用户名: 密码: 验证码:
深部厚层复合顶板沿空留巷围岩变形机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国矿井每年以10-25m的速度向深部延深,深部开采面临“三高一扰动”,即高应力、高地温和高岩溶水压及强烈的开采扰动影响,严重制约煤矿的安全高效开采。深部围岩地质条件复杂多变,其中,在围岩控制方面,以厚层复合顶板岩层的控制难度很大,厚层复合顶板在留巷过程中,会产生严重的离层,加上充填体的剧烈变形,极易诱发顶板事故,这和深部开采面临的突水、煤与瓦斯突出构成深部开采的主要工程灾害。
     为了实现深部煤炭的安全高效开采和生产的快速接替,解决深部煤层高瓦斯对生产的制约影响,在卸压抽采采动裂隙瓦斯,采用上向和下向钻孔抽采邻近煤层裂隙瓦斯和实行Y型通风的基础上,利用采动形成的支承压力在采空区边缘的低应力区,进行无煤柱沿空留巷,既解决深部上隅角的瓦斯超限难题,又为留巷围岩的稳定提供了可利用的有利条件。
     深部厚层复合顶板条件下的沿空留巷,在工作面开采引起留巷上覆岩层的变形-断裂和下沉运动,在工作面倾向和竖直方向上形成“横三区,竖三带”,即倾向方向上留巷采空区边缘的低应力区、煤帮应力增高区、原岩应力区及竖直方向向上依次为垮落带、裂隙带和弯曲下沉带;由留巷上覆岩层运动形成的“内、外”应力拱的动态演化,留巷上覆岩层“外”应力拱拱内破断岩层形成留巷围岩的“大”结构,当工作面推进到采面长度左右时,覆岩“外”应力拱的拱高扩展高度达到最大,随着工作面的继续推进,应力拱的扩展高度基本不变,“大”应力拱的拱脚随工作面的推进有向深部移近的趋势;“内”应力拱形成留巷围岩的“小”结构,“内”应力拱拱脚向深部移近较“外”应力拱更为缓慢,“大”结构的破断运动促使“小”结构受到很大冲击作用并产生剧烈变形运动,这种变形是否能够达到耦合,与留巷围岩的支护结构、支护参数和支护的时空关系等密切相关。
     深部煤层顶板大多表现为复合顶板,薄层复合顶板下留巷时顶板较易控制,而厚层复合顶板下留巷围岩呈现全断面来压,其留巷围岩变形程度明显地强烈于浅部和中硬顶板,围岩变形具有显著的分区裂化现象,留巷围岩变形具有明显的不均衡性和持续流变特性,其破坏形式主要有挠曲、剪切、拉伸及压缩破坏形式,厚层复合顶板的塑性离层明显、层间弯曲和因错动而产生的层间离层,使得留巷顶底板产生明显的增垮效应,普通锚杆与锚索难以将厚层复合岩层锚固在深部坚硬岩层中,难以形成留巷围岩稳定的拱结构,在外层“大”结构的冲击作用下,留巷围岩“小”结构极易产生失稳。
     深部厚层复合顶板岩层大致可分为全软岩层、上软下硬岩层和上硬下软复合岩层三种,在不同类型复合顶板条件下进行留巷的难易程度也明显不同,通过正交数值分析可知全软型厚层复合顶板离层下沉量最大,上硬下软厚层复合顶板次之,上软下硬厚层复合顶板离层下沉量最小。
     本文主要运用岩层控制关键层理论和弹塑性理论,构建深部留巷基本顶和厚层复合顶板运动的力学模型,对留巷基本顶关键块的运动规律和复合直接顶变形规律进行力学分析,得出复合顶板的挠曲变形方程,并分析其底鼓变形的力学机理。通过FLAC3D分析厚层复合顶板下留巷覆岩“内、外”应力拱的演化特征围岩的应力场和位移场的演化规律;通过正交分析揭示了厚层复合顶板类型、充填体宽度、充填体强度、煤体强度、巷内不同支护形式和采空区压实刚度对厚层复合顶板留巷围岩应力与变形的影响强弱关系,通过实验室相似模拟分析厚层复合顶板沿空留巷围岩随采动影响下的变化规律,为深部厚层复合顶板下留巷围岩的控制提供了思路。
     最后,针对深部厚层复合顶板沿空留巷围岩变形的时空特征,提出了非均衡控制和底板锚注支护控制技术,对关键部位分段分区加固支护,对厚层复合顶板进行锚杆加长短锚索进行梯次立体锚固支护,在留巷巷内复合顶板岩层中形成一定厚度和承载强度的具有组合锚固效应的阶梯式立体支护结构,能有效控制厚层复合顶板的过度离层变形,同时加强留巷煤帮支护强度,确保合理的充填宽度和充填体强度,减弱厚层复合顶底板增跨效应带来的不利影响,防止厚层复合顶板产生变形失稳。对底板及两角部位进行锚注支护,可以有效控制留巷底鼓,有利于深部厚层复合顶板留巷围岩“小”结构的相对稳定。
At present, with the coal mining propelling to the deeper levels underground at the rate of20-30m each year, our coal mines face "three high situations and one disturbance", namely, high stress, high ground temperature, highland mild high karst water pressure and strong mining disturbance. The status seriously restricts the safe and efficient mining in depth. The geological condition of the surrounding rock is complicated. In the control over the surrounding rock, the thick layer composite roof strata is difficult to control. The thick-layer composite roof in the course of gob side entry retaining is subject to severe bed separation, which together with the severe deformation of the filling body, can lead to roof accident. This accident, like the water inrush, coal and gas outburst, is regarded as the main engineering disasters in the deep coal mining.
