用户名: 密码: 验证码:
电控斜轴柱塞式液压变压器的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压变压器是在液压传动中能够实现压力转换的一种液压元件。它相当于压力转换器,通过液压变压器可以使液压执行元件(定量液压马达、液压缸)从压力耦联的液压恒压网络系统中无节流损失地获取能量。液压变压器的出现扩大了二次调节静液传动系统的应用领域。二次调节静液传动系统的工作原理决定了其负载端应该是变量执行元件。在驱动直线负载工况下,由于液压缸的活塞面积难以变化,所以在工程上常采用液压阀来进行控制,这种控制方法引入了节流损失且系统效率低,这使传统型液压变压器的应用受到了限制。对于解决该问题比较合适的方案是采用新型液压变压器来进行控制,即没有理论上的节流损失,又能够进行能量的回收与利用,为提高液压系统的效率提供了一条非常有效的途径,因此开展对新型液压变压器的研究具有十分重要的意义。
     在查阅大量国内外有关文献的基础上,综述了国内外液压变压器的研究现状及发展趋势,分析了液压变压器的特点,阐述了液压变压器的关键技术及研究现状,对液压变压器的应用范围作了介绍,针对目前手动型液压变压器变压频率低以及变压精度的局限性,研制出电控斜轴柱塞式液压变压器。
     依据液压变压器的工作原理,对液压变压器的特性进行了分析,建立了液压变压器流量、转矩和变压比的公式,为液压变压器的结构设计及仿真分析提供了理论依据。
     电控斜轴柱塞式液压变压器驱动的直线负载系统由三大子系统组成,即计算机控制系统、交流同步电机伺服调速系统以及液压变压器控制液压缸动力机构,分别建立了三大子系统的数学模型。
     为便于分析液压变压器的工作原理,提出了液压变压器平衡角的定义,并建立了液压变压器平衡角的公式。结合三大子系统的数学模型,建立了液压变压器控制角的数学模型以及液压变压器驱动直线负载系统的数学模型。
     为满足新型伺服系统的需求,采用机械结构优化设计的方法,完成电控斜轴柱塞式液压变压器的设计以及装配和调试,研制出可实现变压比范围为[0,2]的电控斜轴柱塞式液压变压器原理样机。
     结合“负负载”的概念,分析液压变压器四个象限工作的特性,并对液压变压器“负载驱动”和“驱动负载”工况下,液压变压器驱动直线负载系统中液压恒压网络系统压力、液压蓄能器流量、液压变压器控制角、能量回收和再利用效率进行了仿真和实验研究,结果表明液压变压器驱动直线负载系统具有回收和再利用负载重力势能的能力。
     针对液压变压器本身的复杂非线性特性,提出采用模糊自适应整定PID控制策略,并针对液压变压器驱动直线负载位置伺服系统进行仿真与实验研究。结果证明该策略能较好地补偿液压变压器的非线性特性,并可提高系统的抗负载干扰能力和系统响应的快速性。
     采用研制的电控斜轴柱塞式液压变压器,搭建液压变压器驱动直线负载系统的实验台,完成实验台硬件电路设计和控制软件的编程工作。在该实验台上对液压变压器的基本性能进行测试,以及分别采用PID、模糊自适应整定PID控制策略对液压变压器系统进行实验研究。实验结果表明所阐述理论正确,采用的控制策略合理可行,研制的液压变压器驱动直线负载系统实验样机是成功的。
Hydraulic transformer is an important unit which can transform pressure in hydraulic transmission. It corresponds to a hydraulic pressure transformer, by which hydraulic performance unit (fixed displacement hydraulic motor and hydraulic cylinder)can gain energy without throttling losses from hydraulic constant pressure rail system. The hydraulic transformer expands the application scope of secondary regulation of hydrostatic transmission. The working principle of secondary regulation of hydrostatic transmission determines that its load must be variable unit. For the piston area of hydraulic cylinder can’t be varied, hydraulic valves are usually adopted to this system. Not only this method brings throttling loss but also causes low efficiency. As a result, the application of traditional hydraulic transformer is restraint. An optimum method to solve this problem is to adopt new hydraulic transformer, which has the advantages not only without throttling losses but also recuperation and reuse energy. It also provides with an effective method to improve the efficiency of hydraulic constant pressure rail system. So it has great valve to research on the new hydraulic transformer.
