用户名: 密码: 验证码:
异丙酚通过HNF-1α/apoM途径抑制炎症反应的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     异丙酚是一种广泛应用于临床麻醉诱导和维持以及重症患者镇静的静脉麻醉药。一系列的研究表明异丙酚具有抗炎抗氧化的特性:可以减少促炎因子的生成包括肿瘤坏死因子a(tumor necrosis factor-a,TNF-a)以及活性氧簇的产生,减少氧自由基的形成,减低脂质的过氧化和抑制血小板的聚集等。然而异丙酚的具体的抗炎机制仍然不是很明确。
     高密度脂蛋白具有心血管保护效应,包括促进胆固醇的逆向转运,抗炎和抗氧化特性等。载脂蛋白M(Apolipoprotein M,apoM)是最近发现的与高密度脂蛋白密切相关的脂蛋白家族成员。研究表明apoM是一种负向快速反应蛋白能够发挥减少感染和炎症反应的作用。外界刺激诱发炎症反应发生时,能够减少肝脏和肾脏的apoM的mRNA水平和血清中apoM的分泌,同时也能引起Hep3B细胞apoM的分泌减少。此外,在人类,急性细菌感染或者慢性HIV感染后,血清中的apoM表达水平均降低。
     研究表明apoM表达受多种因素调控,其中包括转录因子肝细胞核因子1α(Hepatocyte Nuclear Factor la,HNF-1α)。研究表明, HNF-1α有一个稳定的apoM结合位点,可与apoM增强子区域相结合,这对于肝脏和肾脏的apoM表达是必须的;HNF-1α缺乏的大鼠组织器官和血浆中均检测不到apoM的mRNA表达;肝脏HNF-1α缺陷的大鼠血浆中的apoM表达浓度仅仅是野生型大鼠的一半;早发糖尿病患者由于HNF-1α基因突变血浆中的apoM表达也显著降低。此外研究表明HNF-1α的表达和功能也受到促炎因子的调节:细菌脂多糖(Lipopoly saccharide, LPS)处理后HNF-1α的mRNA水平和蛋白水平以及结合活性都显著下调。
     然而,异丙酚是否能影响HNF-1α和apoM的表达还不清楚,HNF-1α和apoM是否可以介导异丙酚抑制LPS诱导的炎症反应还不是很清楚。本研究通过细胞实验和动物实验,观察异丙酚对炎症反应,以及对(?)SNF-1α和apoM的表达的影响并探讨其相关机制。
     目的
     1、观察异丙酚对脂多糖诱导处理的C57BL/6小鼠肝脏组织中apoM和HNF-1α表达的影响。
     2、观察异丙酚对脂多糖诱导处理的HepG2细胞中的apoM和HNF-1α表达的影响。
     3、观察HNF-1α是否参与异丙酚调节脂多糖诱导处理的HepG2细胞中apoM的表达。
     4、观察异丙酚对脂多糖诱导处理的THP-1细胞的炎症反应的影响。
     5、观察apoM是否参与异丙酚抑制脂多糖诱导处理的THP-1细胞的炎症反应。
     材料和方法
     1、材料
     1.1药品
     异丙酚(2,6-二异丙基苯酚)和细菌脂多糖(from Escherichia coli055:B5)均购买自Sigma公司(美国)。RNA逆转录试剂盒(The PrimeScript RT Reagent kit, DRR037A)和实时荧光定量PCR试剂盒(the SYBR■Premix Ex TaqTM II kit,DRR820A)均购自于TaKaRa公司(日本)。
     其他化学试剂均为医药级别,均来自于试剂供应商。
     1.2动物
     选取8周龄,雌性C57BL/6小鼠80只,均购买于北京大学实验动物中心,平均体重为20克。随机分为四组每组20只(1)对照组(control组)-腹腔注射磷酸盐缓冲盐水(PBS,pH7.4);(2)细菌脂多糖组(LPS组)-腹腔注射5mg/kg细菌脂多糖;(3)异丙酚组(Prop组)-腹腔注射10mg/kg异丙酚;(4)细菌脂多糖+异丙酚组(LPS+Prop)-腹腔注射5mg/kg细菌脂多糖和10mg/kg异丙酚。所有的动物每五只放在同一笼饲养,室温维持在25℃,采用12h昼夜循环。实验动物购买,饲养以及动物实验程序均得到南方医院实验动物中心批准。
     1.3细胞培养
     人肝癌组织细胞(HepG2)和人急性单核白血病细胞(THP-1)均购买于American Type Culture Collection(美国弗吉尼亚州,马纳萨斯)。HepG2细胞生长于370C,5%CO2,含有10%新生胎牛血清的DMED培养基中,培养箱中静置培养,取对数生长期细胞进行实验。THP-1细胞生长于37℃,5%CO2,含有10%新生胎牛血清的RPMI-1640培养基中,培养箱中静置培养。取对数生长期细胞进行实验,在每次实验前用100nM佛波酯(phorbol12-myristate13-acetate,PMA)5%C2,370C孵育THP-1细胞72h,诱导使其分化成巨噬细胞,细胞贴壁分别接种到6孔板、12孔板或者60毫米培养皿中,等到细胞生长到汇合度为80-90%时进行处理。在实验前用PBS清洗两次,最后一次用不含抗体的无血清的PBS冲洗。
     2、方法
     2.1RNA分离提取和实时定量PCR(real-time PCR)
     根据Invitrogen公司RNA提取试剂盒操作说明提取小鼠组织或培养细胞中的总RNA。然后将1μg总RNA用逆转录试剂盒(TaKaRa)反转录成20μl的cDNA。实时荧光定量PCR在应用生物系统ABI7500FAST上进行。溶解曲线分析表明PCR反应产物为单独的双链DNA。采用△△Ct值法,以GAPDH表达为内参定量其它基因的表达。
     2.2Western blot分析
     根据总蛋白提取试剂盒说明书提取小鼠组织和培养细胞的总蛋白,采用BCA法蛋白定量试剂盒(KeyGen Biotechnologies,中国南京)进行蛋白定量。采用SDS-聚丙烯酰胺凝胶电泳分离蛋白,每个点样孔30μg总蛋白。蛋白质转膜后,孵育一抗。采用兔抗apoM多克隆抗体(BD Biosciences, San Jose, CA,美国),兔抗iNOS多克隆抗体(Santa Cruz Biotechnology,Inc.Santa Cruz,CA,美国),兔抗HNF-1α多克隆抗体和兔抗β-actin-单克隆抗体(Abcam, Cambridge, MA,美国)。孵育结束后以HRP-兔抗山羊IgG二抗进行孵育,再采用化学荧光蛋白显色方法(ECL Plus Western Blot Detection System;Amerisham Biosciences,Foster City,CA,美国)进行显色曝光。
     2.3细胞因子检测
     采用100nmol/L氟波脂(PMA)诱导孵育THP-1细胞72小时使其分化成巨噬细胞,分别经细菌脂多糖,和脂多糖联合异丙酚处理。收集细胞上清分别采用酶联免疫分析试剂盒(Amersham Biosciences)检测肿瘤坏死因子-α(TNF-a),白细胞介素-1β (IL-1β)和白细胞介素-6(IL-6)的表达情况。
     2.4小分子干扰RNA(siRNA)转染
     特异性siRNA-HNF-1α和siRNA-apoM的RNA干扰片段以及长度为21个核苷酸的siRNA阴性对照片段均购自广州锐博生物科技有限公司。采用脂质体2000(Invitrogen)转染培养细胞(2×106/well)。转染48小时后采用实时定量PCR和western blot检测目的基因mRNA和蛋白表达情况。
     2.5重组质粒构建
     包含HNF-1α的PCR-XL-TOPO载体和PIRES2-EGFP载体购自Invitrogen公司。在HNF-1α上游添加EcoRI酶切位点扩增得到EcoRI-HNF-1α片段;在EGFP下游添加:Xhol酶切位点,在上游添加IRES连接基因,扩增得到IRES-EGFP-XhoI。进行PCR反应,PCR反应结束后,分别凝胶电泳回收EcoRI-HNF-la和IRES-EGFP-XhoI目的条带。通过重叠PCR将上述两个片段进行连接,合成含有目的基因HNF-la和EGFP的片段EcoRI-HNF-1a-IRES-EGFP-XhoI.重叠PCR反应结束后凝胶电泳回收EcoRI-HNF-1α-IRES-EGFP-XhoI的目的条带。双酶切上述重叠PCR的回收产物与pCDNA3.1(+)载体。并采用连接酶切回收的HNF-1α-IRES-EGFP片段和pcDNA3.1(+)载体。再将感受态大肠杆菌DH5α解冻后与含重组质粒连接反应液充分混合进行重组质粒的转化。利用PCR及酶切鉴定重组质粒,并用测序引物作测序鉴定。鉴定正确无误后,利用超纯质粒试剂盒提取pcDNA3.1-HNF-1α以备使用。采用脂质体2000将pcDNA3.1-HNF-1α转染目的基因。
     结果
     1、异丙酚对脂多糖诱导处理的小鼠肝脏组织中apoM和HNF-1α表达的影响
     采用实时定量PCR检测各组各时间点apoM和HNF-1α的mRNA表达,析因分析结果表明,对于apoM和HNF1α的mRNA表达,不同处理组和各处理组不同处理时间之间存在交互效应(F=141.603,P=0.000;F=118.214,P=0.000)。经脂多糖处理后,6小时,12小时和24小时apoM的mRNA表达水平均显著下调,与0小时比较差异有统计学意义(P=0.000;P=0.000;P=0.000);异丙酚处理后,6小时,12小时和24小时apoM的mRNA表达水平均显著上调,与0小时比较差异有统计学意义(P=0.000;P=0.000;P=0.000);经脂多糖和异丙酚联合处理后,6小时,12小时和24小时apoM的mRNA表达水平改变,与0小时比较差异没有统计学意义(P=1.000;P=1.000;P=0.732)。经脂多糖处理后,6小时,12小时和24小时HNF-1α的mRNA表达水平均显著下调,与0小时比较差异有统计学意义(P=0.000;P=0.000;P=0.000);异丙酚处理后,6小时,12小时和24小时HNF-1α的mRNA表达水平均显著上调,与0小时比较差异有统计学意义(P=0.000;P=0.000;P=0.000);脂多糖和异丙酚联合处理后,6小时,12小时和24小时HNF-1α的mRNA表达水平改变,与0小时比较差异没有统计学意义(P=1.000;P=1.000;P=1.000)。而且脂多糖对apoM和HNF-1α的mRNA表达抑制作用在24小时最强(41.400±7.301vs100.200±4.207,P=0.000;38.400±8.019vs100.200±9.257,P=0.000);异丙酚对apoM和HNF-1α的mRNA表达增强作用也具有时间依赖性,随着时间延长而增强,在24小时增加最明显(256.400±8.355vs99.200±8.438,P=0.000;288.800±13.255vs99.800±9.203,P=0.000)。采用western-blot检测各处理因素处理24小时后,各组apoM和HNF-1α的蛋白表达:脂多糖处理后,apoM和HNF-1α的蛋白表达水平均显著下调,与对照组比较差异有统计学意义(P=0.000,P=0.000);异丙酚处理后,apoM和HNF-1α的蛋白表达水平则均显著上调,与对照组比较差异有统计学意义(P=0.000,P=0.000);脂多糖和异丙酚联合处理后,apoM和HNF-1α的蛋白表达水平改变,与对照组比较差异没有统计学意义(P=0.079,P=0.090)。
