用户名: 密码: 验证码:
C/C复合材料SiC涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/C复合材料具有质轻、耐高温等一系列优点,但是抗氧化性差,耐冲刷能力较低,这些固有缺陷限制了它在高温场合下的实际应用。对C/C复合材料进行涂层防护是一种重要的解决方案。SiC涂层具有高的硬度、较好的高温强度、良好的导热性能和热稳定性等,且SiC涂层与炭石墨基体化学相容性好。因此,对C/C复合材料表面进行SiC涂层的研究,具有十分重要的现实意义。
     本研究由不同的涂层制备方法(刷涂法、浸涂法、气相反应法)在C/C复合材料、石墨基体表面制备了SiC涂层。
     刷涂和浸涂是湿式工艺中较为通用的方法。制备出合适的浆料是其关键技术之一,它要具有悬浮稳定性和流变性。通过调节浆料酸碱度、比重等因素可获得较满意的悬浮稳定性和流变性。由硅溶胶和Si粉配备的简单浆料经高温热处理工艺可以在C/C复合材料上用刷涂法制备最优涂层。浸涂工艺控制参数较多,在时间一定的情况下,浸涂量与浆料比重、基体种类有关,可以通过控制浸涂量来控制涂层的厚度。所用浆料的最优参数是PH=9,密度为1.62 gcm~(-3)。
     气相反应法工艺较复杂,它是以工业用Si和辅助剂(SiO_2)为原料,在高温、惰性环境中反应产生SiO蒸汽,将其引入反应室与C/C复合材料在不同温度下进行气相反应,从而在试样表面生成SiC涂层。所得涂层致密性好,可达一定的厚度,SiC的生成主要是SiO蒸气通过扩散进入C/C复合材料并与之反应生成的。得出了获得最优涂层的高温热处理工艺为(室温~1700℃/2hr→1700℃/1hr→1700℃~1900℃/1hr→1900℃/1hr),这个工艺制度不仅可以获得较好的梯度分布,有效地消除涂层制备中产生的裂纹,并使SiC组织趋于连续、均匀,获得较理想的SiC涂层,它还能在涂层中制备SiC晶须。通过在基体材料中引入Fe、Co、Ni,在涂层中制备出了长径比更大的SiC纳米晶须。
     用抗热震和抗氧化综合考查了SiC涂层的性能。结果表明,气相反应法涂层热震性最好。涂层中的SiC纳米晶须和SiC颗粒共同影响了涂层材料的抗弯强度,进而影响了其热震性能。纳米晶须的瓦解会削弱抗弯强度,而SiC颗粒重结晶可以增强抗弯强度。含SiC纳米晶须丰富的涂层在急冷或缓冷条件下抗热震性都优于其它涂层材料,而
    
    中南大学硕士学位论文
    摘要
    SIC纳米晶须较少的涂层在急冷条件下抗热震性优越。气相反应法涂
    层随工艺不同抗氧化性各异。在氧化初期,不含SIC纳米晶须的涂层
    抗氧化性能最好;而在氧化后期,不经催化处理得到纳米晶须的涂层
    抗氧化性最好。浸涂法涂层和气相反应法涂层在抗氧化过程中的氧化
    失重率相差比较大,在氧化初期,前者有一个重量增加的过程,表明
    其抗氧化性最好;而后者在氧化的各个阶段都是一个失重的过程。
Although C/C composites and graphites have a series of excellent properties such as low density,high temperature resistance,etc.,they are limited to be used in high temperature situation for their poor oxidation resistance and weak erosion resistance.Coating protection is regard as one of the most important resolution schemes.Because SiC coating has high rigidity preferable high temperature intensity, favourable heat conductance , thermal stability and good chemical compatibility with C/C,it is very important in practice to launch research on SiC coating for C/C composites and graphites.
    In this paper,SiC coating was prepared by different methods(paste coating,dip coating and vapor reaction coating) on the surfaces of C/C composites and graphites.
    Paste coating and dip coating are both ordinary methods in wet technics,whose key technology is to make suitable slurry with appropriate floating stability and rheology,which can be obtained by adjust its PH value and density. The best coating prepared by paste method can coat C/C through high temperature heat treatment with simple slurry which was made of silica sol and Si powder. There are more control parameters in dip coating technics,and the SiC coating thickness can be foresaw via controlled dip weight because dip weight was relative with slurry density and varieties of C/C in a given period of time.The best parameters of slurry for dip coating were PH=9 and density of 1.62 gcm-3.
