用户名: 密码: 验证码:
多点电控液态LPG喷射发动机燃料喷雾的可视化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化石油气(LPG)因其良好的经济性和低污染排放已成为优良的汽车代用燃料之一。但目前广泛应用的采用气态LPG燃料供应方式的发动机与原汽油机相比,普遍存在动力性下降的缺点,而采用进气道多点液态LPG喷射(MPLI)可有效地解决这个问题。但是液态LPG在喷出后会产生闪急沸腾现象,导致LPG的喷雾过程和汽油的有较大差别,而燃油喷雾混合过程是发动机缸内热力过程的基础,因此,研究掌握燃料的喷雾特性对研究混合气形成、优化燃烧和排放性能具有重要的意义。为此,本文使用可视化方法研究了液态LPG的喷雾特性。
     伴随着液态LPG的闪急沸腾,在喷雾体周围会有大量LPG蒸气产生。为观察到蒸气的存在,更全面地了解LPG喷雾的发展状况,基于对由密度梯度引起的折射率梯度敏感的纹影方法建立了光学纹影可视化试验台,并设计、制作了控制装置控制使液态LPG喷嘴和高速CCD相机按照一定的脉冲时序工作以拍摄特定时刻的喷雾图像。通过对试验系统中存在的误差的分析,提出了减小误差的措施,提高了试验结果的可信度。在此基础上分别获得了单、双孔喷嘴在0.5Mpa、1.0Mpa、2.0Mpa喷射压力下时间间隔为0.1ms的喷雾图像序列。
     为全面衡量比较不同喷射条件下的喷雾的发展过程,在喷雾贯穿距离和喷雾锥角之外,又提出了投影喷雾面积和喷雾体积两个参数并给出了相应的定义和计算方法。并根据获得的液态LPG的喷雾图像重新定义了喷雾锥角。
     利用计算机图像处理技术获取了不同喷射时刻液态LPG喷雾的形状、贯穿距离、喷雾锥角等特征参数,与手工测量的结果对比显示,两种测量结果的相差百分率仅有一个时刻超过了5%,为5.01%,其余绝大部分均在±3%以内,从而验证了计算方法的准确性和通过图像处理技术获得的喷雾轮廓的可靠性。对比结果还显示采用计算机图像处理技术获取液态LPG喷雾特征的测量效率比单纯的手工方法测量至少提高25倍以上。
     由上述的研究表明:随喷射压力的增加,液态LPG喷雾的贯穿距离、投影喷雾面积和喷雾体积增加,而喷雾锥角减小;而4气门发动机采用的双孔喷嘴的雾化效果更好,有利于混合气的形成;这是由于在较高的喷射压力下喷出的液态LPG喷流首先与双孔喷嘴头部的分流套碰撞后,被分流成两油束,经分流孔导流喷出。这个过程也加速了喷雾的蒸发,因此在光学纹影方法下可以观察到经双孔喷嘴喷出的液态LPG的喷雾贯穿距离在喷射开始的一段时间内比单孔喷嘴的喷雾贯穿距离要大一些。
Liquefied petroleum gas (LPG) has been considered one of the excellent alternative vehicle fuels for its lower fuel cost and emissions compared with the traditional petroleum fuels. Comparing to the original gasoline engine, a main problem of the most common being used LPG engines which are converted from the gasoline engine with a mixer or a gaseous phase injection fuel supply system, is the power loss. In contrast, multi-port liquid phase LPG injection (MPLI) seems to be a better choice of the fuel supply system since it will not bring such a problem. However, the flashing of the liquid phase LPG makes the spray characteristics widely different from the gasoline’s. Spray process has significant effect on combustion and emissions of the engine, so it is very necessary and important to understand the LPG’s spray characteristics to control the fuel injection, optimize the combustion, improve the emissions and then exerts the fuel’s potential. Therefore, the spray characteristics of LPG are investigated in this thesis using visualization method.