     2、异丙酚对HepG2细胞apoM和HNF-1α表达的影响
     由于apoM和HNF-1α在小鼠肝脏组织中的表达受脂多糖的负向调节,并且apoM的表达受HNF-1α的直接调节。‘我们通过实时定量PCR方法检测脂多糖和异丙酚对HepG2细胞apoM和HNF-1α表达的影响:脂多糖诱导处理后,apoM的mRNA表达在6h,12h和24h均显著下调,与0小时比较差异有统计学意义(P=0.048;P=0.002;P=0.000):HNF-1α的mRNA表达在6h,12h和24h也均显著下调,与0小时比较差异有统计学意义(P=0.019;P=0.000;P=0.000);异丙酚处理后,apoM的mRNA表达在6h,12h和24h均显著上调,与0小时比较差异有统计学意义(P=0.016;P=0.000;P=0.000):HNF-1α的mRNA表达在6h,12h和24h也均显著上调,与0小时比较差异有统计学意义(P=0.042;P=0.000;P=0.000)。然后我们采用westem blot方法检测脂多糖和异丙酚对HepG2细胞apoM和HNF-1α蛋白表达的影响:脂多糖处理后,apoM的蛋白表达水平在6h,12h和24h均显著下调,与0小时比较差异有统计学意义(P=0.043;P=0.001;P=0.000);HNF-1α的蛋白表达水平在6h,12h和24h均显著下调,与0小时比较差异有统计学意义(P=0.030;P=0.000;P=0.000)。相反,当异丙酚处理后,apoM的蛋白表达水平在6h,12h和24h均显著上调,与0小时比较差异有统计学意义(P=0.004;P=0.000;P=0.000);HNF-1α的蛋白表达水平在6h,12h和24h也均显著上调,与0小时比较差异有统计学意义(P=0.000;P=0.000;P=0.000)。
     3、异丙酚通过HNF-1α途径调节HepG2细胞的apoM表达
     首先采用HNF-1α-siRNA转染HepG2细胞,使转染后的HepG2细胞的HNF-la表达降低。Western blot结果显示与对照组比较,siRNA组HNF-1α的表达下降达到89%(0.113±0.060vs1.003±0.096),差异有统计学意义(F=115.062,P=0.000)。然后检测异丙酚对HNF-la-siRNA转染后的HepG2细胞apoM蛋白表达的影响:实验分组如下:对照组:0μM异丙酚+0ng/ml脂多糖,LPS组:10ng/m1脂多糖,Prop组:50μM异丙酚,LPS+Prop组:50μM异丙酚+10ng/ml脂多糖。在经过negative control处理的HepG2细胞中,LPS组apoM蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.006);Prop组apoM蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000);LPS+Prop组apoM蛋白表达水平与对照组比较差异没有统计学意义(P=1.000)。在HNF-1α的表达被HNF-1α-siRNA干扰后,LPS组apoM蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.005);Prop组apoM蛋白表达水平改变与对照组比较差异没有统计学意义(P=0.623);LPS+Prop组apoM蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.012)。接下来,我们采用HNF-1α重组过表达质粒使HNF-1α表达增加,观察异丙酚对于HepG2细胞apoM蛋白表达的影响。用重组过表达质粒上调HNF-1α的表达可以达到613%(6.137±0.172vs1.007±0.131),与对照组比较差异有统计学意义(F=1337.813,P=0.000)。重组过表达质粒转染的HepG2细胞,实验分组如下:对照组:OμM异丙酚+0ng/ml脂多糖,LPS组:lOng/ml脂多糖,Prop组:50μM异丙酚,LPS+Prop组:50μM异丙酚+10ng/ml脂多糖。Prop组apoM的表达被显著上调,与对照组比较差异有统计学意义(P=0.000); LPS+Prop组apoM的表达被显著上调,与对照组比较差异有统计学意义(P=0.000); LPS组的apoM的表达水平变化,与对照组比较差异没有统计学意义(P=1.000)。
     4、异丙酚抑制THP-1巨噬细胞的炎症反应
     将THP-1巨噬细胞随机分为四组:Control组:0μM异丙酚+0ng/mlLPS, LPS组:10ng/mlLPS, Prop组:50μM异丙酚,LPS+Prop组:50μM异丙酚+10ng/mlLPS分别孵育24小时。结果,LPS组apoM的蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.003); Prop组apoM的蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000); LPS+Prop组apoM的表达水平改变,与对照组比较差异没有统计学意义(P=1.000)。同样,脂多糖诱导处理后,LPS组HNF-1α的蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.012); Prop组HNF-1α蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000); LPS+Prop组HNF-1α的蛋白表达水平改变,与对照组比较差异没有统计学意义(P=0.555)。接下来用western blot方法检测了iNOS蛋白表达水平,结果:LPS组iNOS的蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000);Prop组iNOS的蛋白表达水平改变,与对照组比较差异没有统计学意义(P=1.000);LPS+Prop组iNOS的蛋白表达水平显著上调,与LPS组比较差异有统计学意义(P=0.000)。之后我们采用ELISA方法检测THP-1巨噬细胞中炎症因子TNF-α,IL-1β和IL-6的表达变化。实验分组如下,Control组:0μM异丙+0ng/mlLPS,LPS组:10ng/mlLPS,Prop组:50μM异丙酚,LPS+Prop组:50μM异丙酚+10ng/mlLPS,分别孵育24小时。ELISA结果:LPS组TNF-α, IL-1β和IL-6的表达水平显著增加,与对照组比较差异有统计学意义(P=0.000,P=0.000,P=0.000);Prop组TNF-α,L-1β和IL-6的表达水平改变,与对照组比较差异没有统计学意义(P=1.000,P=1.000,P=1.000);LPS+Prop组的TNF-α,IL-1β和IL-6的表达水平显著下降,与LPS组比较差异有统计学意义(P=0.000,P=0.000,P=0.000)。
     5、异丙酚通过apoM途径抑制THP-1巨噬细胞的炎症反应
     采用apoM-siRNA转染THP-1巨噬细胞,经过apoM-siRNA处理的THP-1巨噬细胞apoM的蛋白表达下降了86%(0.140±0.076vs1.003±0.086),与对照组比较差异有统计学意义(F=97.836,P=0.000)。实验分组如下,处理因素:Control组:OμM异丙酚+0ng/ml脂多糖,LPS组:10ng/m脂多糖,Prop组:50μM异丙酚,LPS+Prop组:50μM异丙酚+10ng/ml脂多糖,分别孵育24小时。首先检测iNOS的蛋白表达:negative control处理条件下,THP-1巨噬细胞中,LPS组iNOS蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000); Prop组iNOS蛋白表达水平改变,与对照组比较差异没有统计学意义(P=1.000);LPS+Prop组iNOS的蛋白表达水平显著下调,与对照组比较差异有统计学意义(P=0.000),与LPS组比较差异有统计学意义(P=0.000)。在apoM-siRNA转染的THP-1巨噬细胞,LPS组iNOS蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000), Prop组iNOS蛋白表达水平改变,与对照组比较差异没有统计学意义(P=1.000);LPS+Prop组iNOS蛋白表达水平显著上调,与对照组比较差异有统计学意义(P=0.000),与LPS组比较差异没有统计学意义(P=0.843)。接下来将被apoM-siRNA和negative control转染的THP-1巨噬细胞随机分为五组(1)Control组,(2)siRNA-NC+异丙酚(50μM)组,(3)siRNA-apoM+异丙酚(50μM)组,(4)siRNA-NC+异丙酚(50μM)+脂多糖(10ng/ml)组,(5)siRNA-apoM+异丙酚(50gM)+脂多糖(10ng/ml)组,五组细胞分别在37℃孵育24小时。采用ELISA方法分析各组炎症因子TNF-a,IL-1β和IL-6的表达情况。异丙酚与脂多糖联合处理用apoM-siRNA转染的THP-1巨噬细胞后,TNF-α、IL-1p和IL-6的表达均被升高,与siRNA-NC+异丙酚+脂多糖组比较差异有统计学意义(P=0.000,P=0.000,P=0.000)。
