用户名: 密码: 验证码:
液固混合介质隔振器动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在低频重载隔振领域,现有隔振技术存在诸如承载能力低、隔振机理仍需研究、气体泄漏,性能不够稳定等问题。本文在国家自然科学基金“混合介质动力学机理及其应用研究”(批准号:10772080)和南京航空航天大学博士创新基金项目“高性能振动噪声隔振器研究”(批准号:BCXJ06-05)的资助下,提出一种基于液固混合介质的隔振方案,液固混合介质(Solid And Liquid Mixture,简称SALiM),是由一类几乎不可压缩液体和许多可压缩的弹性单元混合而成,当振动冲击发生时,不可压缩液体将动压力瞬间传递到容器的所有位置和方向,其中的单元体同时受压全部参与变形,因而能够高效吸收、损耗振动冲击能量。根据资料检索,本课题是个全新的研究。
     在分析了SALiM各组成成分的功能、基本要求以及多种固体单元结构形式的基础上,以空心橡胶球作为固体单元,借助非线性连续介质力学,本文分析了单元体在有限变形情况下的受力与变形规律,求解了隔振系统非线性刚度,建立了SALiM隔振器的动力学模型;在试验建模方面,本文将非线性弹性恢复力模型和描述摩擦阻尼的Dahl模型结合起来对SALiM隔振器进行试验建模,较好地反映了隔振系统响应的非对称性。在动力学特性研究方面,利用多尺度法求解了隔振系统主共振频响方程,研究了其主共振稳定性,还进一步确定了SALiM隔振系统发生1/2亚谐共振的条件。在缓冲研究方面,本文研究了SALiM隔振器在典型冲击激励下的响应和缓冲性能,分析了隔振参数对其缓冲效果的影响,还通过冲击试验研究了SALiM隔振器的缓冲性能。在其他试验研究方面,本文用MTS准静态试验测试了隔振器的非线性刚度,和理论刚度进行了比较;扫频测试系统频响曲线,还实测了SALiM隔振器的加速度振级落差,评估了隔振系统的隔振能力。在数值研究方面,本文借助精细积分数值方法研究了SALiM隔振系统的超谐共振和亚谐共振分岔现象,并计算了表征非线性隔振系统隔振性能的能量传递率,最后还研究了亚谐共振对系统隔振能力的影响。
     通过以上研究可知,SALiM隔振器的弹性恢复力可表示为活塞位移一次项、平方项和立方项的非线性函数,隔振器理论刚度和动力学模型与试验实测结果具有较好的一致性;研究表明SALiM隔振系统具有非线性软弹簧特性,且系统响应具有非对称性;能量传递率曲线表明SALiM隔振器具有优良的隔振效果,在研究的频率范围内,振级落差实测值达到15dB以上,说明其能轻松满足低频重载隔振要求;研究还表明,隔振系统发生亚谐共振后其隔振能力将明显下降,设计非线性隔振系统时,应该避免隔振系统的亚谐共振发生。
In the fields of vibration isolation for heavy equipment engineers are not satisfied with the existing isolation technologies which leaves much to be desired, such as small static load capability, lack of thorough understanding of working mechanism, difficult maintenance process, gas leakage, unstable performance and so on. This work is funded by the“Study on Dynamic Mechanism of Hybrid Liquid Medium”of Natural Science Foundation of China (grant number: 10772080) and the "Study of a High Performance Isolator" (Approval No.: BCXJ06-05) of Nanjing University of Aeronautics and Astronautics, Ph.D. Innovation Fund project. This paper proposes a new type of nonlinear isolator which is based on Solid And Liquid Mixture (SALiM). The SALiM mixture consists of incompressible liquid and a number of compressible elastic solid elements. When under shock or vibration, the incompressible liquid can instantly pass the pressure on to all the solid elements in the container of the isolator, which causes all the solid elements compressed and deformed simultaneously. As a result it could greatly absorb and dissipate the energy of vibrations and shocks. According to information retrieval, this subject is a completely new research.