     With the flashing of liquid phase LPG, a gaseous LPG layer will be formed around the LPG spray body. To observe this layer as well as the spray behavior, the schlieren photography, a method that is very sensitive to refraction index gradient caused by density gradient in a transparent medium, is employed to set up a visualization test apparatus to capture spray images. A control device is designed to trigger the injector and the CCD camera according to a certain time sequence to obtain the spray image at a certain instant. The error analysis is also done to improve the reliability of the experimental results. Based on these, the spray image sequences, with a time interval of 0.1ms, are obtained for two injectors, a single-hole one and a double-hole one, under three injection pressures, 0.5Mpa, 1.0Mpa and 2.0Mpa, respectively.
     In addition to spray tip penetration and spray angle, another two parameters, projected spray area and spray volume, are also presented to describe the spray. The definitions and calculation algorithms of the two new parameters are given, too. Besides, according to the actual configuration of the spray, the spray angle for LPG spray is redefined.
     To calculate the four parameters in terms of the given calculation algorithms, the spray outline is obtained and then coordinatized using digital image processing techniques. Comparing the calculation results to manual measurement results, the maximum difference between the two methods is 5.01%, and the most of the differences are within±3%. This proves the accuracy of the calculation algorithms and the creditability of the obtained spray outline. In addition, the comparison also shows that the digital calculation method has efficiency that at least 25 times more than the manual method.
     By analyzing the calculation results, the following conclusions are made. (1) With the injection pressure increasing, the spray tip penetration, the projected spray area and the spray volume are all increased while the spray angle is decreased. (2) Double-hole injector has better atomization effect than single-hole injector on the fuel spray because the impingement of spray with flow split head of double-hole injector has promoted the atomization and evaporation of liquid phase LPG. Therefore, it will produce a more homogeneous air-fuel mixture. (3) For the same reason of impingement, under the observation with schlieren technique, the spray tip penetration of double-hole injector is longer than that of single-hole injector in a period at the early injection stage.
引文
[1] BP. Statistical Review of World Energy 2005 [EB/OL]. http://www.bp.com/liveassets/bp_internet/ globalbp/globalbp_uk_english/publications/energy_reviews_2005/STAGING/local_assets/downloads/pdf/statistical_review_of_world_energy_full_report_2005.pdf, 2006
    [2] Walsh M P. Global Trends in Motor Vehicle Pollution Control[C]. Air Pollution as a Climate Forcing: A Workshop. Honolulu, Hawaii, April 2002.
    [3] 王秉刚. 中国清洁汽车行动的成就与展望[J]. 汽车工程, 2005, 27(6):643-647
    [4] 新华网. 2005 年中国国土资源公报[EB/OL]. http://news.xinhuanet.com/newscenter/2006-04/28/ content _4486098.htm
    [5] 新华网. 能源紧缺引发油企“出境”热潮, 海外找油有进展[EB/OL]. http://news3.xinhuanet.com/ fortune /2006-04/28/content_4485238.htm
    [6] 国家经济贸易委员会. “十五”工业结构调整规划纲要[EB/OL]. http://www.ndrc.gov.cn/fzgh/ghwb/ hygh/W020050614802537480919.pdf
    [7] 世界 LP ガス協会統計/2003 年(,財)自動車検査登録協力会, 全国エルピーガススタンド協会. 今、世界に広がるLP ガス自動車[EB/OL]. http://www.nichidankyo.gr.jp/toku/pdf_data/ Chap4_8.pdf
    [8] 中国汽车技术研究中心, 中国汽车工业协会. 中国汽车工业年鉴 2005[M]. 天津《:中国汽车工业年鉴》编辑部, 2005
    [9] 边耀章. 汽车能源新技术[M]. 北京:人民交通出版社. 2003
    [10] National Institute of Standards and Technology. Thermophysical Properties of Fluid Systems[EB/OL]. http://webbook.nist.gov/chemistry/fluid/
    [11] 邵千钧, 何文华, 周文华等. 液化石油气电控喷射技术的研究与发展[J]. 车用发动机, 1999, 6:1-4
    [12] Kim C, Oh S, Lee Y et al. Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine[C]. SAE Paper No.:2003-01-1919
    [13] 邵千钧, 何文华, 周文华等. 电控喷射改善燃用 LPG 发动机动力性的研究[[J]. 内燃机工程, 2002, 23 (5):15-18
    [14] 邵千钧, 何文华, 周文华等. LPG 进气道液态喷射的实验研究[J]. 内燃机学报, 2003, 21(1):65-68
    [15] Kang K, Lee D, Oh S et al. Performance of an Liquid Phase LPG Injection Engine for Heavy Duty Vehicles[C]. SAE Paper No.:2001-01-1958
    [16] Energy Information Administration. NYMEX Futures Prices [EB/OL].http://tonto.eia.doe.gov/dnav/ pet/pet_pri_fut_s1_d.htm
    [17] LP Gas Association. Financial benefits[EB/OL].http://www.boostlpg.co.uk/what_is/economic.htm
    [18] Caton J A, McDermott M. Development of a dedicated LPG-fueled spark-ignition engine and vehicle for the 1996 Propane Vehicle Challenge[C]. SAE Paper No.:972692.
