBP7表达与其LVD呈显著正相关,且淋巴结转移组IGFBP7阳性率(45.2%, 28/62)显著高于无淋巴结转移组(25.7%, 9/35) (P <0.05);IGFBP7能够促进LEC迁移、淋巴管生成和淋巴结转移。CDH1与肿瘤淋巴管转移无明显相关性。
Background
     Lymphangiogenesis was not only involved in the lymphatic vessels of em bryonicdevelopment, tissue repair, chronic inflammation, but also in tumor lymph node metastasis.Metastatic tumor spread through lymphatic vessels occurs in lung carcinoma, with regionallymph-node metastasis often being the most important prognostic fac tor for carcinomapatients. Vascular endothelial growth factor (VEGF) -C, vascular endothelial growth factor(VEGF)-D, fibroblast growth factor (FGF) and platelet -derived growth factor (PDGF) arepotent secreted activators critical for tumor -induced lymphangiogenesis.
     High expression of VEGF-C and VEGF-D were confirmed in clinicopathological study,such non-small cell lung cancer (NSCLC), breast cancer, colon cancer, malignantmelanoma, head and neck cancer and prostate cancer, furthermore lymphatic microve sseldensity (LVD) and lymphatic vessel invasion (LVI) were closely related to lymph nodemetastasis. There were some specific molecular markers of lymphatic endothelial cells(LEC), such as (VEGFR-3), Prox-1, LYVE-1, Podoplanin and so on. With LEC isolationand establishment of lymphangiogenesis animal model, lymphangiogenesis study becomesa hot spot in tumor research. Our recent study showed that tumor cells overexpressingVEGF-C could induce lymphangiogenesis surrounding tumor cells and invasion oflymphatic vessels was a key step in the metastasis of primary tumors to draining lymphnodes.
     Although lymph node metastasis occurs frequently in lung adenocarcinoma, size ofprimary tumor and tumor occurrence of distant metastasis is not parallel in many cliniccases. We have reviewed mechanism of induction of lymphangiogenesis by tumor cells. Arethere other lymphangiogenesis promoting factors besides VEGF-C and VEGF-D? On theother hand, are there direct inhibitory lymphangiogenesis factors? Based on this hypothesis,we aimed at screening genes related with tumor lymphangiogenesiss. This research shows new approach for the lymphangiogenesis in lung adenocarcinoma and thus provides a newtarget for the inhibition of the metastasis of this kind of malignant car cinoma.
     Objective
     To Screen genes related lymphangiogenesis in lung adenocarcinoma by HumanGenome U133 Plus 2.0 Array, identify the selected genes for further experiment in vivo andin vitro based on bioinformatics analysis and fu nction reported in the literatures.
     Methods
     1. Podoplanin expression in 34 NSCLC tissues and 5 control benign pulmonary lesiontissues were detected by immunohistochemistry method. LVD score was determinedbetween LVDlow vs LVDhigh group, furthermore, the relationship LVD between tumorstaging, differentiation and pathologic N staging were analysesd.
     2. A high and low lymphangiogenesis in lung adenocarcinoma differentially expressedgenes cDNA library was constructed. Human Genome U133 Plus 2.0 Array was employedto screen differential expressed genes related to lymphangiogenesis in lung adenocarcinoma .Then differential expressed level was confirmed by real time PCR.
     3. IGFBP7 and CDH1 expression were determined with immunohistochemistry , aswell as IGFBP7 and CDH1 expression relat ionship was anlysesed with patient age, sex,tumor staging, differentiation degree and lymph node metastasis.
     4. RT-PCR detected expression of IGFBP7 in human lung cancer cell lines and mouselewis lung carcinoma cell (LLC).
     5. An interference plasmid, pGenesil-siIGFBP7 for a short hairpin siRNA directedIGFBP7 was constructed using the pGenesil -1 vector, and the effect of IGFBP7 knockdownthrough transfection the pGenesil-siIGFBP7 to LLC cells.
     6. Mice lymphangiomas in abdominal cavity were induced by intr aperitoneal injectionof incomplete Freund’s adjuvant (IFA). LEC were obtained from the inducedlymphangiomas after disruption and digestion, and then were cultured in the flask or platepreviously coated with self-made rat-tail collagen. The capability of LEC to form lymphaticvessel-like structures was assessed by the in vitro lymphatic vessel formation assay.
     7. Transwell experiment and CCK-8 assay were used to determine whether IGFBP7knockdown affects cell migration of LLC cells and cell growth, respectively.
     8. The tumor models of IGFBP7 knockdown were established via subcutaneous injection of LLC cells in the dorsal site of the right ear of C57BL/6 mice, andlymphangiogenesis, lymph node metastasis and lung metastasis in vivo was investigated.Immunofluorence assay and confocal microscopy was used to examine the neo-lymphaticvessels.
     Results
     1. Podoplanin positive LVD was significantly higher peritumoral LVD ( 23.5±8.4) thanthat in benign pulmonary lesion (10.8±4.3) (P <0.01), and significantly higher thanintratumoral LVD (11.2±5.0). There is a statistical significance between lymph nodemetastasis N1-2 (24.3±8.7) and N0 (18.4±6.3) (P <0.01), as well as tumor stages (P <0.01).
     2. By the LVD scoring, 94 promoting lymphangiogenesis genes and 81 inhibitinggenes were screening. We repeated real time PCR to conform IGFBP7 and CDH1 genelevel.
     3. In 97 cases of NSCLC patients, positive expression of IGFBP7 was 54 cases,peritumoral LVD (23.1±8.5); negative 43 cases, peritumoral LVD (16.9±6.0). IGFBP7expression of tumor-positive LVD was significantly higher than negative tumor LVD ( P<0.05). Lymph node-positive group IGFBP7 positive rate (45.2%, 28/62) was significantlyhigher than node-negative group (25.7%, 9/35). But there was no significant associati onbetween CDH1 expression and lymph node metastasis, tumor stages, sex, age, histologicalclassification and differentiation stages ( P >0.05) was observed.