     Based on the analyses of the functions and basic requirements of the various components of SALiM and structures of solid elements, this work chooses the hollow rubber spheres as solid elements and uses nonlinear continuum mechanics theory to analyze the relationship between force and deformation of elements undergo finite deformation, the nonlinear stiffness and the dynamic model of the system are studied. In the aspect of experiment modeling,the model of nonlinear elastic restoring force and Dahl model which is used to describe friction damping are combined to build the identification model, the model can reflect asymmetric characteristic of system response. The theoretical dynamic model of SALiM system is used to solve the main resonance frequency response equation by multi-scale method. The main resonance stability is analyzed and the conditions of the vibration isolation system at 1/2 sub-harmonic resonance are defined by the multi-scale method. The responses and shock isolation performance of SALiM shock absorber are studied, and the buffer effects influenced by the isolation parameters are analyzed. And then, the properties of SALiM shock absorber are tested by the impact experiment. In the other experiments of SALiM isolator, the nonlinear stiffness of the isolator is tested by quasi-static experiment of MTS, which are compared with theoretical results. The measured FRF by the sweep measurement verify the system has a nonlinear soft spring characteristics. The performance of SALiM isolator is estimated by measurement of the vibration level difference. With numerical method of precise integration, the super-harmonic, sub-harmonic resonances of the system are analyzed. The frequency characteristics of the energy transmissibility which reflects the performance of nonlinear vibration isolation system are calculated. At last the isolation performance influenced by 1/2 sub-harmonic resonance of the system is analyzed.
     The results show that the elastic restoring force of SALiM isolator is a nonlinear function containing once term, quadratic term and cube term of piston displacement. The theoretic stiffness and dynamic model indicate a good agreement with the measured data. The SALiM isolator has softening spring characteristics and unsymmetrical responses. The excellent performances of SALiM isolator are described by the energy transmissibility curves. The tested vibration level differences achieve 15dB in the frequency scopes of research. It is suitable for the heavy equipment with low natural frequencies. The results show that the properties of isolation go down if the sub-harmonic resonance of isolation system occurrs. Thereby, the sub-harmonic resonances of isolation system should keep from happening as the design of nonlinear isolation system.
引文
[1]巫影.浮筏减振降噪理论研究及仿真[D],武汉理工大学博士学位论文.武汉:武汉理工大学, 2002.
    [2]顾仲权,马扣根,陈卫东.振动主动控制[M].国防工业出版社,北京, 1997.
    [3]A.M. Wahl著,谭惠民等译,机械弹簧[M],国防工业出版社, 1981:120~136
    [4] Margaret O. Stress relaxation of springs[J]. Wire Industry, 1988, 12:808~813.
    [5] A. Carrella, MJ. Brennan, TP. Waters, K. Shin. On the design of a high-static low-dynamic stiffness isolator using linear mechanical springs and magnets. Journal of Sound and Vibration. 2008, 315: 712~720.
    [6] E.J. Chin, K.T. Lee, J. Winterflood. Low frequency vertical geometric anti-spring vibration isolators. Physics Letters A 2005, 336: 97~105.
    [7] Zhang L., Li D. and Dong S. An Ultra-low Frequency Parallel Connection Nonlinear Isolator for Precision Instruments. Key Engineering Materials. 2004, 257:231~236.
    [8] Carrella A., Brennan M.J., Waters T.P. Optimization of a Quasi-Zero-Stiffness Isolator. Journal of Mechanical Science and Technology. 2007, 21: 946~949.
    [9]罗晋华,王海期,何永标,黄飞.碟形弹簧阻尼特性的实验和计算法研究[J].中国机械工程,1995, 6(2): 61~63.
    [10]杨再荣,张银发.弹簧隔振器的合理选用和正确安装[J].噪声与振动控制,1995, 2: 31~34.
    [11]邹广平,刘虹,何蕴增,吴国辉.并联组合弹簧的力学性能分析[J].哈尔滨工程大学学报,2002 ,23 (6):48~51.
    [12]姜洪源,夏宇宏,敖宏瑞,李瑰贤等.金属橡胶与弹簧组合型隔振器建模及分析方法[J].哈尔滨工业大学学报,2003,35(5): 520~524.
    [13]何蕴增,邹广平.螺旋弹簧的非线性理论及实验研究[J].工程力学,1997, 14 (1): 56~ 61.