     After synthesizing numerous related literatures and reference materials at home and abroad, this research not only summarizes the current study status and development trend of hydraulic transformer and analyses the characteristics of the hydraulic transformer, but also expatiates on the key technology and study status of the hydraulic transformer. It also introduces the applications of the hydraulic transformer. For the low transformation and the limited transformation scope of manual operating new hydraulic transformer, the electric control bent axial piston hydraulic transformer is developed.
     According to the working principle of hydraulic transformer, the characteristic of hydraulic transformer is analyzed and deduced the formula of flow, torque and pressure transformation factor, which provide with theoretical basis for hydraulic transformer construction design and simulation analysis.
     The electric control bent axial piston hydraulic transformer driving linear system consists of three subsystems which are computer control system, alternating synchronous servo motor system and hydraulic transformer controlling hydraulic cylinder power mechanism. This study also builds mathematical models of the three subsystems.
     In order to analyze the working principle of the hydraulic transformer, the balance angle of hydraulic transformer is defined and built its formula. Combining with the mathematical models of three subsystems, the mathematical model of hydraulic transformer control angle is built and the hydraulic transformer driving linear load system mathematical model is also built.
     In order to meet the demand of new servo system, adopting optimum design method to mechanism construction, the mechanism construction design of electric control bent axial piston hydraulic transformer is completed. Also the assembly and debug of the hydraulic transformer is done. As a result the electric control bent axial piston hydraulic transformer is developed which transformation factor scope is from zero to two.
     By introduction“driving load”to analyze on hydraulic transformer four-quardant characteristics, simulation and experiment study are made including pressure of hydraulic constant pressure rail system, flow of hydraulic accumulator, control angle of hydraulic transformer and efficiency of energy recuperation and reuse under working condition of hydraulic transformer“load driving”and“driving load”in driving linear load system. In view of the complex nonlinear characteristic of new servo hydraulic transformer, the fuzzy adaptive tuning PID control strategy is applied to the experiment system. Simulation study is done on the new servo hydraulic transformer driving linear load position servo system. Simulation results prove that application of the fuzzy adaptive tuning PID control strategy can compensate the nonlinear characteristic of the hydraulic transformer and improve the resistibility of load disturbance and the ability of fast response to the system.
     Based on the developed electric control bent axial piston hydraulic transformer prototype, the hydraulic transformer driving linear load system experiment test-bed, the hardware circuit design for the system and the computer control system are built. And the control software is programmed to control the experiment prototype. Not only the characteristic of the developed hydraulic transformer is tested by experiment but also the two control strategies including PID and fuzzy adaptive tuning PID are applied to the system. The experiment result shows that not only the expatiated theory is correct and the adopted control strategy is feasible but also the prototype of hydraulic transformer driving linear system for hydraulic constant pressure rail system is successful.