     4. RT-PCR detection of human lung cancer cell lines and mouse lewis lung carcinomacell over-expressed IGFBP7 gene, not detection in NIH3T3 and L929 cell lines.
     5. The vector pGenesil-siIGFBP7 targeting IGFBP7 was successfully constructed.
     6. Mice lymphangiomas in abdominal cavity were induced successfully by IFA, andmore than 96% living LEC were harve sted. The expression of VEGFR-3 was positive inLEC. In the gel formed by rat-tail collagen, LEC could form lymphatic vessel -likestructures.
     7. After the outer surface of the transwell insert of the LEC was found by HE staining,LLC group of cell membrane permeability was significantly higher than the percentage ofLLCSiRNA-IGFBP7 group (P <0.05); LLCSiRNA-IGFBP7 percentage was significantly higherthan the control group and the L929 group ( P <0.05). The results show that, IGFBP7knocked-down LLC can significantly enhance the capacity of LEC migration, but its capacity is less than the induction by not knock-down LLC. Immunofluorescence andconfocal microscopy showed that new -born lymphatic vessel is located peritumor and theirstructures were incomplete.
     8. At 45 days after tumor inoculation, the presence of supracervical node andcontralateral supracervical node metastases in control mice was 100% 33.3% and 66.7% inIGFBP7 knocked-down LLC inoculation, respectively, compared with nonfectcedgroup100% 83.3% and 100%; pGenesil-s1 group 100% 66.7 83.3%. In addition, themetastatic ratio of brachial nodes in IGFBP7 knocked-down tumors was significantly lowerthan that in control nonfiction and pGenesil -1 tumors. Immunochemical analysis forVEGFR3 expression LVD (9.4±2.3) was lower than that in control tumors was ( 16.7±3.5)and pGenesil-1(13.2±2.8) (P<0.05).
     Conclusions
     1. Human Genome Microarray was employed for comparison of expression profiles ofLVDhigh lung adenocarcinoma and LVDlow lung adenocarcinoma. IGFBP7 and CDH1 wereselected for further tumor lymphangiogesis study.
     2. IGFBP7 positive expression was correlated with tumor metastasis in lungadenocarcinoma, inducing LEC proliferation, migration and tube -like structure formation inLLC inoculated mice model, which indicating IGFBP7 should promote lymph nodemetastasis. CDH1 was not correlated with tumor lymphatic metastasis.
引文
1. Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2007. CA Cancer J Clin 2007,57(1):43-66.
    2. Cunnick GH, Jiang WG, Douglas-Jones T, et al. Lymphangiogenesis and lymph nodemetastasis in breast cancer. Mol Cancer, 2008, 7(1):23.
    3. Eccles S, Paon L, Sleeman J. Lymphatic metastasis in breast cancer: importance andnew insights into cellular and molecular mechanisms. Clin Exp Metastasis, 2007,24(8):619–636.
    4. Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C: specific induction ofangiogenesis and lymphangiogenesis in the differentiated avian chorioallantoicmembrane. Dev Biol, 1997, 188(1):96–109.
    5. Stacker SA, Caesar C, Baldwin ME, et al. VEGF -D promotes the metastatic spread oftumor cells via the lymphatics. Nat Med, 2001, 7(2): 186 -91.
    6. Chang LK, Garcia-cardena G, Farnebo F, et al. Dose-dependent response of FGF-2 forlymphangiogenesis. Proc Natl Acad Sci U S A, 2004, 101(32): 11658 -63.
    7. Cao Y. Direct role of PDGF-BB in lymphangiogenesis and lymphati c metastasis. CellCycle, 2005, 4(2): 228-30.
    8. Rouzaut A, Irigoyen M, montuenga LM. Lymphangiogenesis and lung cancer. J ThoracOncol, 2007, 2(5): 384-6.
    9. Mylona E, Alexandrou P, Mpakali A, et al.Clinicopathological and prognosticsignificance of vascular endothelial growth factors (VEGF)-C and -D and VEGFreceptor 3 in invasive breast carcinoma. Eur J Surg Oncol, 2007, 33(3):294 -300.
    10. Furudoi A, Tanaka S, Haruma K, et al. Clinical significance of vascular endothelialgrowth factor C expression and angiogenesi s at the deepest invasive site of advancedcolorectal carcinoma.Oncology, 2002, 62(2):157 -66.
    11. Dadras SS, Paul T, Bertoncini J, et al. Tumor lymphangiogenesis: a novel prognosticindicator for cutaneous melanoma metastasis and survival. Am J Pathol, 2003,162(6):1951-1960.
    12. Beasley NJ, Prevo R, Banerji S, et al. Intratumoral lymphangiogenesis and lymph nodemetastasis in head and neck cancer. Cancer Res, 2002, 62(5):1315 -1320.
    13. Sun JG, Wang Y, Chen ZT, et al. Detection of lymphangiogenesis in non -small cell lungcancer and its prognostic value. J Exp Clin Cancer Res, 2009, 28(21): 21 -28.
    14. Wang T, Hopkins D, Schmidt C, et al. Identification of genes differentiallyover-expressed in lung squamous cell carcinoma using combination of cDNAsubtraction and microarray analysis. Oncogene, 2000, 19(12): 1519 -28.
    15. Hu Z, Lin D, Yuan J, et al. Overexpression of osteopontin is associated with moreaggressive phenotypes in human non -small cell lung cancer.Clin Cancer Res,2005,11(13):4646-52.
    16. Weidner N. Tumor angiogenesis: revi ew of current applications in tumorprognostication. Semin Diagn Pathol, 1993, 10(2):302 -313.