     In order to achieve safe and efficient mining and rapid succession in the deep coal mines, and solve gas restriction on coal mining, An approach is to release pressure and drain the gas in the fracture of the coal seam. Specifically speaking, on the premise of conducting uphole and downhole drilling to extract the fracture gas in the adjacent coal seam and adopting y-shaped ventilation, I carry out no-coal-pillar gob-side entry retaining at the edge of low-stress area of the goaf. Such way can both solve the gas overrun problem in upper corner of the working face, and offer favorable conditions for the stability of the surrounding rock of the gob-side entry retaining.
     The characteristics of the gob-side entry retaining under the condition of thick-layer composite roof in deep coal mine is as follows. In the process of working face advancing, the coal mining causes the strata to be deformed and fractured, and induces "three areas along horizontal direction and three zones on vertical direction", namely, the low-stress area at the edge of goaf of gob-side entry retaining, increasing-stress area and the original rock stress area in the coal body of gob-side entry retaining, and the caving zone, fractured zone and bend submerged zone in turn on the vertical direction. The overburden strata movement of gob-side entry retaining forms the dynamic evolution of the "internal and external" stress arch. The numerical analysis of FLAC3D is applied to analyze the "large" structure of the surrounding rock in the gob-side entry retaining formed by the fractured stratum within the "external" stress arch in the overburden strata. When the working face advances to the working face length orso, the stress arch of overburden strata expands to the highest; with the working face pushing forward, the expansion height of the stress arch basically remains unchanged, and the arch foot of" big "stress arch transfers to the deep coal body of gob-side entry retaining. Surrounding rock of gob-side entry retaining under thick composite roofs lies in the "small" structure formed by the movement of overburden rock. The arch feet of inner stress arch transfer to the depth of coal body more slowly than outer stress arch. The fracture of the "big" structure induces great deformation of the "small" structure. Whether the deformation is coupled or not is directly related to the supporting structure, parameter and time-space relationship of the surrounding rock of gob side entry retaining.