    [19] Sierens, R. Experimental and theoretical study of liquid LPG injection[C]. SAE Paper No.:922363.
    [20] Luhman D J. Emission Control of a Propane Fueled Smail Utility Engine Utilizing Air/Fuel Ratio Control and Three-way Catalyst[C]. SAE paper No.: 932445
    [21] Springer, K J and Dickinson A G. Car cold-start hydrocarbon control considerations[J]. ICE of ASME, 1993, 10:1-15
    [22] Wu T D, Chen Y N. Design optimization for an LPG automobile engine[J].International Journal of Vehicle Design. 2000, 24(1):100-120
    [23] Branner J L, Kamel M M. B5.9 propane gas engine development[J]. ICE of ASME, 1999, 32 (2): 9-15
    [24] Raina A, Midkiff K C. Characterization of the effects of methane and propane mixtures on performance and emissions in a spark-ignited engine[J]. ICE of ASME. 1998, 30(3):67-74
    [25] Snelgrove D G, Dupont P, Bonetto P. An investigation into the influence of LPG (Autogas) composition on the exhaust emissions and fuel consumption of 3 bi-fuelled Renault vehicles[C]. SAE Paper No.:961170
    [26] Bayraktar H, Durgun O. Investigating the effects of LPG on spark ignition engine combustion and performance[J]. Energy Conversion and Management, 2005, 46(13):2317-2333
    [27] 高卫民, 周毅. 桑塔纳 2000GSI 型轿车配置电喷 LPG 系统的开发与研究[J]. 内燃机工程,2001,22(1):70-72
    [28] 阿比旦, 张武高, 欧阳明高. 液化石油气汽车技术的发展与应用[J]. 2001 , (11) :5-8.
    [29] 朱义伦, 何方正. 低排放 LPG 发动机控制系统开发研究[J]. 内燃机工程.2000,(4): 48-52
    [30] 王学合, 黄震. LPG 多点连续电喷发动机及车辆的排放试验研究[J]. 内燃机学报, 2004, 22(2):97-103
    [31] 赵新顺, 霍天强. LPG 一汽油双燃料发动机试验研究[J]. 小型内燃机与摩托车.2002, 31(3):3 840
    [32] 朱义伦, 何方正. 电控液化石油气发动机排放试验[J]. 上海交通大学学报.2001,35(5):746-749
    [33] 邓宝清, 李理光.混合器式液化石油气小型发动机排放性能的研究[J]. 内燃机学报, 2002, 20(4):287-291
    [34] 邓宝清, 宫长明. 汽油/液化石油气两用燃料摩托车的性能与排放研究[J]. 内燃机学报, 2003, 21(1):49-52
    [35] 顾善愚 , 赵奎翰 . 汽油/ 液化石油气 (LPG) 两用燃料发动机的研究 [J]. 内燃机学报 .2001, 19(4):323-326
    [36] 张博彦, 雷艳, 周大森. LPG/汽油双燃料发动机排放性能研究[J]. 农业机械学报, 2005, 36(3):34-36
    [37] 黄振洲, 马凡华. LPG/汽油双燃料发动机排放规律的试验研究[J]. 内燃机工程.2001,22(2): 58-60
    [38] 黄振洲, 许忠厚. 492Q 汽油机燃用液化石油气后 NOx 排放规律的试验研究[J]. 内燃机学报.2001, 19(2):139-142
    [39] Murillo S, Míguez J L, Porteiro J et al. LPG: Pollutant emission and performance enhancement for spark-ignition four strokes outboard engines[J]. Applied Thermal Engineering, 2005, 25(13):1882-1893
    [40] Chen Z, Konno M, Goto S. Study on homogenous premixed charge CI engine fueled with LPG[J]. JSAE Review, 2001, 22:265–270
    [41] Baker P, Watson H. MPI Air/Fuel Mixing for Gaseous and Liquid LPG[C]. SAE Paper No.:2005-01-0246
    [42] 邵干钧, 何文华, 周文华等. 缸内直接喷射应用于 LPG 发动机的研究[J]. 内燃机工程, 2002, 23(6):6-8
    [43] 李西秦, 刘冰. 电控液态 LPG 喷射内燃机性能研究[J]. 拖拉机与农用运输车, 2005, (2):32-34
