用户名: 密码: 验证码:
柴达木第四系盐湖沉积地质微生物分布规律及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以柴达木盆地三湖地区涩北1井盐湖沉积剖面94-2400m样品为研究对象,综合运用磷脂脂肪酸(PLFA)和甘油二烷基甘油四醚(GDGTs)方法,系统研究了包括产甲烷菌在内的微生物(细菌、真菌、古菌)在整个垂直剖面上的分布特征,探讨了地质微生物的群落结构及可能的新陈代谢作用;结合总有机碳、水溶有机碳含量、含水率、pH值等理化条件,探寻了大陆深部微生物分布的主控因素;初步讨论了甘油二烷基甘油四醚的相关地质指标在深部湖泊沉积物中的应用性。本文通过对世界著名第四系生物气产区深部特定微生物功能群落的研究,揭示了大陆沉积物深部极端环境中微生物的分布特征,促使对生物气生成的下限及主控因素重新思考。
Phospholipid fatty acid (PLFA) and glycerol dialkyl glycerol tetraethers (GDGTs) analysis methods were employed to obtain the information of biomass, microbial community structure in the Sanhu area of Qaidam Basin between 96 to 2400.00m. The study proved the fact of the existence of microorganisms, and the microbial diversity was analyzed, and the possible metabolism, main control factors related to biomass and PLFAs diversity, such as TOC, DOC, water content, pH etc has also been disccussed. Besides, the application possibility of GDGTs in reconstructing paleotemperature has been inspected. All in all, the study of microbes in the world's biggest Quaternary biogas production area has revealed the evolution and distribution characteristics of microbes in deep saline sediments, which may give new consideration to the depth limit and control factors of biogas production.
引文
[1]陈俊,姚素平.地质微生物学及其发展方向.高校地质学报,2005,11(2):154~166.
    [2]Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. International Journal of Systematic and Evolutionary Microbiology,2002,52,7~76.
    [3]Conrad R, Erkel C, Rice W L. Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil Current Opinion in Biotechnology,2006,17:262~267.
    [4]Sinninghe Damste J S, Kuypers M M, Pancost R D, Schouten S. The carbon isotopic response of algae, (cyano) bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle:Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Organic Geochemistry,2008 (39):1703~1718.
    [5]Leininger S, Urich T, Schloter M, Schwark L, Qi L, Nicol G W, Prosser J I, Schuster S C, Schleper C. Archaea predominate among ammonia oxidizing prokaryotes in soils. Nature,2006, 442:806~809.
    [6]Sowers K R, DasSarma S, Blum P H. Genetransfer in archaea. In Methods for General and Molecular Microbiology. American Society for Microbiology,2007.
    [7]Allers T, Mevarech M. Archaeal genetics-the third way. Nat. Rev.Genet.,2005,6:58-73.
    [8]Astudillo C, Acevedo F. Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate. Hydrometallurgy,2008(92):11~15.
    [9]Galleguillos P, Remonsellez F, Galleguillos F, Guiliani N, Castillo D, Demergasso C. Identification of differentially expressed genes in an industrial bioleaching heap processing low-grade copper sulphideore elucidated by RNA arbitrarily primed polymerase chain reaction Hydrometallurgy,94 (2008) 148~154.
    [10]Zillig W, Schnabel R, Stetter K O. Archaebacteria and the origin of the eukaryotic cytoplasm. Curr Top Microbiol Immunol,1985:114~118.
    [11]Glansdorff N. On the Origin of Operons and Their Possible Role in Evolution Toward Thermophily. Journal of Molecular Evolution.1999,49(4):1432~1432.
    [12]Glansdorff N. About the last common ancestor, the universal life~ree and lateral gene transfer:a reappraisal. Mol Microbiol.2000,38(2):177~185.
    [13]Xue H, KaLok T, Christian M, Grosjean H, Wong J T. Transfer RNA paralogs:evidence for genetic code~amino acid biosynthesis coevolution and an archaeal root of life. Gene 2003, 310(22):59~66.
    [14]Huber H, Hohn M J, Rachel R, Fuchs T, Wimmer V C, Stetter K O.A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2002(417):63~67.
    [15]Waters E, Hohn M J, Ahel I,Graham D E, Adams,M D, Barnstead M,Beeson K Y, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton G G, Simon M, Soll D, Stetter K O, Short J M, Noordewier. The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. PNAS,2003,100(22):12984~ 12988.
    [16]Giulio M D. The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene, 2007 (401):108~113.
    [17]Grant W D. Bergey's Manual of Systematic Bacteriology, Vol.3. Baltimore:Williams and Wilkins Co,1989,2171~2254.
    [18]Tung H C, Bramall N E, Price P B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA,2005,102:18292~18296.
    [19]Muller-Santosa M, de Souza E M, Pedrosa F O, Mitchell D A, Longhi S, Carriere F, Canaan S, Kriegri N. First evidence for the salt dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimicaet Biophysica Acta,2009,4c:1~10.
    [20]Kubota K, Imachia H, Kawakami S, et al. Evaluation of enzymatic cell treatments for application of CARDFISH to methanogens. Journal of Microbiological Methods,2008,72(1): 54-59.
    [21]Takano Y, Horiuchib T, Marumo K. Vertical distribution of amino acids and chiral ratios in deep sea hydrothermal subvents of the Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean. Organic Geochemistry,35 (2004) 1105~1120.