     结论
     1、异丙酚可以上调C57BL/6小鼠肝脏组织中的apoM和HNF-1α的mRNA和蛋白表达水平,并且具有时间依赖性。
     2、异丙酚可以上调HepG2细胞的apoM和HNF-1α的mRNA和蛋白表达水平,并且具有时间依赖性。
     3、异丙酚通过HNF-1α途径上调HepG2细胞的apoM的表达。
     4、异丙酚能够抑制THP-1巨噬细胞的炎症反应。
     5、异丙酚通过apoM途径抑制THP-1细胞的炎症反应,发挥抗炎作用。
Background
     Propofol (2,6-diisopropylphenol) is probably the most widely used intravenous hypnotic agent in daily practice. However, its anti-inflammatory properties have seldom been addressed. In this study, we evaluated the anti-inflammatory activity and mechanisms of propofol on lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro and found that propofol markedly inhibited LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and expression of inducible nitric oxide synthase (iNOS). At the same time, the expression of hepatocyte nuclear factor-la (HNF-la) and apolipoprotein M (apoM) was inhibited by treatment with LPS and LPS-induced down-regulation of HNF-la expression and apoM expression could be compensated by propofol treatment. However, propofol could not compensate LPS-induced down-regulation of apoM expression by treatment with HNF-la siRNA and the suppressive effect on LPS-induced pro-inflammatory cytokines production by propofol was significantly compensated by treatment with apoM siRNA. These results provide evidence that propofol may first up-regulate apoM expression by enhancing HNF-la expression and then inhibit pro-inflammatory cytokine production in LPS-stimulated cells. Therefore, our study may be useful in understanding the critical effect of propofol in patients with systemic inflammatory response syndrome.
     Aims
     1. To study the effects of propofol on expressions of apoM and HNF-la in LPS treated C57BL/6mice.
     2. To study the effects of propofol on expressions of apoM and HNF-la in LPS treated HepG2cells.
     3. To study wether HNF-la is involved in the propfol induced apoM expression in LPS treated HepG2cells.
     4. To study the anti-inflamation effects of propofol on LPS treated THP-1cells.
     5. To study propofol excert anti-inflammation effects whether through the apoM pathway in LPS treated THP-1cells.
     Materials and Methods
     Propofol (2,'6-di-isopropylphenol) and lipopolysaccharides from Escherichia coli055:B5were purchased from Sigma-Aldrich (St. Louis, MO, USA). The PrimeScript RT Reagent kit (Perfect Real Time; catalog no. DRR037A) and the SYBR(?) Premix Ex TaqTM II kit (Tli RNaseH Plus; catalog no. DRR820A) were obtained from TaKaRa Bio, Inc.(Shiga, Japan). All other chemicals were of pharmaceutical grade and purchased from commercial suppliers.
     Animals
     Eight-week-old, female C57BL/6mice (Laboratory Animal Center of Peking University, Beijing, China) with a mean body mass of20g were randomized into four groups:(1) PBS-received intraperitoneal (i.p.) injections of phosphate-buffered saline (PBS, pH7.4);(2) LPS-received i.p.5mg/kg of LPS;(3) Propofol-received i.p.10mg/kg of propofol; and (4) LPS+Propofol-received i.p.5mg/kg of LPS plus10mg/kg of propofol. All animals were housed five per cage at25oC on a12-h light/dark cycle. The animal care and experimental procedures were approved by the Animal Experimental Committee at Nanfang Hospital (Guangdong, China).
     Cell Culture
     Human hepatocytes (HepG2) and acute monocytic leukemia (THP-1) cells were purchased from the American Type Culture Collection (Manassas, VA, USA). The HepG2cells were cultured in25-cm2vented flasks containing Dulbecco's modified Eagle's medium (DMEM) with10%fetal calf serum (FCS) under standard culture conditions (5%CO2,37℃). THP-1cells were maintained in Roswell Park Memorial Institute (RPMI)1640medium containing10%FCS and differentiated for72h with100nM phorbol12-myristate13-acetate (PMA) under standard culture conditions (5%CO2,37℃). Prior to the experiment, cells were washed twice with PBS and once with serum-free medium without antibiotics. Experimental media contained DMEM or RPMI1640with0.2%human serum albumin and one or more additives (i.e., LPS, propofol, etc.) at the concentrations described in the figure legends.