    [14]孟泉,蔺金太,周玉鑫.非线性弹簧与一类液压阻尼半主动控制对双层隔振系统的影响[J].军事交通学院学报,2008,10 (3):89~91.
    [15]朱上,陈新钰,刘兆华.大型核电机组弹簧隔振基础[J].发电设备,2006,4:229~ 233.
    [16]方羽.弹簧隔振发动机试验台的隔振计算[J].内燃机,2004,5:31~33.
    [17] Tinker ML, Cutchins MA. Damping phenomena in a wire rope vibration isolation system. Journal of Sound and Vibration. 1992, 157:7~18.
    [18] Ko JM, Ni YQ, Tian QL. Hysteretic behaviour and empirical modelling of wire-cable vibrationisolator. International Journal of Analytical and Experimental Modal Analysis 1992, 7:111~127.
    [19] Ni YQ, Ko JM, Wong CW, Zhan S. Modeling and identification of a wire-cable isolator via a cyclic loading test, Part 1: Experimental and model development. Journal of Systems and Control Engineering. 1999, 213.
    [20] Anne N., Michel L. A finite element model for simple straight wire rope strands. Computers & Structures. 2000, 77: 345-359.
    [21]闫辉,姜洪源,李瑰贤,崔虎.航空发动机管路支撑用钢丝绳隔振器仿真研究[J].航空学报,2006,27(6):1080~1083.
    [22]孙洪军,钱网生.拱形钢丝绳隔振器冲击特性研究[J].噪声与振动控制,2005, 5:7~9.
    [23]周桐,刘青林.钢丝绳隔振系统简化模型分析[J].振动与冲击,2007,26(9):55~60.
    [24]万叶青,范立民,齐煜.钢丝绳隔振器非线性特性分析[J].振动与冲击,2007,26(7): 46~50.
    [25]钟章贵.低频大阻尼抗冲击拱形不锈钢钢丝绳隔振器[J].舰船工程,1995,5:36~38.
    [26]束立红,周炜,吕志强,黄映云.钢丝绳隔振器在大型机械设备的振动冲击隔离设计中的应用[J].振动与冲击,2006,25(4):78~82.
    [27]朱海潮,何琳,霍睿,施引.用钢丝绳隔振器进行船舶主机隔振[J].船海工程,2002, 4:12~15.
    [29]黄映云,秦俊明,吴善跃,张煜盛.钢丝绳隔振器冲击特性试验研究[J].海军工程大学学报,2007,19(1):23~26.
    [30]言福明,黄映云,秦俊明.用爆炸式冲击试验台研究钢丝绳隔振器冲击特性[J].噪声与振动控制,2006,1:57~59.
    [31]切戈达耶夫著,李中郢译.金属橡胶构件的设计[M].北京:国防工业出版社,2000.
    [32]郭宝亭,朱梓根,崔荣繁,庞为.金属橡胶材料的理论模型研究[J].航空动力学报,2004,19(3):314~319.
    [33]彭威,白鸿柏,郑坚,唐西南,李国章,何忠波.金属橡胶材料基于微弹簧组合变形的细观本构模型[J].实验力学.2005, 20(3):455~462
    [34]李宇燕,黄协清.密度和形状因子变化时金属橡胶材料的本构关系[J].航空学报.2008, 29(4):1084~1090.
    [35]敖宏瑞,姜洪源,王树国,夏宇宏,贾长海.金属橡胶弹性阻尼元件各向异性特性的实验研究[J].材料工程.2003(9):11~14.
    [36]夏宇宏,姜洪源,魏浩东,闫辉,A. M.Уланов.金属橡胶隔振器抗冲击性能研究[J].振动与冲击, 2009,28(1):72~76.
    [37]杨春香,周易,张虎.金属橡胶动态隔振性能的实验研究[J].航空学报,2006,27(3): 536~539.
    [38]李中郢,A. M.Уланов.金属橡胶三维隔振系统共振频率范围限定条件[J].哈尔滨工业大学学报,2002, 34(1):110~113.
    [39]闫辉,姜洪源,刘文剑,郝德刚.金属橡胶冲击隔振系统试验[J].航空动力学报,2009, 24(7):1518~1522.