    Vapor reaction coating (VR coating) is a more complex technology. The compact coatings by vapor reaction (VR) were gained on the surface of C/C at different temperature by introducing SiO vapor ,which generated by Si and auxiliary SiO_2 at high temperature in inertial atmosphere, into reaction chamber, where it occurred VR with C/C through diffusion. The best VR coating was obtained by the following technics: room temperature- 1700/℃2hr→1700℃/lhr→1700℃-1900 ℃/lhr→1900℃/lhr , which is thought of a kind of perfect coating not only because of its continuous distribution and uniformity of SiC tissues and eliminating cracks produced during period of preparing process by better graded distrubution,but also because of the SiC whiskers prepared
    
    
    
    accompanyly in the coating.In a further investigation,SiC whiskers with much larger slenderness ratio were also prepared in the VR coating by soaking C/C composites and graphites,the parent materials,in Sol of Fe3+ or Co2+ or Ni2+ for a preset time .
    The performance of these coatings was comprehensively checked by heat shock resistance (HSR) and oxidation resistance(OR).It showed that the VR coating has a best HSR.The HSR is affected by SiC whiskers and grains of coating together because of their affecting the flexural strength of coating materials?the collapse of SiC whiskers weakened the flexural strength while recrystallization of grains swelled it. The HSR of coating with rich SiC whiskers was more excellent than any other ones either in rapid or slow cooling HSR condition,while those with poor SiC whiskers showed its high HSR only in rapid cooling condition. The OR of VR coatings is defferent due to technics,the VR coatings without SiC whiskers have the best OR in the initial stage while those with SiC whiskers which were not obtained by catalytic reaction have the best OR in the final stage.The mass loss ratios of dip and VR coating were different from each other during process of oxidation resistance,the former underwent a period of mass increase which indicating a best OR in the initial stage while the latter was always in mass loss stages.
引文
[1]颜月娥,黄启忠,邹林华,等.航空刹车用C/C复合材料的应用与发展.新型碳材料.1996,11(3):14-17.
    [2]刘建军,李铁虎,郝志彪.炭/炭复合材料表面等离子喷涂钨涂层结构与性能研究,表面技术,2003,32(3):28-30.
    [3]Thrower P A, Boget J C, Methew G K. The influence of oxidation on the structure and strength of graphite(1).Carbon, 1982,20(6):457.
    [4]Thrower P A, Methew G K, Mcginnis N J. The influence of oxidation on the structure and strength of graphite(2).Carbon, 1982,20(6):465.
    [5]Zhao Jiaxiang, Bradt R C, Walker JR P L. Effect of air oxidation at 873K on the mechanical properties of a carbon-carbon composite. Carbon, 1985,23(1):9
    [6]Zhao Jiaxiang, Bradt R C, Walker JR P L. The fracture toughness of glassy carbons at elevated temperatures. Carbon. 1985,23(1):15.
    [7]郭全贵,宋进仁,刘朗,等.SiC涂层/B_4C改性炭基复合材料的氧化行为研究.宇航材料工艺.1999,2:43-47.
    [8]陈孟成,霍晓.高温涂层的研究和发展.材料工程,1999,(6):40-45.
    [9]李铁藩.高温腐蚀与防护十年进展.中国腐蚀与防护学会成立十周年(1977-1989)学术论文集.北京:中国腐蚀与防护学会,1990.
    [10]Savage G. Carbon-Carbon Composites. Cambrige: Chapman & Hall, 1993:193.
    [11]葛毅成.航空刹车副用C/C复合材料抗氧化技术的研究.[硕士学位论文].长沙:中南工业大学.2000.
    [12]李承新,郭正.炭/炭复合材料抗氧化涂层的研究与改进.宇航材料与工艺,1992,(3):1-4.
    [13]Fitzer E, Gadow R. Fiber-reinforced silicon carbide. Am Ceram Soc Bu11,1986,65(2):326-335.
    [14]朱小旗,杨峥,康沫狂,等.基体改性炭/炭复合材料抗氧化影响规律探析.复合材料学报,1994,11(2):107-111.
    [15]曾燮榕,杨峥,李贺军,等.防止C/C复合材料氧化的MoSi_2/SiC双相涂层系统的研究.航空学报,1997,18(4):427-431.
    [16]王茂章,贺福.碳纤维制造、性质及其应用.北京:科学出版社,1984,340-394.
    [17]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995,164-168.
    [18]Beter W, Goktas A A, Frischat G H, Kinetics of the formation of SiO_2-TiO_2-ZrO_2 gels from alkioxide solutions. Phy chem Glasses, 1989, 30(2):69-78.
    [19]刘艳秋译.SiC-陶瓷涂层(日本特许公报5-83517).新型碳材料,1996,11(3):41-44.