    [22]Goda S, Sakuraba H, Kawarabayasi Y, Ohshima T. The first archaeal agmatinase from anaerobic hyperthermophilic archaeon Pyrococcus horikoshii:cloning, expression, and characterization. Biochimicaet Biophysica Acta,1748 (2005) 110~15.
    [23]Nishimasu H, Fushinobu S, Shoun H, Wakagi T. The First Crystal Structure of the Novel Class of Fructose-1,6-bisphosphatase Present in Thermophilic Archaea. Biochimica et Biophysica Acta,2004,12,949~959.
    [24]Park Y J, Choi S Y, Lee H B. A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus PI; purification, characterization, and expression. Biochimicaet Biophysica Acta,2006,1760:820~828.
    [25]Shimizu Y, Sakuraba H, Doi K. Molecular and functional characterization of D-3-phosphoglycerate dehydrogenase in the serine biosynthetic pathway of the hyperthermophilic archaeon Sulfolobus tokodaii. Archives of Biochemistry and Biophysics, 2008,470:120~128.
    [26]Sakuraba H, Yoneda K, Asai I. Structure of Laspartate oxidase from the hyperthermophilic archaeon Sulfolobus tokodaii. Biochimica et Biophysica Acta,2008 (1784):563~571.
    [27]Maltseva O, Oriel P. Monitoring of an Alkaline 2,4,6-Trichlorophenol degarding Enrichment Culture by DNA Finger printing Methods and Isolation of the Responsible Organnism, Haloalkaliphilic nocardioidessp. Appl.environ. Microbi.,1997,63:4145~4149.
    [28]Sara L. Caldwe, Laidler J R, Elizabeth A. Brewer Anaerobic Oxidation of Methane: Mechanisms, Bioenergetics and the Ecology of Associated Microorganisms. Environ. Sci. Technol.,2008,42(18),6791~6799.
    [29]Smul A, Verstrate W. Retention of sulfate reducing bacteria in expanded granular sludge blanket reactor. Water Environ Res,1999,71:427.
    [30]Buckley D H, Graber J R, Schmidt T M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Applied and Environmental Microbiology,1998,64:4333~4339.
    [31]冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义.地球科学进展,2005,20(7):732~739.
    [32]Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology,2005,116:271~282.
    [33]Liu W M, Chen F, Yang Q. The Absorption and the Scattering in the High Resolution Image Storageusing Bacteriorhodopsin Film. Acta Photonica Sinica,2002,31(1):1~5.
    [34]Birge R R. Nature of the primary photochemical events in rhodopsin and bacteriorhodpsin. Biochem biophys Acta,1990(1016):293~327.
    [35]Pdennis L, Shimmin. Evolutionary Divergence and Salinity Mediated Selection in Halophilic Archaea. Microbiol. And Molecul. Biol. Rev,1997,61(1):90~104.
    [36]Rothschild L J, Mancinelli R L. Life in extreme environments. Nature,2001,409:1092~ 1101.
    [37]Banfield J F, Cervini-Silva J, Nealson K M. Molecular Geomicrobiology. The Mineralogical Society of America,Chantilly, VA,2005,1~294.
    [38]Castello J D, Rogers S O. Life in Ancient Ice. Princeton:Princeton University Press,2005, 1~307.
    [39]Gerday C, Glansdorff N. Physiology and Biogeoch emistry of Extremophiles. Washington D. C.:ASM Press,2007,1~450.
    [40]Konhauser K. Int roduct ion to Geomi crobiology. Oxford, UK:Blackwell Publishing,2006.
    [41]Wilcock W D, Delong E F, Kelley D S, Baross J A, Cary S C. The Subseafloor Biosphere at Mid-Ocean Ridges. Washington, D. C:American Geophysical Union,2004.
    [42]董海良,于炳松,吕国.地质微生物学中几项最新研究进展.地质论评,2009,55(4):552~580.
    [43]党宏月,宋林生,李铁刚,等.海底深部生物圈微生物的研究进展.地球科学进展,2005,20:1306~1313.
    [44]Onstott T C, Phelps T J, Colwell F S, Ringelberg D, White D C, Boone D R, McKinley J P, Stevens T O, Long P E, Balkwill D L, Griffin W T, Kieft T. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiology Journal,1998,15:353~385
    [45]Fredrickson J K, McKinley J P, Bjornstad B N, Long P E, Ringelberg D B, White D C, Krumholz L R, Suflita J M, Colwell F S, Lehman R M, Phelps T J, Onstott T C.Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale sandstone sequence, Northwestern New Mexico. Geomicrobiology Journal,1997,14:183~ 202.
    [46]Zhang G X, Dong H L, Xu Z Q, Zhao D G,Zhang C L. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China.Applied and Environmental Microbiology,2005,3213~3227.
    [47]Zhang G, Dong H, Jiang H, Xu Z, Eberl D. Unique microbial community in drilling fluid from Chinese Continental Scientific Deep Drilling. Geomicrobiology Journal,2006,23: 499~514.
    [48]Pedersen K. Diversity and activity of microorganisms in deep igneous rock aquifers of the fennoscandian shield. In:Frederick J F and Fletcher M. eds. Subsurface Microgeobiology and Biogeochemistry. New York:Wiley Liss,2001,97~139.