    17. Dadras SS, Lange-Asschenfeldt B, Velasco P, et al. Tumor lymphangiogenesis predictsmelanoma metastasis to sentinel lymph nodes. Mod Pathol, 2005, 18(9):1232 -42.
    18. Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights intothe development and biological function of the lymphatic vasculature. Genes Dev, 2002,16(7):773-783.
    19. Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR -3 signaling inhibitslymph node metastasis in gastric cancer. Cancer Sci, 2004, 95(4):328 -33.
    20. Karkkainen MJ, Alitalo K. Lymphatic endothelial regulation, lymphoedema, and lymphnode metastasis. Semin Cell Dev Biol, 2002, 13(1):9 -18.
    21. Scavelli C, Weber E, Agliano M, et al. Lymphatics at the crossroads of angiogenesis andlymphangiogenesis. J Anat, 2004, 204(6):433 -49.
    22. Maula SM, Luukkaa M, Grenman R, et al. Intratumoral lymphatics are essential for themetastatic spread and prognosis in squamous cell carcinomas of the head and neckregion. Cancer Res, 2003, 63(8): 1920 -6.
    23. Shields JD, Borsetti M, Rigby H, Harper S J, et al, Lymphatic density and metastaticspread in human malignant melanoma. Br J Cancer, 2004 90(3):693 -700.
    24. Parr C, Jiang WG. Quantitative analysis of lymphangiogenic markers in humancolorectal cancer. Int J Oncol. 2003, 23(2):533 -9.
    25. Williams CS, Leek RD, Robson AM, et al. Absen ce of intratumoral lymph vessels andlymphangiogenesis in human breast cancer. J Pathol, 2003, 200(2 Breiteneder -Geleff S,Soleiman A, Horvat R, et al. Podoplanin a specific marker for lymphatic endotheliumexpressed in angiosarcoma.Verh Dtsch Ges Pathol, 1999,83:270-275.):195-206.
    26. Nakamura Y, Yasuoka H, Tsujimoto M, et al. Lymph vessel density correlates withnodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer ResTreat, 2005, 91(2):125-32.
    27. Birner P, Schindl M, Obermair A, et al. Lymphatic microvessel density in epithelialovarian cancer: its impact on prognosis. Anticancer Res, 2000, 20(17):2981 -2985.
    28. Schoppmann SF, Birner P, Studer P, et al. Lymphatic microvessel density andlymphovascular invasion assessed by anti -podoplanin immunostaining in human breastcancer. Anticancer Res, 2001, 21(5):2351 -2355.
    29. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis.Cancer Cell, 2005, 7(2):121-7.
    30. Jackson D G.Biology of the lymphatic marker LYVE -1 and applications in research intolymphatic trafficking and lymphangiogenesis. APMIS, 2004, 112(7 -8):526-38.
    31.沈小玥,吴鄂生,胡成平,等.肺鳞癌组织LVD和纵隔淋巴结转移的关系.中国现代医学杂志, 2004, 14(7):53-56.
    32. Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence offunctional intratumor lymphatics. Science, 2002, 296(5574):1883 -1886.
    33. Ji RC, Qu P, Kato S. Application of a new 5-Base monoclonal antibody specific forlymphatic endothelial cells. Lab Inves, 2003, 83(11):1681 -1683.
    34. Roy S, Chu A, Trojanowski JQ,et al. D2 -40, a novel monoclonal antibody against theM2A antigen as a marker to distinguish hemangioblastomas from renal cell carcinomas.Acta Neuro pathol (Berl), 2005, 109(5):497 -502.
    35. Giorgadze TA, Zhang PJ, Pasha T, et al. Lymphatic vessel density is significantlyincreased in melanoma. J Cutan Pathol, 2004, 31(10):672 -677.
    36. Dumoff KL, Chu C, Xu X, et al. Low D2 -40 immunoreactivity correlates withlymphatic invasion and nodal metastasis in early -stage squamous cell carcinoma of theuterine cervix. Mod Pathol, 2005, 18(1):97 -104.
    37. Saban MR, Towner R, Smith N, et al. Lymphatic vessel density and function inexperimental bladder cancer. BMC Cancer. 2007, 29(7):219.
    38. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol, 2004, 14(3):181-185.
    39. He Y, Rajantie I, Pajusola K, et al. Vascular endothelial cell growth factor receptor3-mediated activation of lymphatic endothelium is crucial for tumor cell entry andspread via lymphatic vessels. Cancer Res, 2005, 65(11): 4739 -4746
    40. Ji RC. Lymphatic endothelial cells, tumor lymphangiogen esis and metastasis: Newinsights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev.2006,25(4):677-94.
    41. Wiese AH, Auer J, Lassmann S, et al. Identification of gene signatures for invasivecolorectal tumor cells. Cancer Detect Prev. 2007,31(4):282-95.
    42. Grohme M, Frohme M and Mali B. Open Architecture PCR -Based Methods forDifferential Gene Expression Analysis. CURRENT PHARMACEUTICAL ANALYSIS,2009, 5(1):1-9.
    43. Tuteja R and Tuteja N. Serial Analysis of Gene Expression: Applications in HumanStudies.J Biomed Biotechnol. 2004, 30(2):113 -120.
    44. Choi YJ, Yun HK, Park KS, et al. Screening genes expressed by Rhizobium vitisinoculation and salicylic acid treatment in grapevines using GeneFishing. Journal of theJapanese Society for Horticultural Science , 2008, 77(2):137-142.
    45. Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps andcomparative analysisof histone modifications in human and mouse. Cell, 2005,120(23):169–18.
    46. Wilson KS, Roberts H, Leek R, et al. Differential gene expression patterns inHER2/neu-positive and -negative breast cancer cell lines and tissues. Am J Pathol, 2002,161(4):1171-85.