    [40]姜洪源,敖宏瑞,夏宇宏,王树国,吕克法,吕岩.金属橡胶成型工艺研究及其应用[J].机械设计与制造.2001,(2):85~86.
    [41]董秀萍,刘国权,牛犁,白鸿柏,杨建春.金属橡胶隔振构件中不锈钢丝的微动摩擦磨损性能研究[J].摩擦学学报,2008,28(3): 248~258.
    [42]董秀萍,刘国权,杨建春,白鸿柏.金属橡胶隔振构件中不锈钢丝疲劳断裂的原因[J].机械工程材料,2009,33(4):35~39.
    [43] Giuseppe Auaglis, Massimo Sorli. Air Suspension Dimensionless Analysis and Design Procedure. Vehicle system Dynamics. 2001, 35(6):443~475.
    [44] Sjoberg.M.Three-dimensional air spring model with friction and orifice damping. Vehicle System Dynamics, 2000, 33(suppl):528~539.
    [45] Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study ondynamic characteristic analysis of air spring with auxiliary chamber. JSAE Review, 1999 ( 20):349~355
    [46] Jeung-Hoon Lee, Kwang-Joon Kim. A method of transmissibility design for dual-chamber pneumatic vibration isolator. Journal of Sound and Vibration, 2009, 323: 67~92.
    [47] B. Agnew. A note on the design of air springs. Journal of Automobile Engineering. 1991(205):207~209
    [48] Torii Osamu, Ishikawa Ryutaro, Ishihara Koichiro. New air spring control system for railway vehicles. Sumitomo Metals.1991,(5):8~15.
    [49] Koyanagi, S. Design method for the vibration isolation system of an air spring suspended vehicle. Quarterly Report of RTRI.1991,(1):2~7
    [50]叶珍霞,朱海潮,陈纯,唐春峰.用有限元法分析胶囊对空气弹簧垂向特性的影响[J].噪声与振动控制,2005, 3:22~24.
    [51]莫荣利,谢建藩,杨军.空气弹簧隔振性能及试验研究[J].噪声与振动控制,2005,6: 41~43.
    [52]朱石坚,黄映云,何琳.长方体形囊式空气弹簧刚度特性[J].中国造船,2002, 43(2): 36~43.
    [53]刘彦,谭久彬,王雷,谭志波.辅助气室连通的空气弹簧隔振系统隔振特性研究[J].振动与冲击,2008, 27(4): 98~101.
    [54]黄映云,吴善跃,朱石坚.囊式空气弹簧隔振器的特性计算研究[J].振动工程学报,2004, 17(2): 249~252.
    [55]支李峰,童宗鹏,尹立国,张懿时,周炎.采用有限元法进行空气弹簧隔振器的辅助设计[J].中国工程机械学报,2009,7(3):304~307.
    [56]高定刚.空气弹簧垂向、横向特性的有限元分析[D],西南交通大学硕士研究生学位论文.成都:西南交通大学, 2006.
    [57]赵应龙,吕志强,何琳.JYQN舰用气囊隔振器研究[J].舰船科学技术(增刊),2006, 28(2): 89~92.
    [58]徐伟,何琳,吕志强,李铜桥.船舶主机气囊隔振系统动态特性分析[J].振动与冲击, 2007, 26(7): 122~125.
    [59] Arruda, E.M., Boyce, M.C., A three-dimensional constitutive model for the large deformation stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 1993, 41: 389~412.
    [60] Boyce, M.C., Arruda, E.M., Constitutive models of rubber elasticity: a review. Rubber Chem.Technol. 2000, 73: 504~523.
    [61] R.G. Dejong, G.E. Ermer, C.S. Paydenkar and T.M. Remtema. High frequency dynamic properties of rubber isolation elements. Proceedings of Noise-Con’98, 1998: 383~390.
    [62] C.M. Richards and R. Singh. Identification of nonlinear properties of rubber isolators using experimental and analytical methods. Proceedings of Noise-Con’98, 1998: 391~396.
    [63] Jie Zhang, Christopher M. Richards. Parameter identification of analytical and experimental rubber isolators represented by Maxwell models. Mechanical Systems and Signal Processing 2007, 21: 2814~2832
    [64]韩德宝,宋希庚.橡胶隔振器刚度和阻尼本构关系的试验研究[J].振动与冲击,2009, 28(1): 156~161.