    [49]DeFlaun M F, Fredrickson J K, Dong H, Pfiffner S M, Onstott T C, Balkwill D L, Streger S H, Stackebrandt E, Knoessen S, van Heerden E. Isolation and characterization of a Geobacillus thermol eovorans species from an ultra-deep South African gold mine. Systematic and Applied Microbiology,2007,30:152~164.
    [50]Kieft T L, McCuddy S M, Onstott T C, Davidson M, Lin L H, Mislowack B, Pratt L, Boice E, Lollar B S, Lippmann Pipke J, Pfiffner S M, Phelps T J, Gihring T, Moser D, Heerden A. Geochemically generated, energy rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiological Journal,2005,22:325~335.
    [51]Takai K, Moser D P, Onstott T C, Spoelstra N, Pfiffner S M, Dohnalkova A, Fredrickson J K. Alkaliphilus transvaalen sisgennovspnov, an extremely alkaliphilic bacterium isolated from a deep South African gold mine. International Journal of Systematic and Evolutionary Microbiology,2001,51:1245~1256.
    [52]Trimarco E, Balkwill D, Davidson M, Onstot t T C. In situ enrichment of a diverse community of bacteria from a 4~5 km deep fault zone in South Africa. Geomicrobiology Journal,2006,23:463-473.
    [53]Amend J P, Teske A. Expanding frontiers in deep subsurface microbiology. Palaeogeography Palaeoclimatology Palaeoecology,2005,219:131~155.
    [54]Fredrickson J K, Balkwill D L. Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiology Journal,2006,23:345~356.
    [55]Parkes R J, Wellsbury P. Deep biospheres. In:Bull A T. ed. Microbial Diversity and Biop rospecting. Washington D.C.:ASM Press,2004,120~129.
    [56]Pedersen K. Microbial life in deep granitic rock. FEMS Microb iology Review,1997,20: 399~414.
    [57]Pedersen K. Exploration of deep intraterrestrial microbial life:current perspectives. FEMS Microbiology Letters,2000,185:9~16.
    [58]杨文采,杨午阳,程振炎.中国大陆科学钻探孔区三维地震资料的初步解释.岩石学报,2004,20:127~138.
    [59]许志琴.中国大陆科学钻探工程的科学目标及初步成果.岩石学报,2004,20:1~8.
    [60]Garland J L, Mill A L. Classification and characterisation of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilisation. Appl Environ Microbiol,1991,57,2351~2359.
    [61]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol.1998,35:103~115.
    [62]Preston Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles a critique. FEMS Microbiol Ecol,2002, 26:1~14.
    [63]Degens B P, Harris J A. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem,1997,29:1309~1320.
    [64]Campbell C D, Chapman S J, Cameron C M, Davidson M S, Potts J M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol.,2003,69:3593-3599.
    [65]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性,2004,1 2(4):456~465.
    [66]Tunlid A, Hoitink H J, Low C, White D C. Characterization of bacteria that suppress Rhizoctonia damping off in bark compost media by analysis of fatty acid biomarkers. Appl. Environ. Microbiol.,1991,55:1368~1374.
    [67]Crossman Z M, Ineson P, Evershed R P. The use of C-13 labelling of bacterial lipids in the characterisation of ambient methane-oxidizing bacteria in soils. Organic Geochem,2005, 36(5):769~778.
    [68]Lechevalier M P. Lipids in bacterial taxonomy. In:O'Leary W M.ed. Practical Handbook of Microbiology. Boca Raton, Fla.:CRC,1989,555~561.
    [69]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:A review. Biol. Fert. Soils,1999,29:111~129.
    [70]Haack S K, Garchow H, Odelson D A, et al. Accuracy reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol., 1994,60:2483~2493.
    [71]Ratledge C, Wilkinson S G. Microbial Lipids, Vol.1 and 2. Academic Press, London,1998.
    [72]Shah H N. The genus Bactericides and related taxa. In:Balows A, Truper H G, Dworkin M. eds. The Prokaryotes. New York, Berlin,Heidelberg:Springer,1992.3593~3608.
    [73]Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial community in soil. In:Stotzky G, Bollag J M. eds. Soil Biochem. New York:Dekker,1992:229~262.
    [74]Harwood J L, Russel N J. Lipids in Plants and Microbes. London:Allen and Unwin,1984.
    [75]Kroppenstedt R M. The genus Nocardiopsis. In:Balows A, Triiper H G, Dworkin M, et al. eds. The Prokaryotes. Berlin, Heidelberg, New York:Springer,1992,1139~ 1156.
    [76]Vahjen W, Munch J C, Tebbe C C. Carbon source utilization of soil extracted microorganisms as a tool to detect the effect of soil supplemented with genetically engineered and non-engineered Corynebacterium glutamicum and a recombinant peptide at the community level. FEMS Microbiol. Ecol.,1995,18:317~328.
    [77]Vestal J R, White D C. Lipid analysis in microbial ecology:Quantitative approaches to the study of microbial communities. Bioscience,1989,39:535~541.
    [78]Hill G T, Mitkowski N A, Aldrich W L. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol.,2000,15:2~36.
    [79]Joergensen R G, Potthoff M. Microbial reaction in activity, biomass, and community structure after longterm continuous mixing of a grassland soil. Soil Biol. Biochem.,2005,37 (7):1249-1258.