    47. Schindler H, Wiese A, Auer J, et al. cRNA target preparation for microarrays:comparison of gene expression profiles generated with different amplifica tionprocedures. Anal Biochem, 2005, 344(1):92 -101.
    48. Turbett GT, Barnett TC, Dillon EK, et al. Single -tube protocol for the extraction ofDNA or RNA from paraffin-embedded tissues using a starch-based adhesive.Biotechniques, 1996,20(5):846-853.
    49. Going JJ, Lamb RF.Practical histological microdissection for PCR analysis. J Pathol,1996, 179(1):121-124.
    50. Harsch M, Bendrat K, Hofmeier G, et a1. A simple, precise and economicalmicrodissection technique for analysis of genomic DNA from archival tissue secti ons.Virchows Arch, 1998, 433(4):305-309.
    51. Gruvberger-Saal SK, Cunliffe HE, Carr KM, et al. Microarrays in breast cancer researchand clinical practice--the future lies ahead.Endocr Relat Cancer, 2006, 13(4):1017 -31.
    52. Hwa V, Oh Y, Rosenfeld RG. The insuli n-like growth factor-binding protein (IGFBP)superfamily. Endocr Rev, 1999, 20(6):761-87.
    53. Dziadziuszko R, Camidge DR, Hirsch FR, et al. The insulin-like growth factor pathwayin lung cancer. Thorac Oncol, 2008, 3(8):815-8.
    54. Perks CM, Holly JM. IGF binding proteins (IGFBPs) and regulation of breast cancerbiology. Mammary Gland Biol Neoplasia. 2008, 13(4):455 -69
    55. Kato, MV. A secreted tumor-suppressor, mac25, with activin-binding activity. Mol. Med,2000, 6(2):126-135.
    56. Sato H, Tsukada T, Ikawa Y, et al. A folli statin-like gene, mac25, may act as a growthsuppressor of osteosarcoma cells. Oncogene, 1996, 12(6):1361 -4.
    57. Sprenger, CC, Vail ME, Evans K, et al. Over -expression of insulin-like growth factorbinding protein-related protein-1(IGFBP-rP1 /mac25) in the M 12 prostate cancer cellline alters tumor growth by a delay in GI and cyclin A associated apoptosis. Oncogene,2002, 21(1):140-147.
    58. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science.1991, 251(5000):1451-5.
    59. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol,1991,7(5):619-27.
    60. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation ofcell junctions and the prevention of invasiveness. Biochim Biophys Acta, 1994,1198(1):11-26.
    61. Yalta T, Atay L, Atalay F, et al. E-Cadherin Expression in Endometrial Malignancies:Comparison between Endometrioid and Non -endometrioid Carcinomas. Journal ofInternational Medical Research, 2009, 37(1): 163 -168.
    62. Ghaffari, S. R., J. Dastan, et al. Novel human pathological mutations. Gene symbol:CDH1. Disease: gastric cancer. Hum Genet, 2009, 125(3): 337.
    63. Frixen UH, Behrens J, Sachs M, Eberle G, et al. E -cadherin-mediated cell-cell adhesionprevents invasiveness of human carcinoma cell. Cell Biol, 1991(1) :173–185.
    64. Perl AK, Wligenbus P, Dahl U, et al. A causal role for E -cadherin in the transition fromadenoma to carcinoma.Nature, 1998, 392(1):190–193.
    65. Semb H, Christofori G. The tumor-suppressor function of E-cadherin. Am J Genet, 1998,63(6):1588–1593.
    66. Luo J, Lubaroff DM, Hendrix MJ. Suppression of prostate cancer invasive potential andmatrix metalloproteinase activity by E -cadherin transfection. Cancer Res, 1999,59(15):3552–3556.
    67. Hirakawa S, Brown LF, Kodama S, et al. VEGF -C-induced lymphangiogenesis insentinel lymph nodes promotes tumor metastasis to distant sites. Blood, 2007,109(3):1010-7.
    68. Kawakami M, Yanai Y, Hata F, et al. Vascular endothelial growth factor C promoteslymph node metastasis in a rectal cancer orthotopic model. Surg Today, 2005,35(2):131-8.
    69. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymphnode metastasis by blocking vascular endothelial growth factor receptor 3 signaling. JNatl Cancer Inst, 2002, 94(11):819 -25.
    70. Mylona E, Alexandrou P, Mpakali A, et al. Clinicopathological and prognosticsignificance of vascular endothelial growth factors (VEGF) -C and -D and VEGFreceptor 3 in invasive breast carcinoma. Eur J Surg Oncol, 2007, 33(3):294 -300.
    71. Furudoi A, Tanaka S, Haruma K, et al. Clinical significance of vascular endothelialgrowth factor C expression and angiogenesis at the deepest invasive site of advancedcolorectal carcinoma.Oncology, 2002, 62(2):157 -66.
    72. Shida A, Fujioka S, Kobayashi K, et al. Expression of vascular endothelial growthfactor (VEGF)-C and -D in gastric carcinoma. Int J Clin Oncol, 2006, 11(1):38 -43.
    73. Goydos JS and Gorski DH. Vascular endothelial growth factor C mRNA expressioncorrelates with stage of progression in patients with melanoma. Clin Cancer Res, 2003,9(16 Pt 1):5962-7.
    74. Da MX, Wu XT, Wang J, et al. Expression of cyclooxygenase -2 and vascularendothelial growth factor-C correlates with lymphangiogenesis and lymphatic invasionin human gastric cancer. Arch Med Res, 2008, 39(1):92 -9.
    75. Lu ZQ, Li HG, Xie DR, et al. Expression and clinical significance of vascularendothelial growth factor C and vascular endothelial growth factor receptor 3 innon-small cell lung carcinoma. Ai Zheng, 2005, 24(9):1132 -5.