     The roof of coal seam is mostly composite roof in deep coal mines, and thin-layer composite roof is more easily to be controlled. The surrounding rock of gob side entry retaining under thick-layer composite roof appears to be whole roadway-section pressure, and the degree of deformation of the surrounding rock of gob-side entry retaining is obviously stronger than that in shallow coal mines, and in addition, the deformation takes on prominent subarea cracking, obvious imbalance and continuous rheological behavior. Its main forms of damage are flexure, shear, tensile and compression. The thick layer of composite roof of gob-side entry retaining has plastic abscission layer, interlayer bending and interlayer abscission layer caused by composite rocks dip offset. The roof and floor is found to have obvious increasing span effect. The ordinary bolt and anchor cable can hardly anchor thick-layer composite rock in deep hard-roof rock, which makes it difficult for the surrounding rock of gob-side entry retaining to form the stable arch structure, and the instability is highly probable under the dynamical impact of "big" structure.
     The strata of thick-layer con posite roof can be roughly divided into three kinds, such as the entirely soft rocks, the upper soft and lower hard stratum, and the upper hard and lower soft stratum. For different types of composite roof, the difficulty of the surrounding rock of gob-side entry retaining varies. The subsidence of the abscission layer is different. Through the orthogonal numerical analysis, the composite roof with entirely soft rock is proved to reach the maximum, the upper hard and lower soft stratum takes second place, the upper soft and lower hard stratum is the least.
     This paper applies the critical layer theory of strata control and elastic-plastic theory to build mechanical models of the movement of main roof and thick-layer composite roofs, and to analyze the motion of the key block of main roof and the deformation of the composite immediate roof. It concludes the deflection formula of composite roof, and analyzes the mechanics mechanism of deformation of floor heave. FLAC3D is used to analyze evolution characteristics of "inside and outside" stress arch of overburden rock, the stress of surrounding rock and the evolution of displacement fields. The orthogonal analysis reveals that the different types of composite roof, the width and strength of filling body, the strength of coal body, different supports in gob-side entry retaining and the compaction stiffness goaf have an effect on the stress and deformation of the surrounding rock under thick-layer composite roof, and laboratory analog simulation analysis shows the stress and deformation of the surrounding rock under thick composite roof, which provides a train of thought on controlling the deformation of surrounding rock of gob-side entry retaining.
     The paper, finally, according to the temporal and spatial characteristics of the deformation of surrounding rock of gob-side entry retaining of thick-layer composite roof proposes the non-symmetry control and boltgrouting control technology. Sub-partition reinforcement is completed on the key position in the course of gob-side entry retaining, and multistep stereoscopic anchoring supporting is completed on thick-layer composite roof, and forms multistep supporting structure with a certain thickness and bearing strength in roadway of gob-side entry retaining under thick-layer composite roof. the technology can effectively control the separation and deformation of thick-layer composite roof, and in the mean time strengthen the support of lane-side coal body, ensure the proper strength and width of the filling body, reduce the composite roof increasing span brings adverse effects, and help to prevent deformation instability of thick-layer composite roof. The application of bolt-grouting support in the bottom floor and the two horns of gob-side entry retaining can effectively control floor heave of gob-side entry retaining, and avail to the stability of "small" structure of surrounding rock of gob-side entry retaining under thick-layer composite roof in deep coal mine.
引文
[1]何满潮,钱七虎等著.深部岩体力学基础[M].科学出版社,2010.8.
    [2]张志强,李宁.软弱夹层分布部位对洞室稳定性影响研究[J].岩石力学与工程学报,2005,24(18):3252-3257
    [3]陈建功,朱成华,张永兴.深部巷道围岩分区裂化弹塑脆性分析[J].煤炭学报,2010,35(4):541-545
    [4]张农,王成,高明仕等.淮南矿区深部煤巷支护难度分级及控制对策[J].岩石力学与工程学报,2009,28(12):2421-2428
    [5]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36
    [6]柏建彪,侯朝炯.复合顶板极软岩煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,42(1):131-139
    [7]柏建彪,王卫军.柏建彪等.综放沿空掘巷围岩控制机理及支护技术研究[J].煤炭学报,2000,25(5):478-481
    [8]李树清,王卫军.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006,28(3):377-381.