     RNA isolation and quantitative real time PCR (qPCR)
     Total RNA from mouse tissues or cultured cells was extracted using TRIzol reagent (Invitrogen Corporation, Carlsbad, CA, USA) in accordance with the manufacture's instructions. qPCR, using SYBR Green detection chemistry, was performed on the ABI7500Fast Real Time PCR system (Applied Biosystems, Foster City. CA, USA). Melt curve analyses of all qPCR products were performed and shown to produce a single DNA duplex. All samples were measured in triplicate and the mean value was considered. Quantitative measurements were determined using the△Ct method and expression of glyceraldehyde3-phosphate dehydrogenase was used as an internal control.
     Western blot analyses
     Proteins were extracted from mouse tissues or cultured cells using RIPA buffer (Biocolor Ltd., Belfast, Northern Ireland, UK), quantified using the BCA protein assay kit (KeyGen Biotechnologies, Nanjing, China), and then subjected to western blot analyses (10%sodium dodecyl sulfate-polyacrylamide gel electrophoresis;30μg protein per lane) using rabbit anti-APOM antibodies (BD Biosciences, San Jose, CA, USA), rabbit polyclonal anti-iNOS antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and rabbit polyclonal anti-HNF-la-and β-actin-specific antibodies (Abcam, Cambridge, MA, USA). The proteins were visualized using a chemiluminescence method (ECL Plus Western Blot Detection System; Amerisham Biosciences, Foster City, CA, USA).
     Measurement of cytokine production
     The THP-1cells were differentiated into macrophages with100nM PMA for72h and incubated in the absence or presence of LPS with or without propofol. After stimulation and sample treatment, the cell-free supernatants of the THP-1macrophages were collected and used for cytokine analysis. The concentrations of TNF-a, IL-1β, and IL-6were measured in duplicate using a BiotrakTM enzyme-linked immunosorbent assay (ELISA) kit (Amersham Biosciences).
     Transfection with small interfering RNA (siRNA)
     The siRNAs against HNF-la and APOM and irrelevant21-nucleotide control siRNAs were purchased from RiboBio Co., Ltd.(Guangzhou, China). Cells (2×106/well) were transfected with siRNA targeting HNF-la, APOM, or the control in the absence or presence of appropriate plasmids using Lipofectamine2000(Invitrogen). qPCR and western blotting were performed48h post-transfection.
     Construction of recombinant plasmids
     The PIRES2-EGFP and PCR-XL-TOPO vectors (containing HNF-la which was assembled by the chemically synthesized oligos through PCR) were purchased from Invitrogen. Segments of EcoRI-HNF-la and IRES-EGFP XhoI were amplified using the template of the PCR-XL-TOPO and PIRES2-EGFP vectors, respectively. EcoRI-HNF-la-IRES-EGFP-XhoI was joined by the two above-mentioned segments using overlap PCR. Gel electrophoresis was performed and the relevant band was excised from the gel, double enzyme-digested by EcoRI/XhoI, incorporated into the pcDNA3.1(+) vector, and then transformed into competent E. coli DH5a cells for further amplification and use. The recombinant plasmids were verified by sequencing and named pcDNA3.1-HNF-la. The plasmid transfection process was performed using Lipofectamine2000transfection reagent according to the manu-facturer's instructions.
     Results
     1. Effects of propofol on APOM and HNF-la expression in LPS-treated mice
     We first investigated the role of propofol on APOM and HNF-la expression in hepatocytes of LPS-treated mice by qPCR and western blotting. As shown in Figures1A and C, APOM RNA and protein levels were markedly down-regulated by LPS treatment. In contrast, APOM expression was significantly up-regulated by propofol treatment. Moreover, propofol obviously compensated LPS-induced down-regulation of APOM expression in mouse hepatocytes. As shown in Figures IB and D, the transcript and protein levels of HNF-la were down-regulated by LPS treatment while up-regulated by propofol treatment, as propofol obviously compensated LPS-induced down-regulation of HNF-la expression in mouse hepatocytes.
     2. Effects of LPS and propofol on expression of apoM and HNF-la in HepG2cells
     Since the expression of apoM and HNF-la was negatively regulated by LPS in mouse hepatocytes and apoM expression was directly regulated by transcription factor HNF-la, we next examined LPS effects on apoM and HNF-la expression in HepG2cells by qPCR (Figures2A and2B) and western blotting (Figures2C and2D). As shown, expression levels of apoM and HNF-la were decreased by LPS treatment at the transcriptional and translational levels. The inhibitory effects of LPS on apoM and HNF-la expression were increased with cell culture time and the strongest effects were seen after24h. We also observed the effects of propofol on APOM and HNF-la expression in HepG2cells by qPCR (Figures2E and2F) and western blotting (Figures2G and2H). We showed that expression of APOM and HNF-la was enhanced by propofol at the transcriptional and translational levels in a time-dependent manner in HepG2cells.
     3. HNF-la is involved in apoM expression regulation by propofol in LPS-stimulated HepG2cells
     Since both apoM and HNF-la expression were inhibited by LPS while enhanced by propofol, we further investigated the involvement of HNF-la in apoM expression regulation following propofol treatment in LPS-stimulated HepG2cells. First, we examined the effects of HNF-la siRNA on apoM expression treated with propofol in LPS-stimulated HepG2cells. As shown in Figure3, treatment with siRNA targeting HNF-la downregulated HNF-la protein expression by89%in HepG2cells. The up-regulation of apoM expression via propofol treatment was nearly restored by HNF-la siRNA treatment, whereas propofol could not compensate LPS-induced down-regulation of apoM expression in HepG2cells. Next, we observed the effects of recombinant plasmids over-expressing HNF-la (pcDNA-HNF-1α) on apoM expression following propofol treatment in LPS-stimulated HepG2cells. As shown in Figure3, treatment with pcDNA-HNF-la upregulated HNF-la protein expression by613%in HepG2cells. Suppression of apoM expression by LPS was markedly compensated by treatment with pcDNA-HNF-la and propofol significantly enhanced apoM expression in LPS-stimulated HepG2cells.
     4. Anti-inflammatory effects of propofol on LPS-stimulated THP-1macrophages
     We explored the effects of propofol on apoM and HNF-la expression in LPS-stimulated THP-1macrophages by western blotting. As shown in Figure4A, apoM levels were markedly down-regulated by LPS treatment. In contrast, apoM expression was significantly up-regulated by propofol treatment, which obviously compensated LPS-induced down-regulation of apoM expression in THP-1 macrophages. Likewise, as shown in Figure4B, HNF-la levels were down-regulated by LPS treatment while up-regulated by propofol treatment, which obviously compensated LPS-induced down-regulation of HNF-la expression in THP-1macrophages. In order to study the anti-inflammatory effects of propofol on LPS-stimulated THP-1macrophages, we analyzed iNOS expression via western blotting. As shown in Figure4C, iNOS levels were markedly up-regulated by LPS treatment, whereas propofol notably inhibited the enhancement effect induced by LPS in THP-1macrophages. To evaluate the effects of propofol on pro-inflammatory cytokine production, including TNF-a, IL-1β and IL-6in the culture medium, THP-1macrophages were treated with LPS only or LPS with propofol. As shown in Table1, LPS treatment dramatically increased pro-inflammatory cytokine secretion into the culture medium as compared to the control group. However, pro-inflammatory cytokine production was decreased following propofol treatment in LPS-stimulated THP-1macrophages.