    76. Kajita T, Ohta Y, Kimura K, et al. The expression of vascular endothelial growth factorC and its receptors in non-small cell lung cancer. Br J Cancer, 2001, 85(2):255 -60.
    77. Tamura M and Ohta Y. Serum vascular endothelial growth factor -C level in patientswith primary nonsmall cell lung carcinoma: a possible diagnostic tool for lymph no demetastasis. Cancer, 2003, 98(6):1217 -22.
    78. Saintigny P, Kambouchner M, Ly M, et al. Vascular endothelial growth factor -C and itsreceptor VEGFR-3 in non-small-cell lung cancer: concurrent expression in cancer cellsfrom primary tumour and metastatic lymph node. Lung Cancer, 2007, 58(2):205 -13.
    79. Takizawa H, Kondo K, Fujino H, et al. The balance of VEGF -C and VEGFR-3 mRNAis a predictor of lymph node metastasis in non -small cell lung cancer. Br J Cancer, 2006,95(1):75-9.
    80. Niki T, Iba S, Tokunou M, Yamada T, e t al. Expression of vascular endothelial growthfactors A, B, C, and D and their relationships to lymph node status in lungadenocarcinoma. Clin Cancer Res, 2000, 6(6):2431 -9.
    81.王艳,朱波,叶明福,等.非小细胞肺癌VEGF-C表达与淋巴管生成和淋巴结转移关系的研究.中国肺癌杂志, 2006, 9(2): 182-186.
    82. Hwa V, OH Y, Rosenfeld RG.The insulin -like growth factor-binding protein (IGFBP)superfamily. Endocr Rev, 1999, 20(6): 761 -787.
    83. Murphy M, Pykett MJ, Harnish P, et al. Identification and characterization of genesdifferentially expressed in meningiomas. Cell Growth Differ, 1993, 4(9): 715 -722.
    84. Akaogi K, Okabe Y, Funahashi K, et al. Cell adhesion activity of a 30 -kDa majorsecreted protein from human bladder carcinoma cells. Biochem Biophys Res Commun,第1994, 198(3): 1046-1053.
    85. Yamauchi T, Umeda F, Masakado M, et al. Purification and molecular cloning ofprostacyclin-stimulating factor from serum-free conditioned medium of human diploidfibroblast cells. Biochem J, 1994, 303(Pt 2): 591 -598.
    86. Akaogi K, Sato J, Okabe Y, et al. Synergistic growth stimulation of mous e fibroblastsby tumor-derived adhesion factor with insulin -like growth factors and insulin. CellGrowth Differ, 1996, 7(12): 1671 1677.
    87. Burger AM, Zhang X, Li H, et al. Down -regulation of T 1 A 12/mac25, a novelinsulin-like growth factor binding protein related gene, is associated with diseaseprogression in breast carcinomas. Oncogene, 1998, 16(19): 2459 -2467.
    88. Girard JP, Baekkevold ES, Yamanaka T, et al. Heterogeneity of endothelial cells: thespecialized phenotype of human high endothelial venules chara cterized by suppressionsubtractive hybridization. Am J Pathol, 1999, 155(6): 2043 -2055.
    89. De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays, 2004,26(12): 1351-62.
    90. Pollak M. Insulin, insulin-like growth factors and neoplasia. Best Pract Res ClinEndocrinol Metab, 2008, 22(4): 625-38.
    91. Mauri P, Scarpa A, Nascimbeni AC, et al. Identification of proteins released bypancreatic cancer cells by multidimensional protein identification technology: a strategyfor identification of novel cancer markers. FASEB J, 2005, 19(9): 1125 1127.
    92. Akaogi K, Okabe Y, Sato J, et al. Specific accumulation of tumor -derived adhesionfactor in tumor blood vessels and in capillary tube -like structures of cultured vascularendothelial cells. Proc Natl Acad Sci, 1996, 93(16):8384–8389.
    93. Burger AM, Zhang X, Li H, et al. Down -regulation of T 1 A 12/mac25, a novelinsulin-like growth factor binding protein related gene, is associated with diseaseprogression in breast carcinomas. Oncogene, 1998, 16(19): 2459 -2467.
    94. Pen A, Moreno MJ, Durocher Y, et al.Glioblastoma -secreted factors induce IGFBP7 andangiogenesis by modulating Smad-2-dependent TGF-βsignaling. Oncogene, 2008,27(54):6834-44.
    95. Uhland K. Matriptase and its putative role in cancer. Cell Mol Life Sci, 200 6,63(24):2968–297.
    96. Pen A, Moreno MJ, Martin J, et al. Molecular markers of extracellular matrixremodeling in glioblastoma vessels: microarray study of laser -captured glioblastomavessels. Glia, 2007, 55(6): 559-72.
    97. Wang Y, Zhang D, Zheng W, et al. Multi ple gene methylation of nonsmall cell lungcancers evaluated with 3-dimensional microarray. Cancer, 2008, 112(6): 1325 -36.
    98. Chen Y, Pacyna-Gengelbach M, Ye F, et al. Insulin-like growth factor bindingprotein-related protein 1 (IGFBP-rP1) has potential tumour-suppressive activity inhuman lung cancer. J Pathol, 2007, 211(4):431 -8.
    99. Oh Y, Nagalla SR, Yamanaka Y, et al. Synthesis and characterization of insulin -likegrowth factor-binding protein (IGFBP)-7. Recombinant human mac25 proteinspecifically binds IGF-I and -II. J Biol Chem, 1996, 271(48): 30322 -5.
    100. Akaogi K, Okabe Y, Sato J, et al. Specific accumulation of tumor -derived adhesionfactor in tumor blood vessels and in capillary tube -like structures of cultured vascularendothelial cells. Proc Natl Acad Sci, 1996, 93(16):8384–8389.
