用户名: 密码: 验证码:
穿山龙皂甙酸解废水中鼠李糖的分离工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠李糖是穿山龙提取薯蓣皂素时产生的副产物,存在于酸水解后的废液中。在现在皂素的生产过程中,鼠李糖是作为废水的一部分被排出,这不仅污染了环境,同时也造成了不必要的浪费。目前,已经有人从废水中提取葡萄糖,而事实上,L-鼠李糖价值要远远高于葡萄糖。
     从皂甙酸解废水中提取鼠李糖,既处理了皂素生产废水,又可以得到高附加值的产品,并且经过工艺的改进,就可以实现以较低的消耗获得鼠李糖的目的,把治理污水的费用用于鼠李糖提取过程,既可以实现污水的低排放甚至零排放,又可以生产鼠李糖。
     本研究先对穿山龙进行预处理得到酸解废水,然后通过对酸解废水进行中和、脱色、利用酵母菌去除葡萄糖后,经过过滤、浓缩、结晶,最终获得鼠李糖晶体。实验表明,采用磨碎过筛、离心沉淀、醇提,除去纤维素、水溶物、淀粉,得到总皂甙,酸水解总皂甙,过滤后直接得到皂甙元,滤液中和后,用酵母菌消耗葡萄糖,得到鼠李糖。分离鼠李糖的最佳条件为:每100 g鲜穿龙薯蓣的总皂甙使用0.5 mol/L的H_2SO_4 120 mL,0.14 Mpa下水解1h,酵母菌发酵时无需添加营养盐,发酵时间不少于17 h,鼠李糖的产率为0.196%。采用经薄层层析对鼠李糖定性,用DNS测定发酵液中鼠李糖具有准确性和易操作性。并就所得到的穿龙薯蓣提取皂素的新工艺,研究了该工艺所产生的固体废物污染和水污染情况。首先,用重量法对三种固体废物分别进行了测定,含量分别为原料重量的35.6%、24.4%、3.4%。固体废物弃置占用大量土地,污染环境,产生严重的环境危害,将固体废物分离后,探寻了各种固体废物的成分性质主要为纤维素、淀粉、木质素,并按照废物性质分别进行了资源化利用,建议纤维素类废物用于用于生产微晶纤维素和羧甲基纤维素等,淀粉类废物可以用于生产食品及进行微生物发酵,木质素类废物可以用于生产活性炭等。其次,对新工艺废水的各项指标进行测定,得到第一道废水COD_Cr为27876 mg/L,BOD_5为19791 mg/L,NH_3-N为86 mg/L,总磷为157 mg/L,SS为466 mg/L。第二道废水COD_Cr 21412 mg/L,BOD_5 14642 mg/L,NH_3-N 84 mg/L,总磷为28 mg/L,SS为374 mg/L,同时通过总量计算与传统工艺污染程度进行比较,得出新工艺总磷和色度减排达50%以上,废水总量、CODCr和悬浮物(SS)减排达70%以上,铵氮减排达83%,耗酸量减少85%,废水可生化性提高,易于生化处理。最后,分析了污染减轻的原因。总磷、色度、COD_Cr和铵氮污染减轻的原因在于工艺中间环节产生的固体废物带走了大部分此类污染,酸用量减少是由于分离出固体废物导致待水解的原料减量所致。
Rhamnose is a byproduct in the process of extracting diosgenin from the Dioscorea nipponica,existing in the waste liquid after hydrolyzing. In the present production process of saponin,rhamnose as part of the wastewater is discharged,which not only pollutes the environment,but also brings about an unnecessary waste. At present,glucose had been extracted from the wastewater. In fact,L-rhamnose is much more expensive than glucose.
     Extracting rhamnose from the acid waste water can not only dispose wastewater, but also get high-value product. By improving technique,rhamnose can be obtained at a lower consumption. The fare for sewage treatment can be used to extract rhamnose from the wastewater,which can achieve low-effluent or zero-effluent discharge,and produce rhamnose at the same time.
     The process for extracting rhamnose was studied. First get acidolysis wastewater after pretreating Dioscorea nipponica,and then dispose the acid wastewater by neutralization, decolorization,yeast for glucose removal,filtration,concentration,crystallization and, ultimately,rhamnose crystals can be got.