     5. apoM is involved in the anti-inflammatory effects of propofol in LPS-stimulated THP-1macrophages.Next, we investigated the role of apoM in propofol-induced anti-inflammatory effects on LPS-stimulated THP-1macrophages using apoM siRNA. As shown in Figure5, treatment with siRNA targeting apoM for48h downregulated apoM protein expression by86%in THP-1macrophages. The iNOS-induced up-regulation of LPS expression could not be compensated by propofol after treatment with apoM siRNA in THP-1macrophages. We also observed the effects of APOM siRNA on expression of pro-inflammatory cytokines by propofol in LPS-stimulated THP-1macrophages. As shown in Table2, the suppression of pro-inflammatory cytokines expression by propofol was markedly compensated by treatment with APOM siRNA in LPS-stimulated THP-1macrophages.
     Conclusion
     1. apoM and HNF-la mRNA and proteins expressions were up-regaulated by propofol in LPS-treated C57BL/6mice.
     2. Expression of apoM and HNF-la mRNA and proteins expressions were up-regaulated by propofol in HepG2cells.
     3. HNF-la is involved in apoM expression by propofol in LPS-stimulated HepG2cells.
     4. Propofol has anti-inflammatory effects in LPS-stimulated THP-1macrophages.
     5. apoM is involved in the anti-inflammatory effects of propofol in LPS treated THP-1macrophages cells.
引文
[1]JameR,Glen JB. Synthesis,biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J Med Chem.1980; 23(12):1350-1357.
    [2]Carrasco G, Molina R, Costa J, Soler JM, Cabre L. Propofol vs midazolam in short-, medium-, and long-term sedation of critically ill patients. A cost-benefit analysis.Chest.1993; 103(2):557-564.
    [3]Marik PE. Propofol:therapeutic indications and side-effects. Curr Pharm Des. 2004; 10(29):3639-3649.
    [4]Vanlersberghe C, Camu F. Propofol.Handb Exp Pharmacol.2008; (182):227-252.
    [5]杨庆国,杭燕南,孙大金.异丙酚与恶心呕吐.国外医学(麻醉学与复苏分册),2001,22(1):39-41.
    [6]梁国强,郑平旭,郑远航.微剂量异丙酚对术后恶心呕吐的治疗作用.广东医学,2006,27(3):63-364.
    [7]肖华平,肖金仿,唐靖,古妙宁.异丙酚抑制BALB/c小鼠结肠癌细胞株Colon 26肺转移的实验研究.广东医学,2010,31(4):413-415.
    [8]Wu RS, Liu KC, Tang NY, Chung HK, Ip SW, Yang JS, Chung JG. cDNA microarray analysis of the gene expression of murine leukemia RAW 264.7 cells afterexposure to propofol. Environ Toxicol.2011 Jul; 22. doi: 10.1002/tox.20742. [Epub ahead of print]
    [9]王兵,王勇强,吉祥,曹书华.异丙酚对严重创伤失血-液体复苏患者应激反应和免疫平衡的影响.中华急诊医学杂志,2012,21(4):401-405.
    [10]马加海,徐礼鲜,王雪岩.异丙酚抑制福尔马林致痛诱导c-fos基因在大鼠脊髓内的表达.中华麻醉学杂志,2001,21(7):423-425.
    [11]Palladino MA, Johnson TA, Gupta R, Chapman JL, Ojha P. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract.Biol Reprod.2007 Jun; 76(6):958-64. Epub 2007 Feb; 21(06):958-964.
    [12]Krumholz W, Endrass J, Hempelmann G. Propofol inhibits phagocytosis and killing of Staphylococcus aureus and Escherichia coli by polymorphonuclear leukocytes in vitro. Can J Anaesth.1994;41(5):446-449.
    [13]Galley HF, Webster NR. Effects of propofol and thiopentone on the immune response. Anaesthesia.1997; 52(9):921-923.
    [14]Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y. Propofol inhibits human neutrophil functions. Anesth Analg.1998; 87(3): 695-700.
    [15]Taniguchi T, Yamamoto K, Ohmoto N, Ohta K, Kobayashi T. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Crit Care Med.2000; 28(4):1101-1106.
    [16]贾鹤龄,冷玉芳,张彬.靶控输注异丙酚对心脏瓣膜置换术患者炎性细胞因子浓度变化的影响.兰州大学学报(医学版),2010,36(1):78-81.
    [17]陈绪贵,古妙宁,王卓强,张良清.异丙酚对脂多糖诱导人单核细胞释放细胞因子的影响.解放军医学杂志,2008,33(5):584-586.
    [18]Takaono M, Yogosawa T, Okawa-Takatsuji M, Aotsuka S. Effects of intravenous anesthetics on interleukin (IL)-6 and IL-10 production by lipopolysaccharide-stimulated mononuclear cells from healthy volunteers. Acta Anaesthesiol Scand.2002; 46(2):176-179.
    [19]张银中,叶铰虎,卜玉芬.异丙酚对白介素-6所致中性粒细胞凋亡障碍的影响.中华麻醉学杂志,2002,6(22):329-331.
    [20]姚媛媛,王焱林,王成.异丙酚对内毒素诱导大鼠急性肺损伤的保护作用.中华麻醉学杂志,2004,24(5):373-376.
    [21]Gao J, Zeng BX, Zhou LJ, Yuan SY.Protective effects of early treatment with propofol on endotoxin-induced acute lung injury in rats. Br J Anaesth.2004; 92(2):77-279.
    [22]Taniguchi T, Kanakura H, Yamamoto K. Effects of posttreatment with propofol on mortality and cytokine responses to endotoxin-induced shock in rats. Crit Care Med.2002; 30(4):904-907.
    [23]Chang KS, Davis RE Propofol produces endothelium-independent vasodilation and may act as a Ca2+channel blocker. Anesth Analg.1993; 76(1):24-32.
    [24]Tang J, Sun Y, Wu WK, Zhong T, Liu Y, Xiao J, Tao T, Zhao Z, Gu M. Propofol lowers serum PF4 level and partially corrects hypercoagulopathy in endotoxemic rats.Biochim Biophys Acta.2010; 1804(9):1895-1901.
    [25]金玄玉,赵芸慧,刘海梅,裴凌,王俊科.异丙酚对内毒素血症鼠NO,SOD及MDA水平的影响.中华麻醉学杂志,2004,24(1):33-35.
    [26]林艳君,张兰.异丙酚与缺血再灌注损伤炎症细胞因子表达的研究进展.四川医学,2007,28(1):24-26.
    [27]安世芝,王月兰,郭鸿雁.异丙酚对肝脏缺血再灌注大鼠血清肿瘤坏死因子-α和白细胞介素-10的影响.中华麻醉学杂志,2005,25(8):620-621.
    [28]Takeuchi D, Yoshidome H, Kato A, Ito H, Kimura F, Shimizu H, Ohtsuka M, Morita Y, Miyazaki M. Interleukin 18 causes hepatic ischemia/reperfusion injury by suppressing anti-inflammatory cytokine expression in mice. Hepatology.2004; 39(3):699-710.
    [29]Kato R, Foex P. Myocardial protection by anesthetic agents against ischemia-reperfusi on injury:an update for anesthesiologists.Canadian Journal of Anaesthesia.2002,49(8):777-791.
    [30]Ergun R, Akdemir G, Sen S,et al. Neuroprotective effects of propofol following global cerebral ischemia in rats. Neurosurg Rev.2002,25 (1-2):95-98.
    [31]李治贵,黄海波,王泽华.异丙酚对家兔主动脉阻断所致脊髓损害的保护作用.中华麻醉学杂志,1999,19(6):352-354.
    [32]罗遥,周党军,吕毅,景桂霞,肖颖.异丙酚对兔肝缺血再灌注损伤保护作用及部分生化指标的影响.第四军医大学学报,2006,27(24):2223-2225.