    [80]Sakamoto K, Iijima T, Higuchi R. Use of specific phospholipid fatty acids for identifying and quantifying the externalhyphae of thearbuscular mycorrhizal fungus Gigasporarosea. Soil Biol. Biochm.,2004,36(11):1827~1834.
    [81]White D C, Bobbie R J, Herron J S, King J D, Morrison S J. Biochemical measurements of microbial mass and activity from environmental samples. In:Costerton J W, Colwell R R. eds. Native Aquatic Bacteria:Enumeration, Activity and Ecology. American Society for Testing and Materials, Philadelphia,1979.
    [82]Dang Y, Zhao W, Su A, Zhang S, Li M, Guan Z, Ma D, Chen X, Shuai Y, Wang H, Tan Y, Xu Z. Biogenic gas systems in eastern Qaidam Basin. Marine and Petroleum Geology,2008, 25:344~356.
    [83]戚厚发,关德师,钱贻伯,等.中国生物气成藏条件.北京:石油工业出版社,1997.
    [84]Wu Q L, Zwart G, Schauer M, van Agterveld M K, Hahn M W. Bacterioplankton community composition along a salinity gradient of sixteen high mountain lakes located on the Tibetan Plateau. Applied and environmental microbiology,2006,5478~5485.
    [85]Richard M P. Consideration and applications of the illite/smectite geothermometer in Mississippian age. Clay and Clay Minerals,1993,41:119~133.
    [86]Essene E J, Peacor D R. Claymineral thermometry-a critical perspective. Clay and Clay Minerals,1995,40:540~553.
    [87]蓝先洪.海洋沉积物中粘土矿物组合特征的古环境意义.海洋地质动态.2001,17:5~7.
    [88]Valter B, Alessandra P, Pietro M, Elisabetta B, Enza A. Influence of climate on the iron oxide mineralogy of Terra Rossa. Clay and Clay Minerals,1992,40:8~13.
    [89]汤艳杰,贾建页,谢先德.粘土矿物的环境意义.地学前缘,2002,9:337~344.
    [90]Singer S J, Nicholsom G L. The fluid mosaic model of the structure of cell membranes. Science,1972,175:720.
    [91]Kates, Solis L, Harrington R W. The Pedagogical Seminary and Journal of Genetic Psychology,1952,80,193~210.
    [92]Paul E A, ClarkF E. Soil microbiology and biochemistry (2nd Edn.). London:Academic Press. 1996:35-70.
    [93]Drenovsky R E, Elliott G N, Graham K J, Scow K M. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biology & Biochemistry,2004,36:1793~1800.
    [94]Syakti A D, Mazzella I N, Nerini D, Guiliano M, Bertrand J C, Doumenq P. Phospholipid fatty acid of a marine sedimentary microbial community in a laboratory microcosm:response to petroleum hydrocarbon contamination. Organic Geochemistry,2006,37 (11):1617~ 1628.
    [95]Boschker H T S, Kromkamp J C, Middelburg J J. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr,2005,50(1):70~80.
    [96]Mac Naughton S J, Stephen J R, Venosa A D, Davis G A, Chang Y J, White D C. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol.1999,65,3566-3574.
    [97]Boschker H T S, deBrouwer J F C, Cappenberg T E. The contribution of macrophyte-derived organic matter to microbial biomass in salt marsh sediments:Stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr,1999,44(2):309~319.
    [98]Lundquist E J, Scow K M, Jackson L E, Uesugi S L, Johnson C R. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol Biochem,1999,31:1661~1675.
    [99]Kasurinen A, Keinanen M M, Kaipainen S, Nilsson L, Vapaavuori E, Kontro M H, Holopainen T. Below ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biol,2005,11(7):1167~1179.
    [100]Sundh I, Nilsson M, Borg P. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol,1997,63:1476~1482.
    [101]White D C, Findlay R H. Biochemical markers for measurement of predation effects on the biomass. Community structure nutritional status, and metabolic activity of microbial biofilms. Hydrobiologia,1988,159:119-132.
    [102]Petersen S O, Klug M J. Effects of sieving, storage, and incubation temperature on the phospholipid fatty profile of a soil microbial community. Applied and Environm ental M icrobiology,1994,60:72421-72430.
    [103]Guckert J B, Hood M A, White D C. Phospholipid ester linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol,1986,52(4):794~801.
    [104]Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology.1959,37:911~917.
    [105]Tunlid A. Baird B H, Trexler M B. Determination of phospholipid ester-linked fatty acid and poly B-hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizo sphere of the rape plant B rassicanapus (L). Can J M icrobiol,1985,31:1113~1119.
    [106]Roslev P, Madsen P L, Thyme J B, Henriksen K. Degradation of Phthalate and Di(2-Ethylhexyl)phthalate by Indigenous and Inoculated Microorganisms in Sludge Amended Soil. Applied and Environmental Microbiology,1998,64(2):4711~4719.
    [107]Menzel D, Hopmans E C, Schouten S, Sinninghe Damste J S. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea. Palaeogeography Palaeoclimatology Palaeoecology,2006,239:1~15.
    [108]Schouten S, Forster A, Panoto F E, Damste J S. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse world. Organic Geochemistry,2007,38:1537~1546.