     The fiber,water-soluble matter and starch were removed after grinding,filtrating,centrifuging,precipitating and alcohol-extracting so that total dioscin can be obtained. Then the total dioscin was hydrolyzed,filtrating,neutralizing,decoloring and eliminating the glucose in the filtration liquid with yeast. At last, the rhamnose was obtained.The optimal conditions for the isolation of rhamnose were:under 0.14 Mpa with 0.5 mol/L sulfuric acid for 1 h,not add nutrition during yeast fermentation,not less than 17 h fermentation time. In this way,the yield rate of rhamnose was 0.196%. DNS method was accurate and convenient to measure the content of rhamnose in the fermentation liquid.The TLC analysis indicated that the product obtained was rhamnose.
     At the same time,the pollution problems of the traditional diosgenin production were briefly discussed.In order to solve these problems,a new technique for extracting diosgenin from Dioscorea nipponica Makino was introduced and the pollution caused by the new technique was studied.Firstly,the solid wastes were weighted and their contents were 35.6%,24.4%,3.4% respectively.The wastewater concentrations were measured by Chinese standards. The first wastewater COD_Cr was 27876mg/L,BOD_5 19791 mg/L,NH_3-N 86 mg/L, total phosphorus 157 mg/L,SS 466 mg/L. The second wastewater CODCr was 21412 mg/L,
     BOD_5 14642 mg/L,NH_3-N 84 mg/l,total phosphorus 28 mg/L,SS 374 mg/L. In addition,the wastewater pollution comparison was made between the new technique and the traditional one. The couclusion was as follows:total phosphorus and colority were decreased by about 50%;the water amount,COD_Cr and SS by more than 70%;NH_3-N and acid usage by 83% and 85% respectively;wastewater's biochemical ability was increased and became easy for biological treatment.Finally,some utilization measures were proposed to solve the solid waste pollution and the reasons for the wastewater pollution reduction were analyzed.
引文
[1]宋发军.甾体药物源植物薯蓣属植物中薯蓣皂甙元的研究及生产状况[J].天然产物研究与开发,2002,14(3):89-93
    [2]刘春.皂素生产废水污染特点及治理对策探讨[J].环境保护科学,2001,27:22-24
    [3]孙欣等.皂素生产废水污染特点及治理现状[J].2005,23(1):25-28
    [4]秦华等.汉中黄姜产业环境问题分析与防治对策[J].陕西环境,2003,10 (3):23-25
    [5]张志扬等.UASB-生物接触氧化-絮凝沉淀法处理皂素废水[J].城市环境与城市生态,2003,16 (Sup):32-34
    [6]国家环境保护总局.2006.GB20425-2006皂素工业水污染物排放标准[S].北京:中国环境科学出版社
    [7]黄进等.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究[J].农业工程学报,2001,17(6):119-122
    [8]杨志华等.黄姜皂素清洁生产工艺污染物削减过程分析[J].环境科学与技术,2007, 30(1):53-55,IV
    [9]杨谦等.黄姜中鼠李糖的提取[J].西安理工大学学报,2008,24(3):366-369
    [10]浦跃武等.鼠李糖的研究现状及其应用[J].食品工业科技,2002,23(2):84-85
    [11]M. Takeda et al. Separation and preliminary characterization of acidic polysaccharides produced by Enterobacter SP [J]. Ferment. Bioeng., 1994, 78(2): 114-140
    [12] M. Lahaye et al. Chemical characteristics of insoluble glucans from the cell wall of the Marine Green Alga Uwa Lactuca (L.) Thuret [J]. Carbohydrate Resaerch, 1994, 262:115-125
    [13]甘景镐.天然高分子化学[M].北京:高等教育出版社,1993,190-193
    [14] 1Zuyi Li et al. Studies on optimum conditions of preparation of rhamnose by microbial fermentation [J]. Chinese Journal of Biotechnology, 1999
    [15]D. Lacy et al. Method for producing rhamnose [P]. European Patent: 0282942 A2, 1982
    [16]龙旭伟等.高盐度环境下铜绿假单胞菌生产鼠李糖脂[J].中国科技论文在线.2009,4(06):418-422
    [17]汤晓等.铜绿假单胞菌分泌鼠李糖脂能力对原油降解影响的研究[J].高校化学工程学报,2008,22(01):88-93.