    [9]王卫军,李树清,欧阳广斌.深井煤层巷道围岩控制技术及试验研究[J].岩石力学与工程学报,2006,25(10):2012-2017
    [10]何满潮,齐干,程骋等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007,26(5):987-993
    [11]杨峰,王连国,贺安民等.复合顶板的破坏机理与锚杆支护技术[J].采矿与安全工程学报,2008,25(3):286-289
    [12]张久锋,王成,韩国将等.厚层复合顶板留小煤柱沿空掘巷综合控制技术[J].能源技术与管理,2009,17-9
    [13]高明仕,张农,郭春生.三维锚索与巷帮卸压组合支护技术原理及工程实践[J].岩土工程学报,2005,27(5):587-590.
    [14]李东印,刑奇生,张瑞林.深部复合顶板巷道变形破坏机理研究[J].河南理工大学学报,2006,26(6):457-460
    [15]郝进海.薄层状巨厚复合顶板回采巷道锚杆锚索支护理论及应用研究[D].太原:太原理工大学2005.
    [16]康立勋,杨双锁.全煤巷道拱形整体锚固结构稳定性分析[J].矿山压力与顶板管理,2002,19(3):19-21
    [17]陈喜恩,王唐龙.深井高应力复合顶板巷道卸压让压综合支护技术[J].煤.2008,13(3)
    [18]贾剑青,王宏图,李晓红等.深埋隧道软硬交替复合顶板岩体变形破坏分析.岩土力学,2006,06:937-940
    [19]B.C.Williams,Packing Technology,[J].Mining Engineer,1988,No 3.
    [20]A.N.Wilson.An Hypothesis Concerning Pillar Stability [J].Mining Engineer,1972,No 6.
    [21]宋振骐.矿山压力与控制[M],徐州:中国矿业大学,2006.
    [22]缪协兴.砌体梁结构分析与应用[D].徐州:中国矿业大学,1996.
    [23]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,
    [24]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-349
    [25]侯朝炯,李学华.综放沿空掘巷围岩“大、小”结构的稳定性原理[J].煤炭学报,2001,26(1):1-7
    [26]李学华.综放沿空掘巷围岩大小结构稳定性的研究[D].徐州:中国矿业大学,2000.
    [27]张东升,缪协兴,冯光明等.综放沿空留巷充填体稳定性控制[J].中国矿业大学学报,2003,32(3):232-235
    [28]张东升,茅献彪,马文顶.沿空留巷围岩变形特征的试验研究[J].岩石力学与工程学报,2002(2)
    [29]朱德仁.长壁工作面老顶的破断规律及其应用[D].徐州:中国矿业大学,1987.
    [30]唐建新,邓月华,涂兴东等.锚网索联合支护沿空留巷顶板离层分析[J].煤炭学报,2010,11(11):1827-1831
    [31]何廷峻.工作面端头悬顶在沿空巷道中破断位置的预测[J].煤炭学报,2000,2(1):28-31
    [32]漆泰岳.沿空留巷支护理论研究及实例分析[D].徐州:中国矿业大学,1996.
    [33]华心祝,马俊枫,许庭教.沿空留巷巷旁锚索加强支护与参数优化[J].煤炭科学技术,2004(8):59-64
    [34]华心祝,马俊枫,许庭教.锚杆支护巷道巷旁锚索加强支护沿空留巷围岩控制机理研究及应用[J].岩石力学与工程学报,2005(12):2108-2112
    [35]朱川曲,张道兵,施式亮等.沿空留巷支护结构的可靠性分析[J].煤炭学报,2006(2).
    [36]涂敏.沿空留巷顶板运动与巷旁支护阻力研究[J].辽宁工程技术大学学报,1999,18(4):347-351
    [37]王卫军,侯朝炯,柏建彪等.综放沿空巷道顶煤受力变形分析[J].岩土工程学报,23(2):209-211
    [38]孙恒虎.沿空留巷顶板活动机理与支护围岩关系新研究[D].北京:中国矿业大学北京研究生院,1988.