    [109]Joshua S, Teri C B, Matthew W. Microbial stress response physiology and ITS implications for ecosystem function. Ecology,2007,88(6):1386~1394.
    [110]Kim J H, Schouten S, Hopmans E C, Donner B, Sinninghe Damste J S, Global sediment core top calibration of t he TEXg6 paleot hermometer in t he ocean. Geochimica et Cosmochimica Acta,2008,72:1154~1173.
    [111]Findlay R H, King G M., Watling L. Efficacy of Phospholipid Analysis in Determining Microbial Biomass in Sediments. Appl Environ Microbiol,1989,55(11):2888~2893.
    [112]DasSarma S, Arora P. Halophiles. Encyclopedia of Life Sciences. London:Nature Publishing Group,2001,1~9.
    [113]Oren A. The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations:implications for the functioning of salt lake ecosystems. Hydrobiologia,2001, 466:61~72.
    [114]Oren A. Halophilic Microorganisms and Their Environments. Boston:Kluwer Academic, 2002,1~575.
    [115]Frontier S. Diversity and structure in aquatic ecosystems.Ocean Mar. Biol. Ann. Review 1985,23:253~312.
    [116]Dong H, Zhang G, Jiang H, Yu B, Leah, R C, Courtney R L, Fields M W. Microbial diversity in sediment of saline Qinghai Lake, China:linking geochemical controls to microbial ecology. Microb Ecol,2006,51:65~82.
    [117]Jiang H, Dong H, Yu B, Li Y X, Zhang C. Microbial response tosalinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau. Environ Microbiol,2007,9:2603~2621.
    [118]Whitman W B, Coleman D C, Wiebe W J. Prokaryotes:the unseen majority. Proc Natl Acad Sci USA,1998,95(12):6578~6583.
    [119]Parkes R J, Cragg B A, Bale S, Getlifff J M, Goodman K, Rochelle P A, Fry J C, Weightman A J, Harvey S M. Deep Bacterial Biosphere in Pacific Ocean Sediments. Nature, 1994,371:410~413.
    [120]Parkes R J, Cragg B A, Wells bury P. Recent studied on bacterial population and processes in subseafloor sediments:a review. Hydrogeology Journal,2000,8:11~28.
    [121]Klinkhammer G P, Lambert C E. Preservation of organic matter during salinity excursions. Nature,1989,339:271~274.
    [122]De Lange G J, ten Haven H L. Recent sapropel formation in the eastern Mediterranean. Nature,1983,305:797~798.
    [123]Wallmann K, Aghib F S, Castradori D, Cita M B, Suess E, Greinert J, Rickert D. Sedimentation and formation of secondary minerals in the hypersaline Discovery Basin, eastern Mediterranean. Mar Geol,2002,186:9~28.
    [124]Kalbitz K, Solinger S, Park J H, Michalzik B, Matner E. Controls on the dynamics of dissolved organic matter in soils:A review. Soil Science,2000,165(4):277~304.
    [125]帅燕华,张水昌,陈建平,等.深部生物圈层微生物营养底物来源机制及生物气源岩特征分析.中国科学D辑,2010,40(7):866~872.
    [126]Stevens T O, McKinley J P. Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers. Science,1995:450~455.
    [127]Jiang H, Dong H, Zhang G, Yu B, Chapman L R, Fields M W. Microbial diversity in water and sediment of Lake Chaka:an athalassohaline lake in northwestern China. Appl Environ Microbiol,2006,72:3832-3845.
    [128]韦革宏.微生物学.北京:科学出版社,2008.
    [129]Kamaludeen S B, Megharaj M, Naidu R, Singleton I, Juhasz A L, Hawke B G, Sethunathan N. Microbial activity and phospholipid fatty acid pattern in longterm tannery waste contaminated soil. Ecotoxicol Environ Safety,2003,56(2):302~310.
    [130]Kelly J J, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J Environ Qual,1998,27(3):609~617.
    [131]Ellis R J, Neish B, Trett M W, Best J G, Weightman A J, Morgan P, Fry J C. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. J Microbiol Meth,2001,45(3):171~185.
    [132]Kandeler E, Tscherko D, Bruce K D, Stemmer M, Hobbs P J, Bardgett R D, Amelung W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils,2000,32(5):390~400.
    [133]Rhoades J D. Salinity:electrical conductivity and total dissolved solids,1996:417~435.
    [134]Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem,2003,35(7):955~963.
    [135]Frostegard A, Baath E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biology and Biochemistry.1993,25:723~730.
    [136]Oren A. Diversity of halophilic microorganisms:environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol,2002,28:56~63.
    [137]帅燕华,张水昌,赵文智.古菌细胞膜类脂化合物分析与初步应用.地质学报,2007,81(1):16~22.
    [138]帅燕华,张水昌,苏爱国,等.柴达木盆地三湖地区产甲烷作用仍在强烈进行的地球化学证据.中国科学D辑,2009,39(6):734~740.
    [139]Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol,1999,161:291~314.
    [140]Koyama T. Gaseous Metabolism in Lake Sediments and Paddy Soils. In:Columbo U, Hobson G D, eds. Advances in Organic Geochemistry. New York:Macmillan,1964.363~ 375.