    101. Uhland K. Matriptase and its putative role in cancer. Cell Mol Life Sci, 2006,63(24):2968–297.
    102. Pen A, Moreno MJ, Martin J, et al. Molecular markers of extracellular matrixremodeling in glioblastoma vessels: microarray study of l aser-captured glioblastomavessels. Glia, 2007, 55(6): 559-72.
    103. Dziadziuszko R, Camidge DR, Hirsch FR. The Insulin -Like Growth Factor Pathwayin Lung Cancer. Journal of Thoracic Oncology, 2008, 3(8):815 -819.
    104. Chen Y, Pacyna-Gengelbach M, Ye F, et al.Insulin-like growth factor bindingprotein-related protein 1 (IGFBP-rP1) has potential tumour-suppressive activity inhuman lung cancer. J Pathol, 2007, 211(4):431 -8.
    100. Burger AM, Leyland-Jones B, Banerjee K, et al. Essential roles of IGFBP -3 andIGFBP-rP1 in breast cancer. Eur J Cancer, 2005, 41(11):1515 -27.
    101. Schoppmann SF, Fenzl A, Nagy K, et al. VEGF -C expressing tumor-associatedmacrophages in lymph node positive breast cancer: impact on lymphangiogenesis andsurvival. Surgery, 2006, 139(6):839-46.
    102. Chang LK, Garcia-Carde?a G, Farnebo F, et al. Dose-dependent response of FGF-2for lymphangiogenesis. Proc Natl Acad Sci U S A, 2004, 101(32):11658 -63.
    103. Bj?rndahl M, Cao R, Nissen LJ, et al. Insulin -like growth factors 1 and 2 inducelymphangiogenesis in vivo. Proc Natl Acad Sci U S A, 2005, 102(43):15593 -8.
    104. Cao R, Bj?rndahl MA, Religa P, et al. PDGF -BB induces intratumorallymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 2004,6(4):333-45.
    105. Ristimaki A, Narko K, Enholm B, et al. Proinflammatory cytokines regulateexpression of the lymphatic endothelial mitogen vascular endothelial growth factor -C.J Biol Chem, 1998, 273(14):8413 -8.
    106.唐瑞峰,王曙霞,张风瑞,等.白细胞介素-1α、6对胰腺癌细胞分泌内皮生长因子A、C的调节作用.中华实验外科杂志, 2005, 22(4):401-3.
    107. Wu Y, Cui K, Miyoshi K, et al. Reduced circul ating insulin-like growth factor I levelsdelay the onset of chemically and genetically induced mammary tumors. Cancer Res,2003, 63(15):4384-8.
    108. Degeorges A, Wang F, Henry F, et al. Distribution of IGFBP -rP1 in Normal HumanTissues. The Journal of Histochemistry & Cytochemistry, 2000, 48(6): 747–754.
    109. Wajapeyee N, Serra RW, ZHU X, et al. Oncogenic BRAF induces senescence andapoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 2008,132(3): 363-74.
    110. Achen MG, Mann GB, Stacker SA. Targetin g lymphangiogenesis to prevent tumourmetastasis. Br J Cancer, 2006, 94 (10) :1355 -1360.
    111. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterizationofdermal lymphatic and blood endothelial cells reveal stable and functionallyspecialized cell lineages. J Exp Med, 2001, 194 (6): 797 -808.
    112.蒋雪峰,卞修武,王清良,等.人脑恶性胶质瘤微血管内皮细胞的分离培养与体外血管生成特性.第三军医大学学报, 2005, 27(4): 291-294.
    113. Sironi M, ContiA, Bernasconi S, et al. Generation and characterization of a mouselymphatic endothelial cell line. Cell Tis sue Res, 2006, 325 (1): 91-100.
    114.王俊,郭燕,章必成,等.小鼠淋巴管内皮细胞体外不同培养体系的比较.医大学学报, 2007, 29 (16): 1569-1571.
    115.李敏,杨明会,刘毅.大鼠肺微血管内皮细胞培养方法的对比和改进.中国组织工程研究与临床康复, 2008,(31): 6141-614.
    116.李明秋,张大伟,刘跃光,等.淋巴管内皮细胞体外培养模型的建立.解剖科学进展,2008, 14(3):270-273.
    117. Regenfuss B, Bock F, Parthasarathy A, et al. Corneal (lymph)angiogenesis --frombedside to bench and back: a tribute to Judah Folkman. Lymphat Res Biol, 2008,6(3-4):191-201.
    118.周宏志,顾晓明,胡敏,等.小鼠肝癌H22诱导淋巴管生成的体外研究.中华肿瘤杂志, 2003, 25(1): 39-42.
    119. Sironi M, Conti A, Bernasconi S, et al. Generation and characterization of a mouselymphatic endothelial cell line. Cell Tissue Res, 2006, 325(1): 91–100.
    120. Norgall S, Papoutsi M, R?ssler J, et al. Elevate d expression of VEGFR-3 in lymphaticendothelial cells from lymphangiomas. BMC Cancer, 2007, 7(21): 105
    121. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow -derived circulatingprogenitor endothelial cells in the newly formed lymphatic vessels. Blo od, 2005,106(13):4184-90.
    122. He Y, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but notendothelial progenitor cells are essential for tumor lymphangiogenesis and lymphaticmetastasis. Cancer Res, 2004, 64(11):3737 -40.
    123. Maruyama K, Li M, Cursiefen C, et al. Inflammation -induced lymphangiogenesis inthe cornea arises from CD11b positive macrophages. J Clin Invest, 2005,115(9):2363-72.
    124. Wissmann C, Detmar M. Pathways Targeting Tumor Lymphangiogenesis. Clin CancerRes, 2006, 12(23):6865-6868.
    1. Molina JR, Adjei AA, Jett JR. Advances in chemotherapy of non-small cell lung cancer.Chest, 2006, 130(4):1211–9.
    2. Wigle JT, Oliver G. Prox1 function is requir ed for the development of the murinelymphatic system. Cell, 1999, 98(6):769–778.