引文
1 Tyler Hery P. Fluid Intersifier. US Patent 3188963. 1965
    2 R. Kordak. Praktische Auslegung Sekund?rgeregelter Antriebssysteme. ?lhydraulik und Pneumatik. 1982, 26(11): 795~800
    3 P. A. J. Achten, Zhao Fu, G. E. M. Vael. Transforming Future Hydraulics: a new Design of a Hydraulic transformer. The Fifth Scandinavian International Conference on Fluid Power, SICFP’97, Link?ping University, Sweden, 1997
    4 P. A. J. Achten. What a Difference a Hole Makes-The Commercial Value of the Innas Hydraulic Transformer. In: Proceedings of the Sixth Scandinavian International Conference on Fluid Power (SICFP’99), Tampere, Finland .May 26~28, 1999
    5姜继海.二次调节静液传动系统及其控制技术的研究.哈尔滨工业大学博士论文, 1998, 10:15~26
    6姜继海.二次调节静液传动技术.液压气动与密封, 2000, 12(6): 1~3
    7 R. Kordak. Neuartige Antriebskonzeption mit Sekund?rgeregelten Hydrostatischen Maschinen. ?lhydraulik und Pneumatik. 1981, 25(5): 387~392
    8 Ch. K?gl. Sekund?rgeregelte Motoren im Drehzahl- und Drehmomentregel- kreis. ?lhydraulik und Pneumatik. 1992, 36(10): 680~686
    9茨比克尼夫·帕沃斯基,罗伯特·帕利斯,米夏埃尔·陶依特贝克.为老式市内公共汽车配备力士乐驱动装置. Rexroth Information Quarterly. 1997, (1):27~28
    10麦克·苏尔茨,托马斯·库恩茨.适用于高要求的次级反馈控制. Rexroth Information Quarterly. 1995, (1):7~9
    11赫尔曼·埃德恩等.轿车逆向撞击试验台(ICA)来自曼内斯曼力士乐的试验手段,为轿车提供更高的安全性. Rexroth Information Quarterly. 1998, (1):2~4
    12吴光强,王会义.车辆静液驱动与智能控制系统.上海科学技术文献出版社. 1998: 1~18
    13赵春涛.车辆串联混合系统中二次调节静液传动技术的研究.哈尔滨工业大学博士论文, 2001, 7:1~16
    14 R. Kordak. Der Sekund?rgeregelte Hydrostatischen Antrieb in Mobilen Arbeitsger?ten. ?lhydraulik und Pneumatik. 1995, 39(2): 808~812
    15 S. Schmidt. Energiesparende Prim?r- und Sekund?rregelung für Pressen. ?lhydraulik und Pneumatik. 1997, 41(10): 747~751
    16石井進.セカンダリコンロールシステムの応用例.油空圧技術. 1999, (11):6~12
    17池尾茂.セカンダリコントロ-ルにょるシリンダの駆動.油空圧技術. 1999, (12):21~24
    18一柳健.ドイツにおけるセカンダリコントロ—ルシステム.油空圧技術. 1999, (12):12~20
    19凌学俭.二次控制技术及其在精轧机组中的应用.液压与气动. 2000, (1):7~10
    20罗伯特·帕利斯.利用液压驱动技术获取石油高产. Rexroth Information Quarterly. 1998, (1): 16~18
    21路甬祥,俞浙青,吴根茂.功率回收型液压抽油机的设计原理.石油机械. 1995, 23(2): 42~54
    22赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统.汽车技术, 2001, (1): 4~6
    23刘宇辉,蒲红,张艳萍,姜继海.二次调节静液传动技术的发展及应用.佳木斯大学学报, 2001, 3(19): 52~56
    24姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用,机床与液压, 1999, (4): 42~43
    25姜继海,刘宇辉,于庆涛等.二次调节静液传统液压抽油机,机床与液压, 2005, (8): 59~61
    26 http://othello.mech.northwestern.edu/ea/book/hydr3/Hydr3.htm
    27 http://www.innas.com
    28 Dipl. -lng. K.Dluzik, Aachen. Dr. -lng. M. C. Shih, Taiwan. Geschwindigkeitssteuerrung eines Zylinders am Konstant Drucknetz durch einen HydroTransformator. ?lhydraulik und Pneumatik. 1985, (4):281~286
    29 Dipl. -lng.K. Dluzik, Aachen. Zylinderansteuerungen am Drucknetz durch Hydro-Transformatoren. ?lhydraulik und Pneumatik. 1987, (3):248~255