    [141]Cappenberg T E, Jongejan E. Microenvironments for sulfate reduction and methane production in freshwater sediments. In:Krumbein W E, ed. Environmental Biogeochemistry and Geomicrobiology. Ann. Arbor. Sci. Publ., Ann Arbor, MI,1978,129~138.
    [142]Giblin A E, Wieder R K. Sulphur cycling in marine and freshwaterwetlands/Howarth RW, Stewart JWB, IvanovMV, eds. Sulphur Cycling on the Continents:Wetlands, Terrestrial Ecosystems, and Associated Water Bodies,SCOPE 48. Chichester:John & Sons:1992,85~ 124.
    [143]Belyakova E V, Rozanova E P, Borzenkov I A, Tourova T P, Pusheva M A, Lysenko A M, Kolganova T V. The new facult atively chemolithoautot rophic, moderately halophilic, sulfat e-reducing bacterium Desulfovermiculus halophilusgen.nov., isolated from an oil field. Microbiology,2006,75:161~171.
    [144]Jakobsen T F, Kjeldsen K U, Ingvorsen K. Desulfohalobiumuta hense sp. n ov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. International Journal of Systematic and Evolutionary Microbiology,2006,56:2063~2069.
    [145]Brambilla E, Hippe H, Hagelstein A, Tindall B J, Stackbrandt E.16S diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys. Antarctica. Extremephiles,2001,5:23~33.
    [146]Kerkar S, Bharathi P L. Stimulation of sulfate-reducin gactivity at salt-saturation in the salterns of Ribandar, Goa, India Geomi crobioiogy Journal,2007,24:101~110.
    [147]Sorensen K B, Canfield D E, Teske A P, Oren A. Community composition of a hypersaline endoevaporitic microbial mat. Applied and Environmental Microbiology,200571:7352~ 7365.
    [148]Orphan V J, House C H, Hinrichs K U. Methane consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science,2001,293:484~487
    [149]Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation. Environ Microbiol,2000,2:477~484.
    [150]Hoehler T M, Alperin M J, Albert D B. Field and laboratory studies of methane oxidation in an anoxic marine sediment evidence for a methanogen sulfate reducer consortium. Global Biogeochem Cycles,1994,8:451~463.
    [151]Kappler A, Newman D K. Formation of Fe(Ⅲ)-minerals by Fe(II)-oxidizing photoautot rophic bacteria. Geochimicaet Cosmochimica Acta,2004,68:1217~1226.
    [152]Zavarzina D G, Sokolova T G, Tourova T P, Chernyh N A, Kostrikina N A, Elizaveta A. Bonch-Osmolovskaya E A. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles,2007,11(1):1~7.
    [153]Champine J E, Goodwin S. Acetate catabolism in the dissimilatory iron-reducing isolate GS 215. J Bacteriol,1991,173:2704~2706.
    [154]Peter M B, Stams A M. Influence of alternative elect ron acceptors on met hanogenesis in rice paddy soils. Chemosphere,1999,39:167~182.
    [155]Achtnich C F, Conrad R. Competition for elect ron donors among nit rate reducers, ferric iron reducers, sulfate reducers, and met hanogens in anoxic paddy soil. Biol Fertil Soils, 1995,19:65-72.
    [156]Widdel F, Schnell S, Heising S, Ehrenreich A, Asssmus B, Schink B. Ferrous iron oxidation by anoxygenic phototrophic bacteria.Nature,1993,362:834~836.
    [157]Straub K L, Benz M, Schink B, Widdel F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology,1996,62(4):1458~1460.
    [158]王远亮,夏颖,董海良,等.中国大陆科学钻探地下岩心样品中的细菌群落分析.岩石学报,2005,21(2):5334~5339.
    [159]Prosser J I, Embley T M. Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek,2002.81:1654~179.
    [160]Voytek M A, Priscu J C, Ward B B. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia, 1999,401:113~130.
    [161]de Rosa M, Gambacorta A. The lipids of archaebacteria. Progress in Lipid Research 1988, 27:153-175.
    [162]Teixidor P, Grimalt J O, Pueyo J J, Rodriguez Valea F. Isopranylglycerol diethers in non~ alkaline evaporitic environment. Geochimica et Cosmochimica Acta,1993,57:4479~4490.
    [163]Pauly G G, van Vleet E S. Acyclic archaebacterial ether lipids in swamp sediments. Geochimica et Cosmoehimica Acta,1986,50,1117~1125.
    [164]Brassell S C, Wardroper A K, Thomson I D, Maxwell J R, Eglinton G. Specific acyclic isoprenoids as biological markers of methanogenic bacteriain marine sediments. Nature, 1981,290:693~696.
    [165]Kohnen M L, Schouten S, Sinninghe Damst J S, de Leeuw J W, Merrit D A, Hayes J M. Recognition of palaeobiochemicals by a combined molecular sulfur and isotope geochemical approach. Science,1992,256,358~362.
    [166]Schouten S, vander Maarel M C, Huber R, Damster J S.2,6,10,15,19-Pentamethylicosenes in methanolobus bombayensis, a marine methanogenic archaeon, and in methanosarcina mazei. Organic Geochemistry,1997,26:409~414.
    [167]李曙光,皮昀丹,张传伦.古菌研究及其展望.中国科学技术大学学报,2007,37(8):830~838.