    [44] Hyun G, Oguma M, Goto S. CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles[C]. SAE Paper No.:2002-01-1648
    [45] Li L, Wang Z, Gong C et al. Investigation of Cold-start Based on Cycle-by-Cycle Control Strategy in an EFI LPG Engine[C]. SAE Paper No.:2004-01-3059
    [46] 王振锁, 李理光, 宫长明等. 基于循环控制的 LPG 电喷发动机冷起动初探[J]. 内燃机学报, 2004, 22(4):337-344
    [47] Kang K, Kim C, Lee J et al. Performance and Emissions of an 11L LPG MPI engine for city buses[C]. SAE Paper No.:2002-01-0448
    [48] Kim C, Lee D, Oh S et al. Enhancing performance and combustion of an LPG MPI engine for heavy duty vehicles[C]. SAE Paper No.: 2002-01-0449
    [49] Hyun G, Oguma M, Park J et al. Simultaneous Observation of Droplets and Evaporated State of Liquid Butane and DME at Low Injection Pressure. SAE Paper No.:2002-01-1627
    [50] Oguma M, Goto S, Sugiyama K et al. Spray Characteristics of LPG Direct Injection Diesel Engine. SAE Paper No.:2003-01-0764
    [51] Lee E, Park J and Kang Y H et al. Simulation of Fuel/Air Mixture Formation for Heavy Duty Liquid Phase LPG Injection (LPLI) Engines. SAE Paper No.:2003-01-0636
    [52] Lee S W, Kusaka J, Daisho Y. Spray characteristics of alternative fuels in constant volume chamber (comparison of the spray characteristics of LPG, DME and n-dodecane)[J]. JSAE Review, 2001, 22:271–276
    [53] Lee S W, Tanaka D, Kusaka J et al. Two-dimensional laser induced fluorescence measurement of spray and OH radicals of LPG in constant volume chamber[J]. JSAE Review, 2002, 23:195–203
    [54] Lee S W, Daisho Y. SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG[J]. Int. J. Automot. Technol., 2004, 5(4):239?245
    [55] 李晟旭. 直接噴射 LPG 燃料における噴霧?燃焼特性に関する研究[D]:[博士学位论文]. 東京:早稲田大学理工学部機械工学科, 2003
    [56] Jermy M C, Vuorenkoski A K, Mohamed T I et al. The structure of propane/LPG sprays from automotive fuel injectors as a function of fuel and ambient pressure by Mie and LIF imaging[C].12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, July 2004
    [57] Park K. BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE[J]. Int. J. Automot. Technol., 2005, 6(3):215-219
    [58] 曹建明, 武涛, 程前等. 柴油与 LPG/柴油双燃料喷雾特性的对比[J]. 交通运输工程学报, 2003, 3(2):40-44
    [59] Cao J, Bian Y, Qi D et al. Comparative investigation of diesel and mixed liquefied petroleum gas/diesel injection engines[J]. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2004, 218(5):557-565
    [60] 祁东辉,边耀璋,马志义. LPG 溶入柴油的喷射雾化特性研究[J]. 内燃机工程, 2004, 25(1):79-81
    [61] 肖合林, 张煜盛, 张辉亚. L PG/柴油混合燃料喷雾特性的试验研究[J]. 华中科技大学学报(自然科学版), 2005, 33(7):58-60
    [62] Leipertz A. Spray and Atomisation[C]. WORKSHOP "CLEAN I.C. ENGINES AND FUELS". Louvain-la-Neuve, Belgium. April 2005.