    [39]李化敏.沿空留巷顶板岩层控制设计[J].岩石力学与工程学报,2000,19(5):651-654
    [40]谢文兵.综放沿空留巷围岩稳定性影响分析[J].岩石力学与工程学报,2004,23(18):3059-3065
    [41]谢文兵,殷少举,史振凡.综放沿空留巷几个关键问题的研究[J].煤炭学报,2004,29(2):146-149
    [42]谢文兵,笪建原,冯光明.沿空留巷围岩控制机理[J].中南大学学报,2004,35(4).657-661
    [43]康红普,牛多龙等.深部沿空留巷围岩变形特征与支护技术[J].岩石力学与工程学报,2010,29(10):1977-1984
    [44]张农,高明仕,许兴亮.煤巷预应力支护体系及其工程应用[J].矿山压力与顶板管理2002,4(1):4-7
    [45]Zhang Nong,Yuan Liang,Han Chang liang etc.Stability and deformation of surrounding rock in pillarless gob-side entry retaining[J].safety science 50 (2012):593-599
    [46]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [47]郭育光,柏建彪,侯朝炯.沿空留巷巷旁充填体主要参数研究[J].中国矿业大学学报,1992,21(4):1-10
    [48]柏建彪,周华强,侯朝炯等.沿空留巷巷旁支护技术的发展[J].中国矿业大学学报,2004,33(2):183-186
    [49]DENG Yuehua,TANG Jianxin,ZHU Xiangke.Analysis and application in controlling surrounding rock of support reinforced roadway in gob side entry retaining with fully mechanized mining.Mining Science and Technology,2010,20(6):839-845.
    [50]张东升.大断面沿空留巷技术[D].徐州:中国矿业大学,2003.
    [51]徐金海,付宝杰,周保精.沿空留巷充填体的流变特性分析[J].中国矿业大学学报,2008,37(5):585-589
    [52]Zhou Baojing,Xu Jinhai,Zhao Maosen,Zeng Qinglin. Stability study on naturally filling body in gob-side entry retaining[J].International Journal of Mining Science and Technology 22(2012):423-427
    [53]Smart.B.GD. Davies.D.O etc,Application of the Rock-Strata-Title Approach to Pack Design in an Arch-Sharped Roadway, [J].Mining Engineer, Dec.,1982
    [54]B.N.Whittaker.Design Loads for Gate-side Packs and Support Systems[J].Mining Engineer,Feb.,1977
    [55][苏]胡金,乌斯基诺夫等著,崔梦庚译.煤层无煤柱开采[M].中国矿业大学出版社,1991
    [56]陈名强.巷旁支护带理想力学特性的探讨[J].焦作矿业学院学报,1988,12(2、3):78-87
    [57]吴健,孙恒虎.巷旁支护载荷和变形设计[J].矿山压力与顶板管理,1986,(2):1-10
    [58]孙恒虎,赵炳利著.沿空留巷的理论与实践[M].北京:煤炭工业出版社,1993.
    [59]周华强,侯朝炯,漆泰岳.巷旁充填体控顶机理的相似材料模拟试验[J].矿上压力与顶板管理,1991,(4):23-29
    [60]柏建彪.综放沿空掘巷围岩稳定性原理及控制技术研究[D].徐州:中国矿业大学,2002.
    [61]张东升,马立强.综放巷内充填原位沿空留巷工业性试验[J].西安科技大学学报,2005,25(4):429-433
    [62]马立强,张东升,陈涛等.巷内充填原位沿空留巷充填体支护阻力研究[J].岩石力学与工程学报,2007(3)
    [63]马立强.巷内充填沿空留巷围岩变形机理及其控制[D].徐州:中国矿业大学,2003.