    [168]Eguchi T, Nishimura Y, Kakinuma K. Importance of the isopropylidene terminal of geranyl group for the formation of tetraether lipid in methanogenic archaea. Tetrahedron Letters, 2003 (44):3275~3279.
    [169]Sinninghe Damste J S, Hopmans E C, Pancost RD. Newly discovered non-isopreniod glycerol dialkyl glycerol tetraether lipids in sedments. Journal of the Chemical Society, Chemical Communications,2000,1683~1684.
    [170]Hopmans E C, Weijers J H, Herfort L, Sinninghe Damste J S, Schouten S. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters,2004,224:107~116.
    [171]Weijers J H, Schouten S, Hopmans E C, Geenevasen J J, David O P, Coleman J M, Pancost R D, Sinninghe Damste J S. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology,2006,8:648~657.
    [172]Schouten S, Meer van der M J, Hopmans E C, Rijpstra W C, Reysenbach A L, Ward D M, Sinninghe Damste J S. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol,2007,73:6181~6191.
    [173]Schouten S, Hopmans E, Schefuss E, Damste J S. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures. Earth Planet Sci Letts,2002,204:265~274.
    [174]Sinninghe Damste J S, Hopmans E C, Schouten S. van Duin A C T, Geenevasen J A J. Crenarchaeol:the characteristic glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. J. Lipid Res,2002,43:1641~1651.
    [175]Sinninghe Damste J S, Ossebaar J,Schouten A B, Verschuren D. Fluxes and distribution of tetraether lipids in an equatorial African lake:Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta,2009,73(14):4232~4249.
    [176]Weijers J H, Schouten S, Donker van den J C, Hopmans E C, Sinninghe Damste J S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta,2007,71:703~713.
    [177]Peterse F, Schouten S, van der Meer J, van der Meer M J, Sinninghe Damste J S. Distribution of branched tetraether lipids in geothermally heated soils:Implications for the MBT/CBT temperature proxy. Organic Geochemistry,2009,40:201~205.
    [178]Stadnitskaia A, Blinova V, Ivanov M K, Baas M, Hopmans E C, van Weering T E, Sinninghe Damste J S. Lipid biomarkers in sediments of mud volcanoes from the Sorokin Trough, NE Black Sea:Probable source strata for the erupted material. Organic Geochemistry,2007,38:67~83.
    [179]Pancost R, Hopmans E C, Sinninghe Damst J S, et al. Archaeal lipids in Mediterranean cold seeps:molecular proxies for anaerobic met hane oxidation. Geochimicaet Cosmochimica Acta,200!,65 (10):1611~1627.
    [180]Zhang C L, Pancost R D, Sassen R, Qian Y, Macko S A. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry,2003,34:827~836.
    [182]Gontharet S, Stadnitskaia A, Bouloubassi I, Sinninghe Damste J S. Palaeo methane-seepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea). Marine Geology,2009,261:105~113.
    [183]Schouten S, Hopmans E C, Forster A, Breugel Y V, Kuypers M M, Damste J S. Extremely high seasurface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology,2003,31:1069~1072.
    [184]Weijers J H, Schouten S, Spaargaren Otto C, Sinninghe Damste J S. Occurrence and distribution of tetraether membrane lipids in soils:Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry,2006,37:1680~1693.
    [185]Schouten S, Hoefs M J L, Damste J S. A molecularand stable carbon isotopic study of lipids in late Quaternary sediments from the Arabian Sea. Org Geochem,2000,31:509~521.
    [186]Ingalls A E, Shah S R, Hansman R L, Lihini I, Aluwihare L I, Santos G M, Druffel E M, Pearson A. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA,2006,103:6442~6447.
    [187]Weijers J H, Schouten S, van der Linden M, van Geel B, Sinninghe Damste J S. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog. FEMS Microbiology Letters,2004,239:51~56.
    [188]Pearson A, Huang Z, Ingalls A E, Romanek C S, Wiegel J, Freeman K H, Smittenberg R H, Zhang C L. Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol,2004, 70:5229~5237.
    [189]Zhang C L, Pearson A, Li Y L, Mills G, Wiegel J. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol, 2006,72:4419~4422.
    [190]Weijers J H, Schouten S. Schefu(3 E, Schneider R R, Sinninghe Dam(?)t J S. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:A multi-proxy approach in a 20,000 year sediment record from the Congo deepsea fan. Geochimica et Cosmochimica Acta,2009,73:119~132.
    [191]Uda I, Sugai A, Itoh Y H, Itoh T. Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids,2001,36:103~105.
    [192]Uda I, Sugai A, Itoh Y H, Itoh T. Variation in molecular species of core lipids from the order Thermoplasmales strains depends on growth temperature. J Oleo Sci,2004,53:399~ 404.
    [193]Wuchter C, Schouten S, Coolen M J L,Sinninghe Damste J S. Temperature2dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography,2004,19:4028.
    [194]Huguet C, Smittenberg R H, Boer W, Sinninghe DamsteJ S,Schouten S. Twentiet h century proxy records of temperature and soil organic matter input in the Drammensfjord, southern Norway. Organic Geochemistry,2007,38:1838~1849.
    [195]Castaneda I S, Schefuβ E, Patzold J.Sinninghe Damste J S,Weldeab S, Schouten S. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years.PALEOCEANOGRAPHY,2010,25.
