用户名: 密码: 验证码:
便携式锥管状固体氧化物燃料电池的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)采用固体陶瓷材料作为电解质,是一种高效、环境友好的全固态电化学发电装置,具有广泛的应用前景。锥管串接式SOFC可以使电堆在较小的空间内有相对高的电压和输出,良好的抗热冲击性和热循环能力,特别适合于重量轻、体积小的SOFC电堆便携式能源领域应用。本论文围绕锥管状SOFC的便携式应用这个主题展开,主要对锥管状SOFC的制备工艺、新型电极材料及其抗积碳机理、便携式直接碳固体氧化物燃料电池(DC-SOFC)进行了研究与开发,旨在推进锥管状SOFC的便携式应用的产业化进程。
     本论文采用凝胶注模成型法成功制备了锥管状阳极生坯,并组装成单电池和电池组,对其电化学性能进行了研究。研究表明,采用凝胶注模成型法制备的电池微观结构较理想,将阳极生坯和电解质在1350°C共烧结制备的电解质致密,并与阳极和阴极接触良好。制备的单电池在750°C和800°C以氢气为燃料时最大功率密度分别为600mW/cm~2和900mW/cm~2,开路电压约为1V。制备的三节串联电堆以加湿氢气为燃料800°C最大功率输出为2.8W,以加湿甲烷为燃料时电堆在800°C和850°C的最大输出功率分别达到3.0W和4.0W,说明采用凝胶注模成型工艺制备的电池性能较好。电堆在850°C以甲烷为燃料10mA/cm~2的恒电流密度下放电4.5h后电堆的性能下降,因此寻找抗积碳的新型阳极使SOFC在碳氢化合物中稳定运行是非常必要的。
     本论文开发了一种新型阳极材料(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ。通过对合成的Ni_(0.75)Fe_(0.25)O粉体进行XRD表征发现, Fe已经进入了NiO的立方晶格,形成了Ni_(0.75)Fe_(0.25)O固溶体。研究了MgO的掺杂量对SOFC性能的影响,结果表明,阳极中加入一定量的Fe和MgO后,电池的最大功率密度增大,但加入过多的MgO其性能反而下降。以(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ为阳极的SOFC使用加湿甲烷为燃料时800°C的最大输出功率达到648mW/cm~2,确定了MgO的最佳掺杂量为5wt.%。不同阳极的SOFC的恒电流放电曲线表明,以Ni0.75Fe0.25/YSZ为阳极的SOFC在甲烷中很快衰减,当阳极中加入一定量的MgO后,电压在整个20h的测试过程中保持相对稳定。原因可能是阳极中加入一定量的稳定金属氧化物MgO可以抑制碳纤维的生长,或者使得YSZ骨架有足够的机械强度来承受由于碳纤维的生长对其产生的应力。对各电池经稳定性测试后阳极SEM图的分析结果进一步证实了上述机理推测。本章充分证明了(Ni0.75Fe0.25–5MgO)/YSZ阳极在直接使用甲烷为燃料的锥管状固体氧化物燃料电池中应用的可行性。
     在上述研究工作的基础上,研究了以(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ为阳极的SOFC直接使用CO为燃料的性能。结果表明,以H2为燃料的电池性能都要高于以CO为燃料的性能,而以干燥CO为燃料的电池性能都要高于以加湿CO为燃料的性能。稳定性测试表明,以(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ为阳极的单电池在800°C以83mA/cm~2的恒电流测试的40h内电压都相当稳定,而以Ni/YSZ为阳极的单电池工作了10h后电压快速下降为零,并且水对以(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ为阳极的单电池使用CO为燃料时的稳定性没有影响。SEM测试结果表明,使用CO为燃料时,在Ni/YSZ阳极表面的积碳比(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ阳极的严重。制备的两节串联电堆使用加湿CO为燃料时,在800°C的开路电压和最大输出分别为2V和4W,电堆在以83mA/cm~2的恒电流密度下放电的90h内表现出良好的稳定性,进一步证明(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ新型阳极非常适合于固体氧化物燃料电池使用含碳燃料的便携式应用。
     本论文设计并开发了一种适合于直接碳固体氧化物燃料电池便携式应用的装置。证明了碳燃料中加入适量的FemOn能催化炭的Boudouard反应,提高电池性能。以担载5wt.%Fe催化剂的活性炭为燃料,制备的便携式DC-SOFC单电池850°C的开路电压达1.05V,最大功率密度达到280mW/cm~2。寿命测试结果表明,电池以小电流放电时,电压维持较稳定,随着运行电流的增大,电池的寿命减小。小电流放电后容器内剩余的红褐色粉末经EDX测试分析主要为铁的氧化物,表明炭已消耗完。制备的便携式三节串联DC-SOFC电池组使用担载5wt.%Fe的活性炭为燃料时电化学性能较低。这是由于该便携式装置的密封难度大,如何解决该装置的密封问题也是今后我们工作的重点。
Solid oxide fuel cell (SOFC) is a highly efficient, environment friendly and all-solid-state electrochemical power generation device, which uses a solid ceramic material as theelectrolyte and has a wide range of applications. The cone-shaped tubular segmented-in-seriesSOFC design can achieve a relatively higher voltage and power in a limited space, goodthermal shock resistance and thermal cycling capability, so that it is specially suitable forSOFC stack for portable applications, which need light weight and compact volume. Thisthesis centers around the research and development of technique to frabricate cone-shapedtubular SOFC, new anode material and its anti-coking mechanism, a novel direct carbon solidoxide fuel cell (DC-SOFC) device to speed up the industrialization process of cone-shapedtubular SOFC for portable application.