    [63] 解茂昭.内燃机计算燃烧学(第二版)[M]. 大连:大连理工大学出版社,2005, 9. 86-89
    [64] Ohnesorge W F. Formation of drops by nozzles and the break up of liquid jets[J] Z. Angew. Math. Mech. 1936,16:355-358.
    [65] Torda T P, Matlosz R. Liquid Droplet Evaporation in Stagnant High Pressure and High Temperature Environment. NASA CR 72373 1968.
    [66] Castleman R A. Mechanism of Atomization Accompanying Solid Injection. NACA Report 440, 1932
    [67] Taylor G I. Generation of Ripples by Wind Blowing over Viscous Fluids, The Scientific Papers of G. I. Taylor[M]. England: Cambrige University Press, 1963
    [68] Lin S P, Kang D J. Atomization of a Liquid Jet[J]. Phys. Fluids. 1982, 30(7):2006
    [69] Lin S P and Lian Z W. Mechanism of the Breakup of Liquid Jets[J]. AIAA Journal, 1990, 28(1):120
    [70] Dejuhasz K J. Dispersion of sprays in solid-injection oil engines[J]. Trans ASME 1931, 53: 65–77
    [71] Schweitzer P H. Mechanism of disintegration of liquid jets[J]. J Appl Phys.1937, 8: 513–521
    [72] Holroyd H B. On the Atomization of Liquid Jets[J]. J.Franklin Inst. 1933, 215: 70-93
    [73] Bergwerk W. Flow Pattern in Diesel Nozzle Spray. Holes[J]. Proc. Inst Mech. Eng. 1959, 173:655-660
    [74] Sadek R. Communication on flow pattern in nozzle spray holes and discharge coefficient of orifices[J].Proc. Inst. Mech. Eng. 1959, 173:671
    [75] Nurick W H. Orifice Cavitation and its Effect on Spray Mixing[J]. ASME J. Fluids Eng. 1976, 98:681–687.
    [76] Shkadov V Y. Wave formation on surface of viscous liquid due to tangential stress[J]. Fluid Dyn. 1970, 5:473
    [77] Rupe J H. On the Dynamic Characteristics of Free-Liquid Jets and a Partial Correlation with Orifice Geometry. JPL Tech. Report, 1962, 32:207
    [78] Giffen E, Muraszew A. The Atomization of Liquid Fuels[M]. New York :John Wiley and Sons, 1953
    [79] Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Phys. Fluids. 1982, 25:1730–42.
    [80] Schmitz I, Ipp W and Leipertz A. Flash Boiling Effects on the Development of Gasoline Direct-Injection Engine Sprays[C]. SAE Paper No.: 2002-01-2661
    [81] 乔信起. 柴油机闪急沸腾喷雾的基础研究[D]:[博士后工作报告]. 上海: 上海交通大学动力与能源工程学院, 1999
    [82] Oza R D, Sinnamon J F. An Experimental and Analytical Study of Flash-Boiling Fuel Injection[C]. SAE Paper No.:830590
    [83] Brown R, York J L. Sprays Formed By Flashing Liquid Jets[J]. AIChE Journal. 1962, 8(2):149-153.
    [84] Lienhard J H. An Influence of Superheat Upon the Spray Configurations of Superheated Liquid Jets[J]. Journal of Basic Engineering, Trans. ASME. 1966, 88: 685-687.
    [85] Lienhard J H, Day J B. The Breakup of Liquid Jets[J]. Journal of Basic Engineering, Trans ASME. 1970,92: 515-521.
    [86] Park B S, Lee S Y. An experimental investigation of the flash atomization mechanism[J]. Atomization and Sprays, 1994, 4:159–179.
    [87] Kim Y K, Nobuo I, Hideo S and Takahiro T. Improvement of Alcohol Engine Performance by Flash Boiling Injection[J] JSAE Review, 1980:81-86.