    [33]刘甦,方针强,张艮甫.异丙酚预处理对大鼠肾缺血再灌注细胞因子的影响及损伤的保护作用.第三军医大学学报,2006,28(17):1788-1790.
    [34]周春燕,陈玉培.异丙酚对大鼠离体心脏缺血再灌注时NF-κB及iNOS的影响.中华麻醉学杂志,2008,28(7):173-176.
    [35]Eriksson O, Pollesello P, Saris NE. Inhibition of lipid peroxidation in isolated rat-livermitochondriabythegeneralanaestheticpropofol.BiochemPharmacol.1992 ,22; 44(2):391-393.
    [36]Murphy PQ Myers DS, Davies MJ. Webster NR, Jones JG. The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth.1992; 68(6): 613-618.
    [37]冯春生,麻海春,岳云,张永谦,曲向东.异丙酚对大鼠局灶性脑缺血再灌注时核因子KB的活化和炎症因子表达的影响.中华医学杂志,2004,84(24):2110-2114.
    [38]罗凤芹,周青山,刘先义,夏中元.异丙酚对脊髓缺血再灌注损伤大鼠脊髓细胞凋亡的影响.中华麻醉学杂志,2006,26(4):372-375.
    [39]Carraretto AR, Vianna Filho PT, Castiglia YM, Golim Mde A, Souza AV, Carvalho LR, Deffune E, Vianna PT. Does propofol and isoflurane protect the kidney against ischemia/reperfusion injury during transient hyperglycemia? Acta Cir Bras.2013; 28(3):161-166.
    [40]Grounds RM, Morgan M, Lumley J. Some studies on the properties of the intravenous anaesthetic, propofol ('Diprivan')--a review. Postgrad Med J.1985; 61 Suppl 3:90-95.
    [41]Javadov SA, Lim KH, Kerr PM, Suleiman MS, Angelini GD, Halestrap AP. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition.Cardiovasc Res.2000,14; 45(2):360-369.
    [42]董继斌.高密度脂蛋白(HDL)抗动脉粥样硬化研究进展.复旦学报(医学版),2012,39(4):414-417.
    [43]肖继,廖端方,唐朝克.胆固醇逆向转运与动脉粥样硬化的转基因动物研究进展.岭南心血管病杂志,2010,16(1):58-62.
    [44]杨永宗主编.动脉粥样硬化性心血管病基础与临床.科学出版社.北京 2004.
    [45]Murch O, Collin M, Hinds CJ, Thiemermann C. Lipoproteins in inflammation and sepsis. I. Basic science.Intensive Care Med.2007; 33(1):13-24.
    [46]Cue JI, DiPiro JT, Brunner LJ, Doran JE, Blankenship ME, Mansberger AR, Hawkins ML. Reconstituted high density lipoprotein inhibits physiologic and tumor necrosis factor alpharesponses to lipopolysaccharide in rabbits. Arch Surg.1994; 129(2):193-197.
    [47]Yan YJ, Li Y, Lou B, Wu MP. Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice.Life Sci.2006 Jun 6; 79(2): 210-215.
    [48]Li Y, Dong JB, Wu MP. Human ApoA-I overexpression diminishes LPS-induced systemic inflammation and multiple organ damage in mice. Eur J Pharmacol.2008,20; 590(1-3):417-422.
    [49]Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Arterioscler Thromb Vasc Biol.1995 Nov;15(11):1987-94. Arterioscler Thromb Vasc Biol.1995; 15(11):1987-1994.
    [50]Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. J Lipid Res.2009; 50 Suppl:S195-200.
    [51]田迪,谭迎.高密度脂蛋白亚组分的分离和检测方法及其临床意义.心血管病学进展,2011,32(6):795-798.
    [52]蔡军.高密度脂蛋白功能检测的进展.检验医学,2012,27(6):521-523.
    [53]Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression J Lipid Res.2000; 41(8): 1261-1267.
    [54]Jahangiri A, de Beer MC, Noffsinger V, Tannock LR, Ramaiah C, Webb NR, van der Westhuyzen DR, de Beer FC. HDL remodeling during the acute phase response.Arterioscler Thromb Vasc Biol.2009; 29(2):261-267.
    [55]Jahangiri A. High-density lipoprotein and the acute phase response. Curr Opin Endocrinol Diabetes Obes.2010; 17(2):156-160.
    [56]de Beer MC, Webb NR, Wroblewski JM, Noffsinger VP, Rateri DL, Ji A, van der Westhuyzen DR, de Beer FC. Impact of serum amyloid A on high density lipoprotein composition and levels. J Lipid Res.2010; 51(11):3117-3125.
    [57]金娴,梁永杰.高密度脂蛋白的作用进展.中国卫生产业,2011,(21):119-121.
    [58]王保东,谭晓华,杨磊.CETP基因rs3764261多态性与血脂异常的相关性研究.石河子大学学报(自然科学版),2012,30(3):346-349.
    [59]刘静,赵冬,刘飒,刘军,秦兰萍,吴兆苏.胆固醇酯转运蛋白与血脂、血糖的关系.中华心血管病杂志.2003,31(7):532-535.
    [60]汪俊军,张春妮.胆固醇酯转运蛋白基因变异与血脂和动脉粥样硬化性心血管病的关系.医学研究生学报,2007,20(1):76-79.
    [61]von Eckardstein A, Assmann G. Prevention of coronary heart disease by raising high-density lipoprotein cholesterol? Curr Opin Lipidol.2000; 11(6):627-637.
    [62]Hara T, Ishida T, Kojima Y, Tanaka H, Yasuda T, Shinohara M, Toh R, Hirata K. Targeted deletion of endothelial lipase increases HDL particles with anti-inflammatory properties both in vitro and in vivo. J Lipid Res.2011; 52(1): 57-67.
    [63]Xu N, Dahlback B. A novel human apolipoprotein (apoM). J Biol Chem. 1999,29; 274(44):31286-31290.
    [64]焦国庆,张晓膺,徐宁.载脂蛋白M的研究进展.国外医学临床生物化学与检验学分册,2003,24(5):254,264.
    [65]Duan J, Dahlback B, Villoutreix BO. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Lett.2001,15; 499(1-2):127-132.
    [66]Dahlback B, Nielsen LB. Apolipoprotein M-a novel player in high-density lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol.2006; 17: 291-295.
    [67]Xu N, Zhang XY, Dong X, Ekstrom U, Ye Q, Nilsson-Ehle P. Effects of platelet-activating factor, tumor necrosis factor, and interleukin-1 alpha on the expression of apolipoprotein M in HepG2 cells. Biochem Biophys Res Commun.2002,12; 292(4):944-950.
    [68]Zhang XY, Dong X, Zheng L, Luo GH, Liu YH, Ekstrom U, Nilsson-Ehle P, Ye Q, Xu N. Specific tissue expression and cellular localization of human apolipoprotein M as determined by in situ hybridization. Acta Histochem.2003; 105(1):67-72.
    [69]Aoki K, Nakajima M, Hoshi Y, Saso N, Kato S, Sugiyama Y, Sato H. Effect of aminoguanidine on lipopolysaccharide-induced changes in rat liver transporters and transcription factors. Biol Pharm Bull.2008; 31(3):412-420.
    [70]郑璐,徐宁,罗光华.应用免疫组织化学方法检测载脂蛋白M.在人类肝肾中的特异表达.中华检验医学杂志,2003,26(7):139.
    [71]Luo G, Zhang X, Nilsson-Ehle P, Xu N. Apolipoprotein M. Lipids Health Dis. 2004,4; 3:21.
    [72]Wolfrum C, Poy MN, Stoffel M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med.2005; 11(4):418-422.
    [73]Hu YW, Zheng L, Wang Q. Characteristics of apolipoprotein M and its relation to atherosclerosis and diabetes. Biochim Biophys Acta.2010; 1801(2):100-105.