    [65]王锐,李世其,宋少云.隔振橡胶本构建模研究[J].振动与冲击,2007,26(1):77~83.
    [66]吴瑞安,冯加权,王玉军,仲政.橡胶隔振系统非线性振动参数识别与特性研究.力学季刊,2007,28(2):281~285.
    [67]潘孝勇,柴国钟,上官文斌.含有橡胶隔振器振动系统时域响应的测试与计算分析[J].振动与冲击,2007,26(12):132~135.
    [68]王晓侠,刘德立,周海亭.橡胶隔振器参数计算与分析[J].噪声与振动控制,2008, 4:8~11.
    [69]姚利锋,周海亭,陶杰.有限元在大载荷橡胶隔振器设计中的应用研究[J].噪声与振动控制,2006,6:16~18.
    [70]林胜,袁健,贺才春.摩擦阻尼橡胶隔振器的研究.噪声与振动控制,2006,3:18~21.
    [71]黄映云,何琳,谭波,汪玉.橡胶隔振器冲击刚度特性试验研究[J].海军工程大学学报,2006,25(1):77~80.
    [72] Yamamoto Matsuki. Compression spring [P]. Japan, JP, 04-370427, A (1992)
    [73] W. A. Courtney, S. O. Oyadiji. Preliminary investigations into the mechanical properties of a novel shock absorbing elastomeric composite, J. of Materials Processing Technology, 2001, 119: 379~386.
    [74] W.A. Courtney, Device incorporating elastic fluid and viscous damping [P], World Intellectural Property Organisation, WO97/25551, 1997.
    [75]刘占芳,励凌峰,胡文军.多孔硅橡胶有限变形的弹性行为[J].应用力学学报2002, 19(2): 48~51.
    [76]胡文军,陈宏等.孔隙度对开孔硅橡胶泡沫材料性能的影响[J].橡胶工业,1998, 45: 647~650.
    [77]崔毅,王国英,贾恒涛.开孔型橡胶-塑料多孔材料的结构与性能.塑料[J]. 2003, 32(3):42~46.
    [78]崔毅,王宗宝,沙鹏宇.开孔型橡塑多孔材料的应力-应变行为.塑料工业[J]. 2003, 31(8):35~38.
    [79]倪振华.振动力学[M].西安交通大学出版社,1989, 108~110.
    [80]胡海岩,孙久厚,陈怀海.机械振动与冲击(修订版)[M],航空工业出版社,2002, 41~43.
    [81]朱艳峰,刘锋,黄小清,李丽娟.橡胶材料的本构模型[J],橡胶工业,2006, 53: 119~124.
    [82]危银涛,杨挺青,杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(4): 281~289.
    [83] Yeoh O H. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 1993,66:754~771.
    [84] Pucci E, Saccomandi GA. note on the Gent model for rubber-like materials[J]. Rubber Chemistry and Technology, 2002, 75(6):839~852.
    [85]高玉臣.固体力学基础[M].北京:中国铁道出版社,1999.
    [86]危银涛,杨挺青,杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(4): 281~289.
    [87] Pantuso D, Bathe KJ. On the stability of mixed finite element in large strain analysis of incompressible solids. Finite element analysis and design, 1997, 28:83~104.
    [88]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989.
    [89] Chen J S , Wu Chengtang , Pan C. A pressure projection method for nearly incompressible rubber hyperelasticity, PartⅡ: Application. Journal of Applied Mechanics, 1996, 63(4): 869~876.
    [90] Horgan C O, Saccomandi G. Constitutive modeling of rubber-like and biological materials withlimiting chain extensibility [J].Mathematics and Mechanics of Solids, 2002, 7:353~371.
    [91]郭日修.弹性力学与张量分析[M].北京:高等教育出版社,2003.
    [92] LY. Lu, and LL. Chung. Dynamic analysis of structures with friction devices using discrete-time state-space formulation, Computers & Structures, 2006, (84):1049~1071.
    [93] I. Han, and B. J. Gilmore, Multi-body impact motion with friction-analysis, simulation and experimental validation, Journal of Mechanical Design, 1993 (115): 412~422.