    [88] VanDerWege B A, Hochgreb S. Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines:(2) PDPA Investigation[C]. SAE Paper No.:2000-01-0536
    [89] Gemci T, Yakut K, Chigier N et al. Experimental study of flash atomization of binary hydrocarbon liquids[J]. International Journal of Multiphase Flow, 2004, 30:395-417
    [90] Senda J, Nishikori T, Tsukamoto T et al. Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector[C]. SAE Paper No.: 920382
    [91] Senda J, Hojyo, Y, Fujimoto H. Modeling of Atomization Process in Flash Boiling Spray[C]. SAE Paper No.:941925.
    [92] Senda J, Higaki T, Sagane Y, et al. Modeling and Measurement on Evaporation Process of Multicomponent Fuels[C]. SAE Paper No.:2000-01-0280
    [93] Kawano D, Goto Y, Odaka M, Senda J. Modeling Atomization and Vaporization Processes of Flash-Boiling Spray[C]. SAE Paper No.:2004-01-0534
    [94] Davy M H, Williams P A, Anderson R A. Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques[C]. SAE Paper No.:2000-01-1904
    [95] 许锋, 朱国朝, 孙民. 闪急沸腾喷雾规律的试验研究[J]. 大连理工大学学报, 1991, 1
    [96] 段树林, 冯林, 许锋等. 柴油闪急沸腾喷雾的试验研究[J]. 大连铁道学院学报, 1997, 1
    [97] 段树林, 冯林, 许锋等. 采用双喷射系统在柴油机中燃用煤液化燃料的试验研究(Ⅱ )[J].大连理工大学学报,1996,
    [98] 段树林, 宋永臣, 冯林等. 闪急沸腾喷雾场粒度分布特性的研究[J]. 内燃机工程,1998, 19 (2)
    [99] 段树林, 冯林, 宋永臣等. 闪急沸腾喷雾场粒度分布规律及燃烧特性的研究[J]. 内燃机学报, 1999,1
    [100] 魏建勤, 傅维镳. 柴油混合闪蒸喷雾的探索研究[J]. 工程热物理学报, 1998, 19 (4): 509-513
    [101] 吴楚, 魏建勤, 许沧粟等. 闪蒸喷雾的试验研究[J]. 浙江大学学报(工学版), 2002, 36(5):516-520
    [102] 黄震, 邵毅明, 志贺聖一等. 燃油溶气雾化新概念[J]. 上海交通大学学报. 1994, 2
    [103] 乔信起, 刘建江, 黄震等. 闪急沸腾喷雾速度场的 LDA 研究(英文)[J]. 燃烧科学与技术, 2001,7(4):-303-308
    [104] 乔信起, 张光德, 王嘉松等. 稳态闪急沸腾喷雾速度分布的试验研究[J]. 汽车工程, 2003, 25(2):108-110,170
    [105] 黄震, 大圣泰弘, 姜高植. 溶有 CO2 燃油的闪急沸腾喷射过程研究[J]. 内燃机学报. 2004, 18(4):335-339
    [106] 侯玉春, 黄震, 肖进等. 正十二烷—二氧化碳溶气燃油雾化喷射相变过程的研究[J]. 内燃机学报, 2005,23(2):113-118
    [107] Hiroyasu H, Arai M. Structures of Fuel Spray in Diesel Engines[C].SAE Paper No.:900475
    [108] Shao J, Yan Y, Greeves G, and Smith S. Quantitative characterization of diesel sprays using digital imaging techniques[J]. Meas. Sci. Technol., 2003, 14:1110–1116
    [109] Ozasa T, Kozuka K and Fujikawa T. Schlieren Observations of In-Cylinder Phenomena Concerning a Direct-Injection Gasoline Engine[C]. SAE Paper No.:982696
    [110] Hyun G and Oguma M. Simultaneous Observation of Droplets and Evaporated State of Liquid Butane and DME at Low Injection Pressure[C]. SAE Paper No.:2002-01-1627
    [111] Müller J, Kebbel V and Jüptner W. Characterization of spatial particle distributions in a spray-forming process using digital holography[J]. Meas. Sci. Technol., 2004, 15:706–710
    [112] Kawaguchi T, Akasaka Y and Maeda M. Size measurements of droplets and bubbles by advanced interferometric laser imaging technique[J]. Meas. Sci. Technol., 2002, 13:308–316
    [113] Zhang Y, Yoshizaki T, and Nishida K. Imaging of droplets and vapor distributions in a Diesel fuel spray by means of a laser absorption–scattering technique[J]. Appl. Opt., 2000, 39(33 ):6221-6229