    3. Jackson DG, Oliver G. An essential role for Prox1 in the induction of the lymphaticendothelial cell phenotype. EMBO J, 2002, 21(7):1505–1513.
    4. Natasha LH, Srinivasan RS, Dillard ME, et al. Lymphatic vascular defects promoted byProx1 haploinsufficiency cause adult-onset obesity. Nature Genet, 2005,37(10):1072–1081.
    5. Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR -3 signaling inhibitslymph node metastasis in gastric cancer. Cancer Sci, 2004, 95(4): 328 -333.
    6. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resultinglymphedema in transgenic m ice expressing soluble VEGF receptor. NatMed, 2001,7(2): 199-205.
    7. Clarijs R, Schalkwijk L, Uta B, et al. Induction of vascular endothelial growth factorreceptor expression on tumor microvasculature as a new progression marker in humancutaneous melanoma. Cancer Res, 2002, 62(23): 7059 -7065.
    8. Daniel J, Dumont, Lotta Jussila, Jussi Taipale, et al. Card iovascular failure in mouseembryos deficient in VEGF receptor-3. Science, 1998, 282(5390):946–949.
    9. Kariehuber E, Groeger M, Groeger M, et al. Isolation and characterization of dermallymphatic and blood endothelial cells reveal stable and functionally sp ecialized celllineages. J Exp Med, 2001, 194(6): 797 -808.
    10. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disruptsnormal lymphatic vasculature formation and causes lymphedema. EMBO J, 2003,22(14):3546–3556.
    11. Mouta CC, Di Tomaso E, Di Tomaso E, et al. LYVE-1 is not restricted to the lymphvessels: expression in normal liver blood sinusoids and down regulation in human livercancer and cirrhosis. Cancer Res, 2001, 61(22): 8079-8084.
    12. Jeltsch M, Tammela T, Alitalo K, Wilting J, et al. Genesis a nd pathogenesis oflymphatic vessels. Cell Tissue Res, 2003, 314(1): 69–84.
    13. Aalami OO, Allen DB, Organ CH. Chylous ascites: a collective review. Surgery, 2000,128(5):761–778.
    14. Pipsa S, Katja K, Niklas E, et al. Multiple angiopoietin recombinant proteins ac tivatethe Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol,2005, 169(2):239–243.
    15. Tohru M, Yuichi O, Yoshihiro Y, et al. Angiopoietin-1 promotes LYVE-1-positivelymphatic vessel formation. Blood, 2005, 105:4649–4656.
    16. Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sproutingand hyperplasia. Blood, 2005, 105(12): 4642–4648.
    17. Sudha S, Sundar, Trivadi S. Ganesan.Role of Lymphangiogenesis in Cancer. J ClinOncol, 25(27):4298-4307.
    18. Niki T, Iba S, Yamada T, et al. Expression of vascular endothe lial growth factorreceptor 3 in blood and lymphatic vessels of lung adenocarcinoma. Clin Cancer Res,2000, 6( 6):2431–2439.
    19.刘杏娥,毛伟敏.VEGF-C和FLT-4在非小细胞肺癌组织中的表达及其意义.实用癌症杂志, 2007, 22 (1):44-46.
    20. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: Newinsights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev , 2006,25(4):677–669.
    21. Achen MG, Kukk E. Vascular endothelial growth factor D (VEGF -D) is a ligand for thetyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl AcadSci USA, 1998,95(2):548–553.
    22. Joukov V, Kaipainen A, Kaipainen A, et al. A novel vascular endothelial growth factor,VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosinekinases. EMBO J, 1996, 15(2):290–298.
    23. Makinen T, Veikkola T, Mustjoki S,et al. Isolated lymphatic endothelial cells transducegrowth, survival and migratory signals via the VEGF -C/D receptor VEGFR-3. EMBO J,2001, 20(17):4762–4773.
    24. Kauppinen R, Kettunen MI, Yla -Herttuala S, et al. A model for gene therapy of humanhereditary lymphedema. Proc.Natl Acad. Sci. USA, 2001, 98(22): 12677–12682.
    25. Cursiefen C, Borges LP, Borges LP, et al. VEGF-A stimulates lymphangiogenesis andhemangiogenesis in inflammatory neovascularization via macrophage recruitment. J.Clin. Invest, 2004, 113(7): 1040–1050.
    26. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vesselhyperplasia in chronic airway inflammation. J. Clin. Invest, 2005, 115(2):247–257.
    27. Kubo H, Brakenhielm E, Brakenhielm E, et al. Blockade of vascular endothelial growthfactor receptor-3 signaling inhibits fibroblast growth factor-2-inducedlymphangiogenesis in mouse cornea. Proc Natl Acad Sc USA, 2002, 99(13):8868–8873.
    28. Cao R, Bj?rndahl M, Religa P, et al. PDGF-BB induces intratumorallymphangiogenesis and promotes tumour metastasis. Cancer Cell, 2004, 6(4):333–345.
    29. Kajiya K, Hirakawa S, Ma BJ, et al.Hepatocyte growth factor promotes lymphaticvessel formation and function. EMBO J, 2005, 24(16):2885–2895.
    30. Saharinen P, Tatiana V. Molecular Regulation of Lymphangiogenesis . Ann NY Acad Sci,2004, 1014(4): 76-87.
    31. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin CancerRes, 2006, 12 (23):6865–6868.
    32. He Y, Kozaki K, Karpanen T, et al.Suppression of tumor lymphangiogenesis andlymph node metastasis by blocking vascular endothelial growth factor receptor 3signaling. J Natl Cancer Inst, 2002, 94(11):819–825.
    33. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metasta sis.Cancer Cell, 2005, 7(2):121–127.