    [18]马歌丽.培养条件对铜绿假单胞菌产鼠李糖脂的影响[J].食品科学,2005,26(10):62-66
    [19]沈薇等.铜绿假单胞菌( Pseudomonas aeruginosa) BS - 03的诱变育种及产鼠李糖脂类生物表面活性剂的摇瓶工艺初探[J].食品与发酵工业,2004,30(12):26-30
    [20]I. Seiga et al. Rhamnolipids produced by pseudomonas aeruginosa grown on n-paraffin (mixture of c12, c13 and c14 fractions) [J]. Antibiotics, 1971, 24(12):855-859
    [21]M. Matsufuji et al. High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol [J]. Biotechnology Letters,1997,19(12): 1213-1215
    [22]L. Guerra-Santos et al. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source [J]. Appl Environ Microbiol. 1984,48(2):301-305
    [23]A. S. Santos et al. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa [J]. Applied Biochemistry and Biotechnology, 98-100(1-9):1025-1035
    [24] M. Nitschke et al. Oil Wastes as Unconventional Substrates for Rhamnolipid Biosurfactant Production by Pseudomonas aeruginosa LBI [J]. Biotechnology Progress, 21(5): 1562 - 1566
    [25]M. Robert et al. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1 [J]. Biotechnology Letters,1989,11(12):871-874
    [26]J. C. Mata-Sandoval et al. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil [J]. Chromatography A, 864(2), 1999: 211-220
    [27]A. Abalos. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes [J]. Langmuir, 2001, 17 (5), 1367–1371
    [28]黄翔峰等.废弃食用油脂生物合成鼠李糖脂研究进展[J].微生物学通报,2009, 36(11):1738–1743
    [29]马世昌主编.化学物质辞典[M].西安,陕西科学技术出版社,1999:826
    [30]黎其万.呋喃酮合成进展[J].精细石油化工,1994,(4):36-40
    [31] C. H. Wong et al. [J]. Organic Chemistry. 1983, 48:3493-3497
    [32]H. B. Heath et al. Flavor chemistry and technology [M]. Westport: AVI Publishing Company, Inc., 1986: 60
    [33]Decnop et al. hydroxyfuranone preparation [P]. European Patent 0398417, November 22, 1990
    [34]RenéRoscher,et al. L-Rhamnose: progenitor of 2,5-dimethyl-4-hydroxy-3[2H]- furanone formation by Pichia capsulate [J]. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 1997, 204, (3): 198-201
    [35]周裔彬等.罗布麻生物脱胶过程中的发酵液的色谱分析[J].中国麻业,2004,24(3):29-33
    [36]刘朝宗.食品中的甜味与天然甜味剂[J].烹饪科学,1999,(12):36-38
    [37]卫生部.GB2760-1996(2004年增补品种,2004年第6号),2004
    [38]张晨等.发酵法生产鼠李糖的现状[J].四川食品与发酵,1998,(1-2):10-13
    [39]李志勇等.螺旋藻功能性因子及保健作用的探讨[J].中国食品工业,1999,(05):12,14
    [40]T. Fujii. Lactulose-L-rhamnose intestinal permeability test in patients with liver cirrhosis[J].Hepatology Research, 2001, 19(2): 158-169
    [41]I. S. Menzies et al. Abnormal intestinal permeability to sugars in villous atrophy [J]. Lancet, 1979, 2(8152): 1107-1109