    [74]Rye KA, Duong M, Psaltis MK, Curtiss LK, Bonnet DJ, Stacker R, Barter PJ. Evidence that phospholipids play a key role in pre-beta apoA-I formation and high-density lipoprotein remodeling. Biochemistry.2002; 41(41):12538-12545.
    [75]Huang XS, Zhao SP, Hu M, Luo YP. Apolipoprotein M likely extends its anti-atherogenesis via anti-inflammation. Med Hypotheses.2007; 69(1): 136-140.
    [76]Xu N, Nilsson-Ehle P, Hurtig M, Ahren B. Both leptin and leptin-receptor are essential for apolipoprotein M expression in vivo. Biochem Biophys Res Commun.2004,3; 321(4):916-21.
    [77]Luo G, Hurtig M, Zhang X, Nilsson-Ehle P, Xu N. Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells. Biochim Biophys Acta.2005,15; 1734(2):198-202.
    [78]狄冬梅,张晓膺,罗光华,郑璐,蒋波,Peter Nilsson-Ehle,徐宁.瘦素对大鼠肝脏载脂蛋白M、载脂蛋白AI、载脂蛋白B和低密度脂蛋白受体表达的影响.中华实验外科杂志,2012,29(10):1957-1959.
    [79]Feingold KR, Shigenaga JK, Chui LG, Moser A, Khovidhunkit W, Grunfeld C. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis.2008;199(1):19-26
    [80]Xu N, Hurtig M, Zhang XY, Ye Q, Nilsson-Ehle P. Transforming growth factor-beta down-regulates apolipoprotein M in HepG2 cells. Biochim Biophys Acta.2004,5; 1683(1-3):33-37.
    [81]屈晓冰,胡志高,赵水平.载脂蛋白M与高密度脂蛋白代谢及动脉粥样硬化.心血管病学进展,2008,29:32-35.
    [82]李铁,杨柳.肥胖患者载脂蛋白M水平及其与炎症因子的关系研究.现代生物医学进展,2011,11(21):56-59.
    [83]陈瑞强,曾春,王昆,谢沛根,戎利民,徐义春,蔡道章.膝关节骨关节炎患者与正常人群的血清差异表达蛋白.中山大学学报(医学科学版),2009,30(3):308-312.
    [84]Kontush A, Chapman MJ. Functionally defective high-density lipoprotein:a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev.2006;58(3):342-374.
    [85]Hu YW, Zheng L, Wang Q. Regulation of cholesterol homeostasis by liver X receptors. Clin Chim Acta.2010; 411(9-10):617-625.
    [86]廖端芳,唐朝克主编.胆固醇逆向转运基础与临床.科学出版社.北京,2009.
    [87]李桃园,章国良.代谢性核受体功能及转录活性调控机制的研究进展.中国临床药理学杂志,2.009,25(4):346-349.
    [88]Boj SF, Parrizas M, Maestro MA, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci U S A.2001,4; 98(25):14481-14486.
    [89]Richter S, Shih DQ, Pearson ER, Wolfrum C, Fajans SS, Hattersley AT, Stoffel M. Regulation of APOlipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha:haploinsufficiency is associated with reduced serum APOlipoprotein M levels. Diabetes.2003; 52(12):2989-2995.
    [90]Faber K, Axler O, Dahlback B, Nielsen LB. Characterization of APOM in normal and genetically modified mice. J Lipid Res.2004; 45(7):1272-1278.
    [91]章尧,陈昌杰,杨清玲,程龙强,王惠,黄丽珠.干扰肝细胞核因子-1α对HepG2细胞载脂蛋白M及胆固醇相关代谢酶表达的影响.中华肝脏病杂志,2011,19(2):121-126.
    [92]Faber K, Axler O, Dahlback B, Nielsen LB. Characterization of APOM in normal and genetically modified mice. J Lipid Res.2004; 45(7):1272-1278.
    [93]薛建军,王学清,蒋海斌.异丙酚在体外循环下炎症反应中作用的研究进展.甘肃科技纵横(医药卫生),2009,38(3):203-204.
    [94]钱桂生.全身炎症反应综合征、急性肺损伤与急性呼吸窘迫综合征.解放军医学杂志,1999;24(5):313-316.
    [95]邱海波,陈德昌,潘家绮.急性肺损伤的炎症反应机制与药物治疗探讨.中国危重病急救医学,1999;11(11):678-680.
    [96]柯剑娟,吴云,饶艳,王焱林.不同麻醉方式对炎性细胞因子的影响.临床麻醉学杂志,2007,23(9):23-724.
    [97]吕欣,俞卫峰.吸入性麻醉药物的抗炎作用.中华医学杂志,2008,88(35):2518-2519.
    [98]Schilling T, Kretzschmar M, Hachenberg T, Hedenstiema G, Kozian A. The Immune Response to One-Lung-Ventilation is not affected by Repeated Alveolar Recruitment Manoeuvres in Pigs. Minerva Anestesiol.2013 Feb 28. [Epub ahead of print]
    [99]Sheer all P'Hall GM. Cytokines in allaesthesia. Br J Anaesth.1997; 78: 201-209.
    [100]Kurosawa S. Anesthesia in patients with cancer disorders. Curr Opin Anaesthesiol.2012; 25(3):376-384.
    [101]吕蕴琦,苟建军,韩雪萍,马君志.几种麻醉药物对肿瘤手术患者血清IL-8、 IL-10水平的影响.郑州大学学报(医学版),2004,39(4):661-662.
    [102]林学颜,张玲.现代细胞与分子免疫学.科学出版社.北京,1999.
    [103]Devaud JC, Berger MM, Pannatier A, Marques-Vidal P, Tappy L, Rodondi N, Chiolero R, Voirol P. Hypertriglyceridemia:a potential side effect of propofol sedation in critical illness. Intensive Care Med.2012; 38(12):1990-1998.
    [104]Tang J, Chen X, Tu W, Guo Y, Zhao Z, Xue Q, Lin C, Xiao J, Sun X, Tao T, Gu M, Liu Y. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect. PLoS One.2011; 6(12):e27890.
    [105]金玄玉,戚其学,王昆鹏.异丙酚对内毒素血症大鼠肺中TNF-a作用影响的研究.中国血液流变学杂志,2004,14(2):169-172.
    [106]池信锦,程楠,黑子清,罗刚健,罗晨芳.双异丙酚预处理对内毒素诱导的人中性粒细胞释放白细胞介素-8和肿瘤坏死因子-a及相应mRNA表达的影响.中国急救医学,2010,30(1):65-68.
    [107]Tsai YC, Huang CC, Chu LM, Liu YC. Differential influence of propofol on different cell types in terms of the expression of various oxidative stress-related enzymes in an experimental endotoxemia model. Acta Anaesthesiol Taiwan. 2012; 50(4):159-166.
    [108]Sanders RD, Hussell T, Maze M. Sedation & immunomodulation. Crit Care Clin.2009; 25(3):551-570,
    [109]Unsal A, Devrim E, Guven C, Eroglu M, Durak I, Bozoklu A, Balbay MD. Propofol attenuates reperfusion injury after testicular torsion and detorsion. World J Urol.2004; 22(6):461-465.
    [110]Rodriguez-Lopez JM, Sanchez-Conde P, Lozano FS, Nicolas JL, Garcia-Criado FJ, Cascajo C, Muriel C. Laboratory investigation:effects of propofol on the systemic inflammatory response during aortic surgery. Can J Anaesth.2006; 53(7):701-710.
    [111]Liu YC, Chan JY, Tsai YC. Influence of propofol on blood pressure spectrum in sepsis and the role of inducible nitric oxide synthase. Acta Anaesthesiol Taiwan. 2009; 47(2):62-70.