    [20]胡传忻,宋幼慧.涂层技术原理及应用.北京:化学工业出版社.2000.
    
    365-367.
    [21]曹铁柱.ZrO_2热障涂层及其内应力的研究.表面工程,1994,(2):11-15.
    [22]王子望.金属基复合材料残余应力测定.材料工程,1997,(2):7-9.
    [23]易茂中,冉丽萍.厚涂层结合强度测定方法研究进展.表面技术,1998,27(2):33-37.
    [24]张先龙,易茂中.典型中温封严涂层的抗冲蚀性能.航空工艺技术.1998,(5):28-30,34.
    [25]张清纯.陶瓷材料的力学性能.北京:科学出版社,1987.
    [26]G. De, L. Tapfer, M. Catalano. et al.,Appl. Phys. Left. 1996,68: 3820.
    [27]G.A. Dzin et al.,J. Phys. Chem. 1990,94: 7756.
    [28]蔡伟平,张立德.介孔固体及介孔复合体.物理,1997,26(4):213-216.
    [29]S.S. Fan, M.G. Chapline, N.R. Franklin. et al. Science, 1999, 283: 512.
    [30]C.J. Lee, J. Park, S.Y. Kang. et al. chem. Phys. Lett. 2000,323:554.
    [31]黄培云.粉末冶金原理(第二版).北京:冶金工业出版社.1997,24.
    [32]Wada H.,Wang mingjong, Tseng yingtien, stability of phases in the Si-C-N-O system. J. Am Caram Soc.,1988,71(10):831-840.
    [33]Blaha H, Komarok K L. reduction of silica with graphite. High Temp Sci, 1989,28:87-97.
    [34]Pickles C A, Toguri J M, Simpson C J. plasma arc production of silicon carbide crystals. Bri Ceram Trans, 1995,94(3):89-96.
    [35]王铁军.预热自蔓延合成SiC粉末机理研究.硅酸盐学报,1998,26(2):240-245.
    [36]张兆泉.碳化硅陶瓷的胶态成型研究.上海:中国科学院上海硅酸盐研究所,2000.
    [37]李炜,代明江.纳米涂层应用及主要制备方法.腐蚀与防护.2003.24(5):197-199,196.
    [38]Thomas C. Jones, dip coating. Metal Finishing, 2000,98(6): 172-174.
    [39]包彦,谭继良.硅溶胶涂料的悬浮性研究.特种铸造及有色合金,1999年增刊第1期,18-19.
    [40]李巧玲.硅溶胶的酸碱度对其稳定性的影响.湖南化工.1998,28(6):36-37.
    [41]Ralph KI.The chemistry of silica.New York:John&Sons,Inc.1979.
    [42]张文龙,蒋柏泉,林峰,等.管状陶瓷微滤膜制备研究.南昌大学学报(工科版).1999,21(1):56-59.
    [43]胡汉起.金属凝固原理.北京:机械工业出版社.1991.65-66.
    [44]李秀华,袁启明,杨正方.添加Al_2O_3的Y—TZP基陶瓷材料研究及其应用前景.硅酸盐通报.2002.21(3):35-39.
    [45]X.K. Li, L. Liu, Y.X. Zhang, et al. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon, 2001, 39(2): 159-165.
    [46]Hsieh H P, Bhave R R, Fleming H L. J Membr Sci, 1988, 39:221-241.
    [47]李广田,吴国玺,杜成武.浸渍工艺对陶/炭复合材料抗氧化性能的影响.东北大学学报(自然科学版).1999,20(1):50-52.
    [48]Leenaars A F M, Burggraat A J.J Colloid Interface Sci, 1985,105(1):
    
    27-40.
    [49] Burggraat A J, Col L. Fundamentals of Inorganic Membrance Science and Technology, 1996, 150-153.
    [50] F.M. Tiller, C.D. Tsai, J. Am. Ceram. Soc., 1986,69: 882.
    [51] Steven J. Weinstein, Kenneth J. Ruschak. Dip coating on a planar non-vertical substrate in the limit of negligible surface tension. Chemical Engineering Science, 2001,56(16):4957-4969.
    [52] 肖柯则.流涂的发展.特种铸造及有色合金.1998,(6):28-29.
    [53] Misra, MohanS. Coating for graphite electrodes. US Patent ,4418097, 1983-11-29.
    [54] 日本专利公开 昭56—26782.
    [55] Martin, Eugene R. Compositions containing thiofunctional polysiloxanes. US Patent ,4251277,1981-2-17.
    [56] Kolesnik, Mikhail I, Egorov, et al. Method of protecting carboncontaining component parts of metallurgical units from oxidation. US Patent ,4292345,1981-9-29.