    [94] Y. Wang, and M. T. Mason, Two-dimensional rigid-body collisions with friction, Journal of Applied Mechanics, 1992 (59): 635~642.
    [95] R. Bouc, Forced Vibration of Mechanical Systems With Hysteresis, Proceedings of the 4th Conference on Nonlinear Oscillations, Prague, Czechoslovakia, 1967:315~315.
    [96] Y. K. Wen, Method for Random Vibration of Hysteretic Systems, Journal of Engineering Mechanics, 1976, (2): 249~263.
    [97] MC. Constantinou, and IG. Tadjbakhsh, Hysteretic dampers in base isolation: random approach, Journal of Structural Engineering, 1985, (111): 705~721.
    [98] HR. Lo, and JK. Hammond, Nonlinear system identification and modelling with application to an isolator with hysteresis, Proceedings of the 6th International Modal Analysis Conference, Florida, II, 1988:1453~1459.
    [99] M. Constantinou, and A. Mokha, Teflon bearings in base isolation, II: modeling. Journal of Structural Engineering, 1990, 116: 455~474.
    [100] G. F. Demetriades, M. C. Constantinou, and A. M. Reinhorn, Study of wire rope systems for seismic protection of equipment in buildings, Engineering Structures, 1993, 15:321-334.
    [101] P. R. Dahl, Solid friction damping in mechanical vibrations, AIAA Journal, 1976, 14: 1675~1682.
    [102] NE. Leonard, and PS. Krishnaprasad. Comparative Study of Friction-Compensating Control Strategies for Servomechanisms, University of Maryland Systems Research Center, Report TR 91-88, 1991.
    [103] CC. Tsai, and CH. Tseng, The effect of friction reduction in the presence of in-plane vibrations, Arch Appl Mech. 2006, 75:164~176.
    [104] E. Pennestrì, and PP. Valentini. Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst Dyn., 2007, 17:321~347.
    [105] H.D. Teng, and Q. Chen, Study on vibration isolation properties of solid and liquid mixture, Journal of Sound and Vibration, 2009, 326:137~149.
    [106]刘延柱.陈立群编著.非线性振动[M].北京:高等教育出版社.2001.
    [107]陈予恕.非线性振动[M].北京:高等教育出版社. 2002年.
    [108]周纪卿,朱因远著.非线性振动[M].西安:西安交通大学出版社. 1998.
    [109] A.H. Nayfeh, D.T. Mook. Nonlinear oscillations[M]. John Wiley, 1979.
    [110]彭献,唐驾时.非线性隔振理论初探,振动与冲击, 1996, 15(4): 13~18.
    [111]汪玉,冯奇.舰船设备抗冲隔振系统建模理论及其应用[M].北京:国防工业出版社,2006, 1~6.
    [112]王麒越,冯奇.非线性抗冲隔振系统研究[J].苏州城建环保学院学报,2002, 15(4): 1~6.
    [113]卓耀彬.液压缓冲器特性及其检测方法研究[D],浙江大学硕士学位论文.杭州:浙江大学论文,2006.
    [114]张阿舟,姚启航.振动控制工程[M].北京:航空工业出版社,1989, 190~204.
    [115]谷口修主编,尹传家译,振动工程大全[M],机械工业出版社,1983: 75~78.
    [116]严济宽,柴敏,陈小琳.振动隔离效果的评定[J].噪声与振动控制.1997, 6: 22~30
    [117]朱石坚,楼京俊,何其伟,翁雪涛.振动理论与隔振技术[M].北京:国防工业出版社,2006, 273~275.
    [118]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000, 190~200.
    [119]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994, 34(2): 131~136.
    [120]吕和祥,于洪洁,裘春航.精细积分的非线性动力学积分方程及其解法[J].固体力学学报,2001,22(3):303~307.
    [121]王继,胡晓.MATLAB在振动信号处理中的应用[M].中国水利水电出版社,知识产权出版社,2006, 48~49.
    [122]庄表中,邢宏,高瞻.非线性隔振器的应用与传递率的定义[J].机械强度,1991,13(1):14~17.
    [123]陈泳斌,陈树辉.非线性隔振系统的运动响应与传递率[J].振动与冲击,1998,17(4):18~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700