    34. Wang J, Guo Y, Zhang BC. et al Induction of apoptosis and inhibition of cell migrationand tube-like formation by dihydroartemisinin in murine lymphatic endothelial cells.Pharmacology, 2007, 80(4):207-18.
    35. Matsuo M, Yamada S, Koizumi K, et al.Tumour-derived fibroblast growth factor-2exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in ratlymphatic endothelial cells. European Journal of Cance , 2007, 43(11):1748-1754.
    36. Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth ofVEGF(R)-inhibitor-resistant tumors without affecting healthy vessels . Cell, 2007,131(2): 463–475.
    1. Grimberg A, Cohen P. Role of insulin -like growth factors and theirbinding proteins ingrowth control and carcinogenesis. J CellPhysiol, 2000, 183(1): 1-9.
    2. Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act viaIGF-dependent and independentmechanisms. J Endocrinol, 2002, 175(1): 19-31.
    3. Firth SM, BaxterRC. Cellular actions of the insulin -like growth factor binding proteins.Endocrine Reviews, 2002, 23(6): 824 -854.
    4. LeeKW, Cohen P. Nuclear effects: unexpected intracellular ac tions of insulin-likegrowth factorbinding protein-3. J Endocrinol, 2002, 175(1): 33-40.
    5. Zhou R, Diehl D, Hoeflich A, et al. IGF-binding protein-4: biochemical characteristicsand functional consequences. J Endocrinol, 2003, 178(2): 177-193.
    6. Clemmons DR. Use of mutagenesis to probe IGF-binding protein structure/functionrelationships. Endocrine Reviews, 2001, 22(6): 800 -817.
    7. MiyakoshiN, Richman C, Qin X, et al. Effects of recombinant insulin-like growthfactor-binding protein-4 on bone formation parameters in mice. Endocrinology, 1999,140 (2): 5719-5728.
    8. Gleeson LM, Chakrabotty C, McKinnon T, et al. Insulin-like growth factor-bindingprotein 1 stimulates trophoblastmigration by signaling through alpha 5 beta 1 integrinviamitogen-activated protein kinase pathway. J Clin Endocrinol Metab, 2001, 86 (6):2484-2493.
    9. Liu B, Lee HY, Weinzimer SA, et al. Direct functional interactions between insulin -likegrowth factor-binding protein-3 and retinoid X receptor-alpha egulate transcriptionalsignaling and apoptosis. J BiolChem, 2000, 275(43): 33607-33613.
    10. Richman C, Baylink DJ, LangK, et al. Recombinant human insulin-like growthfactor-binding protein-5 stimulates bone formation parameters in vitro and in vivo.Endocrinology, 1999, 140(10): 4699 -4705.
    11. Yi HK, Hwang PH, Yang DH, et al. Expression of the insulin-like growth factors (IGFs)and the IGF-binding proteins (IGFB-Ps) in human gastric cancer cells. Eur JCancer,2001, 37 (17): 2257-2263.
    12. Huynh H, Chow PK, Ooi LL, et al. A possible role for insulin -like growthfactor-binding protein-3 autocrine/paracrine loops in controlling hepatocellularcarcinoma cell proliferation. Cell Growth Differ, 2002, 13(3): 115 -122.
    13. Renchan AG, Painter JE, O′Halloran D, et al. Circulating insulin-like growth factor IIand colorectal adenomas. J Clin Endocrinol Metab, 2000, 85(9): 3402-3408.
    14.许哲,刘福坤,祁晓平等.胰岛素样生长因子Ⅱ表达与结直肠癌细胞的增殖和凋亡.医学研究生学报, 2002, 15 (16): 502-504.
    15. Grzmil M, Hemmerlein B, Thelen P, et al. Blockade of the type I IGF receptorexpression in human prostate cancer cells inhibits p roliferation and invasion,up-regulates IGF binding protein -3, and suppresses MMP-2 expression. J Pathol, 2004,202 (1): 50-59.
    16. Richardsen E, Ukkonen T, Bjornsen T, et al. Overexpression of IGBFB2 is amarkerformalignant transformation in prostate epitheli um. VirchowsArch, 2003, 442(4):329-335.
    17. Khosravj J, Diamandi A, Mistry J, et al. Insulin-like growth factor I(IGF-Ⅰ) andIGF-binding protein-3 in benign prostatic hyperplasia and prostate cancer. J ClinEndocrinol Metab, 2001, 86(2): 694 -699.
    18. Holdaway IM, Mason BH, Lethaby AE,et al. Serum insulin-like growth factor-I andinsulin-like growth factor binding protein -3 following chemotherapy for advancedbreast cancer. ANZ J Surg, 2003, 73(11): 905 -908.
    19. Krajcik RA, Borofsky ND, Massardo S, et al. Insulin-like growth factor I (IGF-),IGF-binding proteins, and breast cancer . Cancer Epidemiol Biomarkers Prev, 2002,11(12): 1566-1573.
    20. Chang YS, KongG, Sun S, et al. Clinical significance of insulin -like growthfactor-binding protein-3 expression in stage I non -small cell lung cancer. Clin CancerRes, 2002, 8 (12): 3796-3802.
    21. Wang H, Wang H, Shen W, et al. Insulin-like growth factor binding protein 2enhancesglioblastoma invasion by activating invasion -enhancing genes. Cancer Res,2003, 63(15): 4315-4321.
    22. MathurS P, Mathur RS, Underwood PB, et al. Circulating levels of insulin-like growthfactor-II and IGF-binding protein 3 in cervical cancer. Gynecol Oncol, 2003, 91(3):486-493.
    23. KatsarosD, YuH, LevesqueMAetal. IGFBP -3 in epithelialovarian carcinoma and itsassociationwith clinico-pathological features and patient survival. Eur J Cancer, 2001,37 (4): 478-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700