    [64]H.n.巴仁等著.刘听成译,无煤柱护巷[M].北京:煤炭工业出版社,1979
    [65]Zhang Tianjun,Ma Mina,Wang Hongsheng etc. A nonlinear Theological model of backfill material for retaining roadways and the analysis of its stability[J]. Mining Science and Technology (China) 21 (2011):543-546
    [66]Wang Hongsheng,Zhang Dongsheng,Fan Gangwei.Structural effect of a soft hard backfill wall in a gob-side roadway[J].Mining Science and Technology (China) 21(2011):313-318
    [67]Ma Zhanguo,Gong Peng,Fan Jinquan etc.Coupling mechanism of roof and supporting wall in gob side entry retaining in fully mechanized mining with gangue backfilling [J]. Mining Science and Technology (China) 21 (2011):829-833
    [68]Song G Stankus J.Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[A].In:the 16th Int.Conf.on Ground Control in Mining[C].Morgant-own, West Virginia:[s:n],1997:93-98
    [69]C.Ozgen Karacan.Modeling and prediction of ventilation methane emissions of US long-wall mines using supervised artificial neural networks[J]. International Journal of Coal Geology 73(2008)371-387
    [70]尹博.沿空留巷矸石巷旁充填体支护性能实验研究[D],河北工程大学,2010.
    [71]刘志祥,李夕兵,戴塔根等.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力 学,27(9),2006:1442-1446
    [72]黄玉梅.“三软”煤层沿空留巷技术的应用.华北科技学院学报,2005,2(2):40-45
    [73]陈勇,柏建彪,陈涛垒等.沿空留巷巷旁支护体作用机制及工程应用[J].岩土力学,2012,33(5):1427-1432
    [74]李晋平.综放沿空留巷技术及其在潞安矿区的应用[D],北京:煤炭科学研究总院,2005.
    [75]杨百顺.顾桥矿深井开采沿空留巷顶板控制技术研究[D].中国矿业大学,2008
    [76]黄先伍.巷道围岩应力场及变形时效性研究[D].中国矿业大学,2008.
    [77]齐庆新.层状煤岩体结构破坏的冲击矿压理论与实践研究[D].北京,煤炭科学研究总院北京开采研究所,1996.
    [78]袁亮,郭华,沈宝堂等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(3):357-365
    [79]袁亮,薛俊华,秦勇.低透气性煤层无煤柱开采煤与瓦斯共采关键技术[J].煤炭科学技术,2013,41(1):5-11
    [80]张俊云.沿空留巷巷旁煤体作用机理及锚杆支护研究[D].西安:西安矿业学院,1998.
    [81]王卫军,侯朝炯,冯涛.动压巷道底鼓[M].北京,煤炭工业出版社,2002.
    [82]赵同彬.深部岩石蠕变特性试验及锚固围岩变形机理研究[D].山东科技大学,2009.
    [83]尹增德.采动覆岩破坏特征及其应用研究[D].山东科技大学,2007.
    [84]赵明强.深井大断面沿空留巷围岩控制机理研究[D],安徽理工大学,2008.
    [85]高保彬,王晓蕾,朱明礼等.复合顶板高瓦斯厚煤层综放工作面动态发育特征[J].岩石力学与工程学报,2012,31(1):3444-3451
    [86]WANG Lian guo,SONG Yang,HE Xing hua,ZHANG Jian.Side abutment pressure distribution by field measurement[J]. China University Mining & Technology 18 (2008):0527-0530
    [87]HU Guo zhong,WANG Hong tu,LI Xiao hong,FAN Xiao gang, YUAN Zhi gang.Numerical simulation of protection range in exploiting the upper protective layer with a bow pseudo incline technique[J]. Mining Science and Technology 19 (2009):0058-0064
    [88]耿养谋.矿山开采覆岩应力拱演化规律研究[J].山东科技大学学报,2009,28(4):43-47
    [89]谢广祥,杨科.采场围岩宏观应力壳演化特征[J].岩石力学与工程学报,2010,29(1):2676-2680
    [90]何满潮,齐干,程骋等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007,26(5):987-993
    [91]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].中国矿业大学,2008.