    30 K. Dluzik. Energiesparende Schaltungskonzepte für Hydro-Zylinder amDrucknetz. ?lhydraulik und Pneumatik. 1989, (5):444~450
    31 R. Kordak.Verlustarme Zylindersteuerung mit Sekund?rregelung. ?lhydraulik und Pneumatik.1996, (10):696~703
    32周瑞艳.液压变压器变压原理的理论分析与试验研究.哈尔滨工业大学硕士论文. 2004, 6
    33董宏林.基于二次调节原理的液压提升装置节能及控制技术研究.哈尔滨工业大学博士学位论文. 2002, 12
    34郝繼红.定圧力源油圧ツステムを用いハィズリシド車両の省工ネルギ一しニ関研究.上智大學大學院理工學研究科博士後论文, 1998, 11
    35欧阳小平,徐兵,杨华勇等.液压变压器在液压电梯系统中的节能应用.中国机械工程.2003, (19):1660~1662
    36欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用.农业机械学报. 2003, 34(4):100~104
    37刘贺,徐兵,欧阳小平,杨华勇.采用液压变压器原理的液压电梯节能系统设计.液压与气动. 2003, (10):19~21
    38张维官.液压恒压网络中液压变压器的性能测试与节能效果分析.哈尔滨工业大学硕士论文. 2007, 7
    39 Dantlgraber, J?rg. Hydraulischer Transformator mit zwei Axialkolbenmas- chinen mit einer gemeinsamen Schwenkscheibe. EP0851121A1. 1997, 12
    40 Dantlgraber, J?rg, Robohm, Michael. Hydraulischer Transformator mit zwei Axialkolbenmaschinen mit einer gemeinsamen Schwenkscheibe. EP0851121B1. 1997, 12
    41 Achten, Peter, Augustinus, etc. Hydraulic System with a Hydromotor Fed by a Hydraulic Transformer. WO98/54468. 1997, 5
    42 P. A. J. Achten. Hydraulic System with a Hydromotor Fed by a Hydraulic Transformer, INNAS FREE PISTON. B.V. Germany. WO98/54468. 1998,5
    43 P. A. J. Achten. Ein neuer alter Bekannter-der Hydraotransformator. ?lhydraulik und Pneumatik. 1998, (6):374~377
    44 Dantlgraber J?rg, Robohm Michael. Hydraulischer Transformator mit zwei Axialkolbenmaschinen mit einer gemeinsamen Schwenkscheibe. EP0851121A1. 01.07.1998
    45 Robohm, Michael, Dantlgraber, etc. Hydraulischer Transformator. DE1965- 4567A1. 1998, 7
    46 Werndin R, P. A. J. Achten and Sannelius Mikael, etc. Efficiency Performance and Control Aspects of a Hydraulic Transformer. In: The Sixth Scandinavian International Conference on Fluid Power, SICFP’99, Tampere, Finland, 1999, 1:395~407
    47 P. A. J. Achten, G. E. M. Vael and Zhao Fu. The Innas Hydraulic Transformer-The Key to the Hydrostatic Common Pressure Rail. SAE 2000-01-2561
    48 P. A. J. Achten, Zhao Fu. Valving Land Phenomena of the Innas Hydraulic Transformer. International Journal of Fluid Power, 2000(1):33~47
    49 Dantlgraber, J?rg. Hydrotransformator. DE19844648A1. 2000, 2
    50 P. A. J. Achten, G. E. M. Vael and Johan van den Oever, etc.‘Shuttle’Technology for Noise Reduction and Efficiency Improvement of Hydrostatic Machines. The Seventh Scandinavian International Conference on Fluid Power, SICFP’01, Link?ping, Sweden, 2001
    51 Dantlgraber J?rg. Hydrotransformator. DE10037114A1. 2001, 7
    52 Dantlgraber J?rg. Hydrotransformator. DE10016954A1. 2001, 10
    53 Dantlgraber, J?rg. Hydrotransformator. DE10016955A1. 2001, 10