    [112]Yeh CY, Chung SC, Tseng FL, Tsai YC, Liu YC. Biphasic effects of chronic intrathecal gabapentin administration on the expression of protein kinase C gamma in the spinal cord of neuropathic pain rats. Acta Anaesthesiol Taiwan. 2011;49(4):144-148.
    [113]Kokita N, Hara A. Propofol attenuates hydrogen peroxide-induced mechanical and metabolic derangements in the isolated rat heart. Anesthesiology.1996; 84(1):117-127.
    [114]Aarts L, van der Hee R, Dekker I, de Jong J, Langemeijer H, Bast A. The widely used anesthetic agent propofol can replace alpha-tocopherol as an antioxidant. FEBS Lett.1995 2; 357(1):83-85.
    [115]Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev.2008; 28(4):483-544.
    [116]Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism:mechanisms and consequences to the host. J Lipid Res.2004; 45(7):1169-1196.
    [117]Ricote M, Valledor AF, Glass CK. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage:effects on lipid homeostasis, inflammation, and atherosclerosis. Arterioscler Thromb Vasc Biol.2004; 24(2): 230-239.
    [118]Schumann RR, Kirschning CJ, Unbehaun A, Aberle HP, Knope HP, Lamping N, Ulevitch RJ, Herrmann F. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 19961; 16(7):3490-3503.
    [119]Hardard6ttir I, Kunitake ST, Moser AH, Doerrler WT, Rapp JH, Grunfeld C, Feingold KR. Endotoxin and cytokines increase hepatic messenger RNA levels and serum concentrations of APOlipoprotein J (clusterin) in Syrian hamsters. J Clin Invest.1994; 94(3):1304-1309.
    [120]Barlage S, Frohlich D, Bottcher A, Jauhiainen M, Muller HP, Noetzel F, Rothe G, Schutt C, Linke RP, Lackner KJ, Ehnholm C, Schmitz G APOE-containing high density lipoproteins and phospholipid transfer protein activity increase in patients with a systemic inflammatory response. J Lipid Res.2001; 42(2): 281-290.
    [121]Khovidhunkit W, Duchateau PN, Medzihradszky KF, Moser AH, Naya-Vigne J, Shigenaga JK, Kane JP, Grunfeld C, Feingold KR. APOlipoproteins A-IV and A-V are acute-phase proteins in mouse HDL. Atherosclerosis.2004; 176(1): 37-44.
    [122]Mulya A, Seo J, Brown AL, Gebre AK, Boudyguina E, Shelness GS, Parks JS. APOlipoprotein M expression increases the size of nascent pre beta HDL formed by ATP binding cassette transporter Al. J Lipid Res.2010; 51(3): 514-524.
    [123]Mulya A, Seo J, Brown AL, Gebre AK, Boudyguina E, Shelness GS, Parks JS. APO lipoprotein M expression increases the size of nascent pre beta HDL formed by ATP binding cassette transporter Al. J Lipid Res.2010; 51(3): 514-524.
    [124]Redinger RN. Nuclear receptors in cholesterol catabolism:molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J Lab Clin Med.2003; 142(1):7-20.
    [125]Richter S, Shih DQ, Pearson ER, Wolfrum C, Fajans SS, Hattersley AT, Stoffel M. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1 alpha:haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes.2003; 52(12):2989-2995.
    [126]Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A, Tracey KJ. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery.1999; 126(2):389-392.
    [127]郭远波,唐靖,杨艳琴,古妙宁。异丙酚对脂多糖诱导的小鼠巨噬细胞表达释放高迁移率族蛋白1的抑制作用.国际麻醉与复苏,2010,31(3):230-232.
    [128]朱俊杰,陈惠裕,钱燕宁.手术和镇痛对胆囊切除术患者血浆细胞因子含量的影响.临床麻醉学杂志,2003(10)::57-59.
    [129]Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Wu CH. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann N Y Acad Sci.2005; 1042:262-271.
    [130]Balyasnikova IV, Visintine DJ, Gunnerson HB, Paisansathan C, Baughman VL, Minshall RD, Danilov SM. Propofol attenuates lung endothelial injury induced by ischemia-reperfusion and oxidative stress. Anesth Analg.2005; 100(4): 929-936.
    [131]林健清,林财珠,蔡宏达.丙泊酚对大鼠肾缺血-再灌注期血清白细胞介素-8的影响.临床麻醉学杂志,2005,21(6):402-404.
    [132]Molloy RG, Mannick JA, Rodrick ML. Cytokines, sepsis and immunomodulation. Br J Surg.1993; 80(3):289-297.
    [133]West MA, Li MH, Seatter SC, Bubrick MP. Pre-exposure to hypoxia or septic stimuli differentially regulates endotoxin release of tumor necrosis factor, interleukin-6, interleukin-1, prostaglandin E2, nitric oxide, and superoxide bymacrophages. J Trauma.1994; 37(1):82-89; discussion 89-90.
    [134]张晋强,李彦东,马海利,白元生,李宏全.黄芪多糖对小鼠腹腔巨噬细胞iNOS基因表达及NO生成的影响.动物医学进展,2013,1.
    [135]张志广,李熳,闻淑军,江勇,翟浩宇,季英兰.胃腺癌cagA+幽门螺杆菌感染中HIF-1α和iNOS的表达及意义.天津医科大学学报,2012,18(4):441-443.
    [136]Lynn WA, Cohen J. Management of septic shock. J Infect. Tabbutt S. Heart failure in pediatric septic shock:utilizing inotropic support. Crit Care Med. 2001; 29(10 Suppl):S231-s236.
    [137]赵慧颖,陈红,刘丹,安友仲.严重感染患者血脂的代谢特点及其对死亡 的预测价值.中国医药,2012,7(12):1503-1505.
    [138]West MA, Li MH, Seatter SC, Bubrick MP. Pre-exposure to hypoxia or septic stimuli differentially regulates endotoxin release of tumor necrosis factor, interleukin-6, interleukin-1, prostaglandin E2, nitric oxide, and superoxide bymacrophages. J Trauma.1994; 37(1):82-89; discussion 89-90.
    [139]Stout RD. Macrophage activation by T cells:cognate and non-cognate signals. Curr Opin Immunol.1993; 5(3):398-403.
    [140]Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF. Gram-negative endotoxin:an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J.1991; 5(12):2652-2660.
    [141]Molloy RG, Mannick JA, Rodrick ML. Cytokines, sepsis and immunomodulation. Br J Surg.1993; 80(3):289-297.
    [142]李敏,刘耕陶.双环醇对脂多糖诱导巨噬细胞iNOS蛋白的表达和NF-κB活化的抑制作用.中国药理学通报,2006,22(12):1438-1443.
    [143]Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, Chen TL. Propofol suppresses macrophage functions and modulates mitochondrial membrane potentialand cellular adenosine triphosphate synthesis. Anesthesiology.2003; 98(5):1178-1185.
    [144]Adib-Conquy M, Cavaillon JM. Host inflammatory and anti-inflammatory response during sepsis. Pathol Biol (Paris).2012; 60(5):306-313.
    [145]周玲,潘家华.轮状病毒血症血清中干扰素-γ、肿瘤坏死因子-α与心肌损害的关系.安徽医科大学学报,2010,46(05):470-472.
    [146]张洲,徐元宏,李涛,梁珺.细胞因子IL-1β、IL-6、IL-8、TNF-a在细菌性血流感染中的诊断价值.安徽医科大学学报,2012,47(9):1079-1081.
    [147]West MA, Seatter SC, Bellingham J, Clair L.Mechanisms of reprogrammed macrophage endotoxin signal transduction after lipopolysaccharide pretreatment. Surgery.1995;118(2):220-228.
    [148]Chen RM, Liu HC, Lin YL, Jean WC, Chen JS, Wang JH. Nitric oxide induces osteoblast apoptosis through the de novo synthesis of Bax protein. J Orthop Res. 2002; 20(2):295-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700