    [42]J. Leclercq-Foucart et al. Rhamnose intestinal permeability in children with cystic fibrosis[J].Journal of Pediatric Gastroenterology & Nutrition, 1987, 6(1): 66-70
    [43]K. D. Katz et al. Intestinal permeability in patients with crohn's disease and theirhealthy relatives [J]. Gastroenterology, 1989, 97(4): 927-931
    [44]李文琳.微生物发酵制备鼠李糖的分离工艺[D]:[硕士学位论文].浙江:浙江大学,2002
    [45]Y. Yoichi et al. JP 6265676, 1987
    [46]R. E. Marker et al. New sources for sapogenins [J]. Journal of the American Chemical Society, 1947, 69: 2167
    [47]J. W. Rothrock et al. Isolation of diosgenin by microbiological hydrolysis of sapogenin. [J]. Archives of Biochemistry and Biophysics, 1955, 57(1): 151-155
    [48] 1S. P. Mishra et al. Recovery of diosgenin from dioscorea rhizomes using aqueous hydrotropic solutions of sodium cumene sulfonate[J].Industrial and Engineering Chemistry Research, 2004, 43(17): 5339-5346
    [49]陈俊英等.黄姜中薯蓣皂素的制取方法[J].农产品加工·学刊,2005,(1):22-24
    [50]四川省生物研究所薯蓣综合利用组.预发酵提高薯蓣皂素产率及淀粉综合利用的研究[J].植物学报,1975,3:242
    [51]周振起等.薯蓣皂甙元分离工艺的研究及其综合利用[J].西北植物学报,1995,15(3):254-260
    [52]佟玲等.酶解法提取薯蓣皂素的工艺研究[J].陕西师范大学学报(自然科学版),2003,31(2):81-83
    [53]周雨丝等.应用糖化酶改良法提取黄姜皂素[J].湖北农业科学,2003,(5):91-93
    [54]张彩霞等.纤维素酶在穿山龙提取中的应用[J].基层中药杂志,2000,14(2):32-33
    [55]葛发欢等.超临界CO2从黄山药中萃取薯蓣皂素的工艺研究[J].中草药,2000,31(3):181-183
    [56]张来新.以芦丁制备鼠李糖[J].中成药,2003,25(1):848-850
    [57]杨贵明等.用DNS光度法测定还原糖的条件研究[J].安徽农业科学,2006,34(14):3258,3264
    [58]王秀军等.鼠李糖制备新工艺研究[J].西北农业学报,2006,15(6):183-185
    [59]张晨等.发酵法生产鼠李糖的现状[J].四川食品与发酵,1998,(1-2):10-13
    [60]王玉枝.色谱分析[M].北京:中国纺织出版社,2008,53
    [61]袁毅等.穿龙薯蓣微晶纤维素的制备及其理化性质研究[J].生物质化学工程,2007,41(4):22-26
    [62]向纪明等.黄姜中提取薯蓣皂素的新工艺研究[J].安康师专学报,2003,15:56-59
    [63]袁毅等.穿龙薯蓣淀粉的理化性质研究[J].中草药,2008,39(7):1007-1010
    [64]刘兰等.木质素基活性炭研究进展[J].精细与专用化学品,2007,15(22):8-11
    [65]GB3838- 2002,中华人民共和国国家标准地表水环境质量标准[S]
    [66]刘光东等.黄姜废水处理实践与分析[J].南水北调与水利科技,2009,7(6):447-449
    [67]路璐等.Fenton试剂法氧化处理黄姜皂素废水[J].工业用水与废水,2007,38(3):36-39
    [68]山西省卫生厅.山西医院制剂规范[M].山西:山西人民出版社,1985,315
    [69]张寿斗等.黄姜皂素废水处理工程实践及分析[J].武汉工程大学学报,2008,30(3):65-68
    [70]赵宗梁等.酵母菌处理穿山龙淀粉废水的研究[J].化学与生物工程,2009,26(2):54-57
    [71]肖芳等.穿龙薯蓣皂甙酸解液中鼠李糖的提取[J].化学与生物工程,2009,26(8):54-57
    [72]宋晓东等.2009.光合细菌处理皂素生产废水实验研究[J].西北大学学报(自然科学版),39(4):620-623
    [73]张勇等.2004.黄姜-皂素废水综合处理技术的探讨[J].环境科学与技术,27(S1):124-125
    [74]刘大银等.皂素生产废水综合治理技术研究(Ⅰ)—实用治理技术框架.武汉化工学院学报,2003,25(4):33-36.
    [75]石文娟.黄姜淀粉性质研究[D].重庆:西南大学,2008,Ⅰ
    [76]左玉辉编著.环境学[M].北京:高等教育出版社
    [77]B.Liu et al. Supercritical fluid extraction of diosgenin from tubers of Dioscorea nipponica [J].Chromatography A,1995,690(2):250-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700