    [114] Meyer S, Berrut S, Goodenough T I J et al. A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages[J]. Meas. Sci. Technol., 2006, 17:289–297
    [115] Rottenkolber G, Gindele J, Raposo J et al. Spray analysis of a gasoline direct injector by means of two-phase PIV. Experiments in Fluids 2002, 32:710–721
    [116] Davy M H , Williams P A. Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques[C]. SAE Paper No.:2000-01-1904
    [117] Kalantari D, Tropea C. Considerations for high resolution laser Doppler measurements in very small circular tubes[J]. Meas. Sci. Technol., 2005, 16:2344–2350
    [118] Kim B, Lee K, Lee C. Analysis of an atomization mechanism for an air-shrouded injector. Meas. Sci. Technol., 2002, 13:65-77
    [119] 范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社. 2002. 56
    [120] 中国人民解放军总装备部军事训练教材编辑工作委员会.流动显示技术[M]. 北京: 国防工业出版社. 2002. 106
    [121] Hosch J. W., Walters J. P. High spatial resolution schlieren photography. APPL. OPT., 1977, 16(2):473-482
    [122] 许伯彦, 蔡少娌. MPI 燃料供给方式的天然气喷流可视化研究[J]. 内燃机学报, 2002, 20(2):99-102
    [123] Richard Ditteon 著, 詹涵青译. 现代几何光学[M]. 长沙:湖南大学出版社. 2004. 244-230
    [124] 吴晓波, 安文斗, 杨钢. 图像测量系统中的误差分析及提高测量精度的途径[J].光学精密工程, 1997, 5(1):133-141
    [125] Lee Y J, Kwang J, Bae C. Dimethyl Ether (DME) Spray characteristics compared to diesel in a common-rail fuel injection system[C]. SAE Paper No.:2002-01-2898
    [126] HWANG J S, HA J S, NO S Y. Spray characteristics of DME in conditions of common rail injection system(II)[J]. Int. J. Automot. Technol., 2003, 4(3): 119?124
    [127] Kang J, Bae C, Lee K O. Initial development of non-evaporating diesel sprays in common-rail injection systems[J]. Int. J. Engine Res. 2003, 4(4):283-298
    [128] 何东健, 耿楠, 张义宽. 数字图像处理[M]. 西安:西安电子科技大学出版社, 2003. 71
    [129] 章毓晋. 图像工程—图像处理和分析[M]. 北京: 清华大学出版社. 2002
    [130] Zhang Y J. Objective image quality measures and their applications in segmentation evaluation[J]. J.of Electronics (China). 1997, 14(2):97-103
    [131] Roberts L G. Machine Perception of Three-Dimensional Solids[C]. In: J.t. Tippett, et al. Eds. Optical and Electro-Optimal Information Processing. Cambridge, MA: MIT Press, 1965. 99-197
    [132] Sobel I E. Camera models and machine perception[D]:[博士学位论文]. Stanford, CA: Stanford University, 1970
    [133] Prewitt M S. Object enhancement and extraction[C]. In: B. Lipkin and A. Rosenfeld, Eds. Picture Processing and Psychopictorics. New York:Academic Press, 1970. 75-149
    [134] Rafael C. Gonzalez, Richard E. Woods 著. 阮秋琦, 阮宇智等译. 数字图像处理(第二版)[M]. 北京: 电子工业出版社, 2003
    [135] Sung K K, Poggio T. Example-based learning for view-based human face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 20(1):39-51
    [136] Sonka M.著. 艾海舟 武勃等译. 图像处理分析与机器视觉(第二版)[M]. 北京:人民邮电出版社2003
    [137] Dizenzo S, Cinque L, and Levialdi S, Run-based algorithms for binary image analysis and processing[J] IEEE Transactions On Pattern Recognition And Machine Intelligence. 1996, 18(1):83-89
    [138] 飞思科技产品研发中心. MATLAB 6.5 辅助图像处理[M]. 北京: 电子工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700