    [57] Doppa lapudi D, Basu S N. Structure of Mullite Coatings Grown by Chemical Vapor Deposition. Mat Sci Eng, 1997, A231.
    [58] Starr T. J. Am. Ceram. Soc., 1989, 72(3): 414-420.
    [59] Fischman G S, Petuskey W T. J. Am. Ceram. Soc., 1985, 68(4): 185-190.
    [60] Besmann T M, Sheldonn B W, Moss T S, et al. J. Am. Ceram. Soc. 1992, 75(10): 2899—2903.
    [61] Yeheskel J, Agaon S, Driel M S. Mass-spectrometric study of SiC-CVD from MTS and hydrogen. J. Mater. Sci. 1993, 28: 749-753.
    [62] Xu Y, Cheng L, zhang L, et al. J. Mater. Sci., 1999, 34: 551-555.
    [63] Minato k, Fukuda K, J. Mater. Sci., 1988, 23: 699-706.
    [64] Cheng D J, Shyy W J, Kuo D H, et al.J Electrochem Soc:Solid-state science and technology. 1987,3145-3149.
    [65] 肖鹏,徐永东,黄伯云.沉积条件对CVD-SiC沉积热力学与形貌的影响.无机材料学报,2002,17(4):877-881.
    [66] 谈慕华,黄蕴元主编.表面物理化学,北京:中国建筑工业出版社,1985,24-107.
    [67] 戴长虹,张显鹏,张劲松,等.树脂热解炭制备碳化硅晶须.硅酸盐学报,1996,24(6):689-693.
    [68] 孟广耀.化学气相淀积与无机新材料.北京:科学出版社,1984,25.
    [69] Wang C A, Groves S H, Palmateer S C. Flow visualization studies for optimization of OMVPE reactor design. J Crystal Growth, 1986, 77:136-143.
    [70] 肖鹏,徐永东,张立同,等.优化设计CVI反应器结构的流体可视化研究.西北工业大学学报,19(1):102-105.
    [71] 蔡红.晶须的制备.青海大学学报(自然科学版).1995,13(4):30-34.
    [72] T. Seino and S. Nagai. Mechanics properties of SiC whiskers. Proceedings of JSPE 1991 Vemal Meeting, Tokyo, Japan, 195(in Japanese).
    
    
    [73]H. Xiao , X. Ai. Effect of whisker orientation on the wear behavior of a SiC/Al_2O_3 composite. Wear 1991 (148): 171.
    [74]管英富,郭梦熊.合成β-SiC w的催化剂熔球机理研究.人工晶体学报.1998,27(2):164-168.
    [75]关振锋、张中太,焦金生,等.无机材料物理性能.北京:清华大学出版社.1992:150-164.
    [76]王继刚,郭全贵,刘朗,等.石墨高温粘接部件的抗热震性能研究.新型炭材料.2002,17(1):13-17.
    [77]唐建成,邵德春,郭面焕,等.CeO_2添加剂对等离子喷涂ZrO_2涂层抗热震性的影响.稀有金属材料与工程,2001,30(1):69-72.
    [78]潘牧.碳化硅基材料表面等离子喷涂陶瓷涂层研究.[博士学位论文].武汉:武汉工业大学.1999.
    [79]孙丽娟.航空航天用碳碳复合材料抗氧化涂层的研究现状.航空工程与维修.1996,05:12-13.
    [80]武七德,童元丰.碳化硅材料的氧化及抗氧化研究.陶瓷科学与艺术.2002,1:7-13.
    [81]闫联生.C/SiC复合材料的氧化行为研究.炭素.1998,3:43-49.
    [82]Luthra K L. Oxidation of carbon/carbon composites-A theoretical analysis. Carbon, 1988, 26 (2):217.
    [83]美国国家材料咨询委员会所属涂层委员会主编,金石译.高温抗氧化涂层.北京:科学出版社,1980.206~209.
    [84]曾燮榕,李贺军,张建国,等.炭/炭复合材料防护涂层的抗氧化行为研究.复合材料学报.2000,17(2):42-45.
    [85]曾燮榕,李贺军,杨峥.炭/炭复合材料表面MoSi_2-SiC复相陶瓷涂层及其抗氧化机制.硅酸盐学报.1999,27(1):8-15.
    [86]李承新,郭正.炭/炭复合材料抗氧化涂层的研究与改进,宇航材料工艺,1992(3),79-82.
    [87]田守信,陈肇友,沈添志.含炭耐火材料中Si与SiC抑制碳氧化的机理.耐火材料.1995,1:11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700