    54 Dantlgraber, J?rg. Hydrotransformator. DE10016954A1. 2001, 10
    55 Dantlgraber, J?rg. Hydrotransformator. DE10037114A1. 2001, 7
    56 Dantlgraber, J?rg. Hydrotransformator. EP1178209A2. 2001, 4
    57 Sch?ffer Rudolf, Mark Alexander, Büdel Udo. Hydrotransformator. DE10025248A1. 2001, 11
    58 Sch?ffer, Rudolf. Hydrotransformator. DE10025248A1. 2001, 11
    59 Sch?ffer, Rudolf. Hydrotransformator. EP1172553A3. 2001, 6
    60 Werndin Ronnie and J. O. Palmberg. Controller Design for a Hydraulic Transformer. In: Proceedings of the Fifth International Conference on Fluid Power Transmission and Control (ICFP’2001), Hangzhou, China, 2001:56~61
    61 P. A. J. Achten, Titus van den Brink and Johan van den Oever. Dedicated Design of the Hydraulic Transformer. In 3rd International Fluid Power Conference. Aachen, Germany, 2002, 2:233~24
    62 P. A. J. Achten, Titus van den Brink, Marc Schellekens. Design of a Varible Displacement Floating Cup Pump. The Ninth Scandinavian InternationalConference on Fluid Power, SICFP’05, Link?ping, Sweden, 2005:1~16
    63 P. A. J. Achten. Power Density of the Floating Cup Axial Pistion Principle. In: Proceedings of 2004 ASME International Mechanical Engineering Congress and Expo, IMECE2004, Anaheim, USA, 2004:1~12
    64 P. A. J. Achten. Volumetric Losses of a Multi Piston Floating Cup Pump. In: Proceedings of the 50th National Conference on Fluid Power, NCFP-Paper I05-10.2, 2005:1~7
    65 P. A. J. Achten, M. P. A. Schellekens. Efficiency and Low Speed Behavior of the Floating Cup Pump. SAE 2004-01-2653
    66 T. L. Van den Brink, P. A. J. Achten. Containing the Cup in the Floating Cup Axial Piston Machine. http://www.innas.com
    67 P. A. J. Achten, Van den Brink, T. L., Potma, etc. Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle. The Seventh Scandinavian International Conference on Fluid Power, SICFP’03, Tampere University of Technology, 2003:805~820
    68 Ivantysynava, M.. Energy Losses of Modern Displacement Machines-a new Approach of Modelling. The Seventh Scandinavian International Conference on Fluid Power, SICFP’03, Link?ping, Sweden, 2003:377~395
    69 G. E. M. Vael, P. A. J. Achten and Jeroen Potma. Cylinder control with the floating cup hydraulic transformer. Proc. of the 8th Scandinavian International Conference on Fluid Power SICFP’03, Tampere, 2003
    70 Dantlgraber J?rg. Hydrotransformator. DE10033285A1. 2002, 2
    71 Sch?ffer, Rudolf. Hydrotransformator. EP1172553A2. 2002, 1
    72 Sch?ffer, Rudolf. Hydrotransformator. DE10034238A1. 2002, 1
    73 Sch?ffer, Rudolf. Hydrotransformator. DE10034239A1. 2002, 4
    74 Mark, Alexander. Hydrotransformator. DE10220543A1. 2003, 11
    75 Sch?ffer, Rudolf. Hydrotransformator. DE10216951A1. 2003, 11