    [92]谷拴成,苏锋,崔希鹏.煤巷复合顶板变形破坏规律分析[J].煤炭科学技术,2012,40 (5):20-23
    [93]黄达,康天合,段康廉.水平应力对巷道软弱互层顶板岩体破坏的数值模拟研究[J].太原理工大学学报,2004,35(3):299-305
    [94]文志杰.中厚煤层沿空留巷巷道围岩稳定性分析及应用研究[D],山东:山东科技大学,2008.
    [95]杨建辉,杨万斌,郭延华.煤巷层状顶板压曲破坏现象分析[J].煤炭学报,2001,26(3):240-244
    [96]王卫军等.综放沿空掘巷底鼓的受力变形分析[J].煤炭学报,2002,27(1):26-30
    [97]王卫军,侯朝迥.沿空巷道底鼓力学原理及控制技术的研究[J].岩石力学与工程学报,2004,23(1):70-74
    [98]刘士光,张涛编著.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008.
    [99]刘鸿文主编.高等材料力学[M].北京,高等教育出版社,1984.
    [100]严德群.三维锚杆的数值模拟及其相互作用分析[D].河海大学,2001.
    [101]Eva Jira' nkova,Vladim Petro,Jin rich Sancer.The assessment of stress in an exploited rock mass based on the disturbance of their grid overlying strata[J]. International Journal of Rock Mechanics & Mining Sciences 50(2012):77-82
    [102]高明中.锚杆布置参数对巷道围岩稳定性的影响[J].淮南工业学院学报,2002,22(1):14-17
    [103]杨建辉,夏建中.层状岩石锚固体全过程变形性质的试验研究[J].煤炭学报,2005,30(4):415-417
    [104]成云海,姜福兴,李海燕.沿空巷道分层充填留巷试验研究[J].岩石力学与工程学报,2012,31(S2):3864-3868
    [105]高明中.放顶煤开采沿空掘巷矿压显现特征模拟分析[J].西安科技学院学报,2002,22(4):375-377
    [106]吴德义,高航,王爱兰.巷道复合项板离层的影响因素敏感性分析[J].采矿与安全工程学报,2012,29(2):255-258
    [107]Zhifei Song,Jia hao Lei,Xiaoting Wang etc. Study on Roadway Parameters of Broken Composite Roof of Gently Inclined Thick Coal Seam[J].Energy Procedia 16(2012):334-340
    [108]王红胜.沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D].中国矿业大学,2011.
    [109]王林.深部厚层复合顶板煤层巷道围岩稳定性分析及控制技术研究[D],湖南科技大学,2011.
    [110]谢文兵.综放沿空留巷围岩稳定性影响分析.岩石力学与工程学报,2004,23(18):3059-3065
    [111]曲天智.深井综放沿空巷道围岩变形演化规律及控制[D],徐州:中国矿业大学,2008.
    [112]柏建彪,侯朝炯,杜木民等.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(1):53-56
    [113]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].中国矿业大学,2008.
    [114]李迎富.二次留巷围岩稳定性控制机理研究[D].安徽理工大学,2012.
    [115]刘生龙.煤巷层状软岩顶板破坏规律及支护研究[D].西安:西安科技大学,2005.
    [116]高应力破碎软岩巷道棚-索协同支护围岩控制机理研究[D].荆升国,中国矿业大学,2009.
    [117]卢小雨.深井大断面沿空留巷围岩稳定控制机理研究[D].安徽理工大学,2013.
    [118]陈加轩.采动应力演化对底板岩巷失稳影响机理及控制研究[D].中国矿业大学,2009.
    [119]李磊,柏建彪,徐营等.复合顶板沿空掘巷围岩控制研究[J].采矿与安全工程学报,2011,28(3):376-383
    [120]高明仕,郭春生,李江锋等.厚层松软复合顶板煤巷梯次支护力学原理及应用[J].中国矿业大学学报,40(3),2011:333-338
    [121]李大伟.深井与软岩巷道二次支护原理及控制技术[M].北京:煤炭工业出版社,2008.
    [122]王卫军,冯涛.加固两帮控制深井巷道底鼓的机理研究[J].岩石力学与工程学报,2005,24(5):808-811

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700