    [196]Forster A, Schouten S, Baas M, Sinninghe Damste J S. Mid-Cretaceous (A 1 bian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology,2007,35:919~ 922.
    [197]Hofmann B A, Farmer J D. Filamentous fabrics in low-temperaturemineral assemblages: Are they fossil biomarkers? Implica-tions for the search for a subsurface fossil record on the earlyEarth and Mars[J].Planetary and Space Science,2000,48:1077~1086.
    [198]Sluijs A, Schouten S, Pagani M, Woltering M. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum [J]. Nature,2006,441:610~613.
    [199]Zachos J C, Schouten S, Bohaty S. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and isotope data [J]. Geology,2006,34:737~740.
    [200]Powers L A, Johnson T C, Werne J P, Castaneda I S, Hopmans E C, Sinninghe Damste J S, Schouten S. Large temperature variability in the southern African tropics since the Last Glacial Maximum. Geophysical Research Letters,2005(32):L08706.
    [201]Blaga C, Reichart G J, Heiri O, Sinninghe Damste J S. Tetraether membrane lipid distributions in lake particulate matter and sediments:a study of 47 European lakes along a North-South transects. J Paleolimnol,2009,41:523~540.
    [202]Powers L, Werne J P, Vanderwoude A J, Sinninghe Damste J S, Hopmans E C, Schouten S.Applicability and calibration of the TEX86 paleothermometer in lakes. Organic Geochemistry,2010,41(4):404~413.
    [203]Sinninghe Damste J S, Hopmans E C, Schouten S, van Duin A C T, Geenevasen J A J. Crenarchaeol:the characteristic glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. J. Lipid Res,2002,43:1641~1651.
    [204]Shah S R, Mollenhauer G, Ohkouchi N, Eglinton T I, Pearson A. Origins of archaeal tetraether lipids in sediments:Insights from radiocarbon analysis. Geochim. Cosmochim. Acta,2008,72:4577~4594.
    [205]Herfort L, Schouten S, Boon J P, Sinninghe Damste J S. Application of the TEX86 temperature proxy in the southern North Sea. Organic Geochemistry,2006,37:1715~ 1726.
    [206]Kim J H, Crosta X, Michel E, Schouten S, Duprat J, Sinninghe Damste J S. Impact of lateral transport on organic proxies in the southern ocean. Quaternary Research,2009b,71:246~ 250.
    [207]Schouten S, Hopmans E. C., Schefu E. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures. Earth Planet. Sci. Lett.2004,265~274.
    [208]Bechtel A, Smittenberg R H, Bernasconi S M, Schubert C J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake:insights into sources and GDGT-based proxies. Organic Geochemistry,2010,41(8):822~832.
    [209]Damste J S S, Schouten S, Hopmans E C, van Duin A C T, Geenevasen J A J. Crenarchaeol:the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research,2002,43 (10): 1641-1651.
    [210]Pancost R D, Sinninghe Damste J S, de Lint S, van der Maarel M J E C, Gottschal J C, the Medinaut Shipboard Scientific Party. Biomarker Evidence for Widespread Anaerobic Methane Oxidation in Mediterranean Sediments by a Consortium of Methanogenic Archaea and Bacteria. Appl Environ Microbiol,2000,66(3):1126~1132.
    [211]Valentine G A, Krier D J, Perry F V, Heiken G. Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. Journal of Volcanology and Geothermal Research,2007, 161:57-80.
    [212]Gliozzi A, Paoli G, DeRosa M, Gambacorta A. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophlic archaeabacteria. Biochimica et Biophysica Acta,1983,735:234~242.
    [213]Weijers J H. Soil-derived branched tetraether membrane lipids in marine sediments: reconstruction of past continental climate and soil organic matter fluxes to the ocean. Geologica Ultraiectina,275, PhD thesis, Utrecht University, The Netherlands,2007.
    [214]Lin L H, Hall J, Pipke L J, Ward J A, Lollar B S, DeFlaun M, Rothmel R, Moser D P, Gihring T M, Mislowack B, Onstott T C. Radiolytic H2 in continental crust:Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems,2005,6, Q07003.
    [215]Lin L H, Wang P L, Rumble D, Lippmann, Pipke J, Boice E, Pratt L M, Lollar B S, Brodie E L, H azen T C, Andersen G L, DeSantis T Z, Moser D P, Kershaw D, Onstott T C. Longterm sustainability of a high energy, low diversity crustal biome. Science,2007,314: 479~482.
    [216]邬光辉,李启明,张宝收,等.塔中1号断裂坡折带构造特征及勘探领域.石油学报,2005,26(1):28~30.
    [217]赵靖舟,李启明.塔里木盆地油气藏形成与分布规律.北京:石油工业出版社,2003.
    [218]Liu X Z, Schneider W B, Tan W C. Biogenic methane and burrowing as important controlling factors in the early diagenesis of Permian carbonate rocks in South Sichuan, China. Facies Erlangen,1988,18:289~302.
    [219]Ekern O F. Late Oligocene gas accumulations, Block, Norway. In:Graham T. (ed.), Habitat of hydrocarbons on the Norwegian continental shelf. Norwedian Petrolium Society, Oslo, 1986,143~149.
    [220]Schoell M. Multiple origins of methane in the Earth. Chem. Geol.,1988,71:1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700