    76董宏林,姜继海,吴盛林.液压变压器的原理及其在二次调节系统中的应用.液压与气动, 2001, (11): 30~32
    77姜继海,董宏林,吴盛林.液压恒压网络功率完备匹配的结构条件及其控制方案的研究.中国机械工程, 2003, 1(14):16~19
    78杨华勇,欧阳小平,徐兵.液压变压器的发展现状.机械工程学报. 2003, 39(5):1~5
    79欧阳小平,徐兵,杨华勇.拓宽液压变压器调压范围的新方法.机械工程学报. 2004, 40(9):28~32
    80欧阳小平.液压变压器研究.浙江大学博士论文, 2005, 3:67~70
    81张燕宾. SPWM变频调速应用技术.机械工业出版社. 2002:4~12
    82 Yuanhua Chen, Qingguang Yu, Wenhua Liu, etc. High Power Induction Motor VVVF Drives System with IGCTs in thermal Power Plant. Power System Technology, 2002, (4):13~17
    83吴安顺.最新实用交流调速系统.机械工业出版社. 1998,6:1~17
    84 Zhong L, Rahman M F, Hu WY, etc. A direct Torque Controller for permanent Magnet synchronous Motor Drives. IEEE Transactions on Energy Conversion. 1999, 4: 637~642
    85 Cascella G L, Cupertino F, Salvatore L, etc. PMSM Rotor double-alignment by PI and sliding-mode Controllers. Electric Machines and Drives Conference, 2003, 3: 1741~1747
    86 Jian Xin Xu, Panda S K, Ya Jun Pan, etc. A modular Control Scheme for PMSM Speed Control with pulsating Torque Minimization. IEEE Transactions on Industrial Electronics.2004, 51(3): 526~536
    87 Ying Shieh Kung, Pin Ging Huang. High Performance Position Controller for PMSM Drives based on TMS320F2812 DSP. IEEE International Conference on Control Applications. 2004, 1: 290~295
    88沈涛.永磁同步电机数字交流伺服系统的研究.西安理工大学硕士学位论文, 2007, 3
    89刘利超.永磁同步电机交流伺服控制系统的研究与设计.华北电力大学硕士学位论文, 2007, 1
    90李小宁.斜轴型轴向柱塞泵主体部件的计算机辅助设计系统.哈尔滨工业大学博士学位论文, 1987, 7:29~44
    91何存兴.液压元件.机械工业出版社. 1982, 2:190~193
    92宋俊,王淑莲,王洁,陈先惠.液压元件优化.机械工业出版社, 1999:
    196~204
    93赵克定,李尚义,罗晓鸣,刘庆和.并联和串联囊式蓄能器的理论分析和数字仿真.哈尔滨工业大学学报. 1991, 2:66~74
    94罗晓鸣.常规皮囊蓄能器和串联皮囊蓄能器衰减压力脉动性能的研究.哈尔滨工业大学硕士学位论文, 1988, 7
    95封士彩.气囊式蓄能器气体多变指数理论值和实际值的确定.液压与气动. 2002, 5:3~5
    96刘金琨著.先进PID控制及其MATLAB仿真[M].电子工业出版社. 2003, 1:67~70
    97孟宇,彭晓华,张浩.模糊自适应整定PID控制及其仿真研究.机械工程与自动化. 2006, 6(12):92~94
    98杨新建,杜永贵.模糊自适应整定PID控制及其仿真.机械工程与自动化. 2006, 5(10):110~112
    99张友鹏,范子荣.基于自适应模糊PID控制器的非线性系统仿真.计算机仿真. 2007, 24(6):152~153
    100蔚东晓,贾霞彦.模糊控制的现状与发展.自动化与仪器仪表. 2006, (6):4~7
    101狄全熙,武新伟,吕岩,侯国柱.模糊自适应PID控制器在液压伺服系统的应用.机械制造与自动化. 2007, 36(4):107~108, 112
    102张晶,汪滨琦,崔大海.基于MATLAB的转台模糊自适应控制器设计.应用科技. 2007, 34(10):43~46
    103陈峥,齐蓉,林辉.电动加载系统的模糊自适应PID控制系统.测控技术. 2008, 27(1):60~62
    104陈黎卿,陈无畏,郑泉,王继先.基于联合仿真技术的主动悬架自适应模糊PID控制研究.系统仿真学报. 2008, 20(5):1340~1343
    105严峻,戴琼海.基于模糊控制的自适应播放算法.清华大学学报(自然科学版). 2008, 48(1):157~160
    106章自群,宋小冬,金惠良.模糊控制在摆缸位置伺服系统中的应用.计算机仿真. 2008, 25(2):310~313
    107乔志杰,王维庆.模糊自适应控制器的设计及其仿真.控制系统. 2008, 1:26~29
    108杨勇.液压伺服系统自适应模糊变结构控制.电子学报. 2008, 36(1):86~89
    109孙逊,章卫国,张金红,杨婷婷.一种改进的自适应模糊滑模大包线飞行控制方法.系统仿真学报. 2008, 20(5):1262~1264
    110韩江,苏志远.直线电机进给伺服系统的自适应模糊位置控制研究.合肥工业大学学报(自然科学版). 2008, 31(1):136~139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700