     Gel-casting technique is developed to fabricate the green cone-shaped anode substratesand the performance of a single cell and stack are investigated. The results show that themicrostructure of the cell fabricated by gel-casting technique is ideal, YSZ electrolyte filmfabricated by co-sintering of the electrolyte and green anode substrates is dense and adhereswell to both the anode and cathode. The maximum power density of the single cell usinghydrogen as fuel is about600and900mW/cm~2at750°C and800°C, respectively. The opencircuit voltage (OCV) is about1V. The maximum output power of the three-cell-stack usinghydrogen as fuel is about2.8W. When using methane as fuel, the maximum output power is3.0and4.0W at800°C and850°C. It means that the performance of the cell fabricated bygel-casting technique is fine. The performance of the stack decreases when measured under aconstant current density of10mA/cm~2at850°C using humidified methane as fuel. So findingnew anode material with anti-coking ability for SOFC using hydrocarbons as fuel isimperative.
     A new anode material (Ni_(0.75)Fe_(0.25)-5MgO)/YSZ is developed. The X-ray spectrum of thefabricated Ni_(0.75)Fe_(0.25)O power indicats that Fe was doped into the crystal structure of NiO,forming a solid Ni1xFexO solution. The results show that the power density increases as aproper amount of Fe and MgO is doped into the anode, while the performance decreases astoo much MgO is added into the anode. A maximum power density of648mW/cm~2at0.7Vand800°C for the SOFC with (Ni_(0.75)Fe_(0.25)-5MgO)/YSZ anode is achieved using humidifiedmethane as fuel. The stability test results for the cells with different anodes show that the cellwith Ni0.75Fe0.25/YSZ anode fails rapidly in methane. When MgO is added into the bulk anode,the voltage remains stable over the whole period of20h. This may be explaned as follows: on the one hand, the doped stable oxide MgO can suppress carbon fiber growth; on the otherhand, MgO particles located on the grain boundaries of YSZ make the YSZ skeleton strongenough to stand the stress caused by carbon fiber growth. SEM micrographs of the anodesubstrates of the single cells after the output performance and stability test further strengthenthe mechanisms above. This proves that (Ni0.75Fe0.25–5MgO)/YSZ is a promising anodematerial for cone-shaped tubular SOFCs operated on methane fuel.
     Based on the works above, we have researched on the performance of SOFCs with(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ anode using CO as fuel. For the cell with either of the anodes, theperformance on hydrogen is better than that on CO, and that on moist CO is poorer than ondry CO. The durability results show that while the cells with traditional Ni/YSZ anode failafter operating on either dry or moist CO for about10h, the voltage of the cells with(Ni_(0.75)Fe_(0.25)-5MgO)/YSZ anode remains stable during the whole test time (40h). And thepresence of water in CO fuel has no effect on the stability of cell with (Ni0.75Fe0.25-5%MgO)/YSZ anode. SEM images of the surface of the anodes after output performance andstability test shows that cells with Ni/YSZ anodes have more deposition than (Ni0.75Fe0.25-5MgO)/YSZ anode when using CO as fuel. The OCV of the two-cell-stack with (Ni0.75Fe0.25-5MgO)/YSZ anode is2V and its maximum output power is4W at800°C. A durability testof the two-cell-stack on moist CO is performed at a constant current density of83mAcm2. Itindicates that the stability of the as-prepared two-cell-stack with (Ni_(0.75)Fe_(0.25)-5MgO)/YSZanode is good during the whole testing time of90h. This character is very significant for theportable application of SOFCs operated on carbon fuel.
     A portable device has been designed for the application of direct carbon solid oxide fuelcell. The results show that Fe catalyst catalyses the Boudouard reaction of cabon fuel andimproves the cell performance. The OCV of the single DC-SOFC is1.05V and its maximumoutput power density is280mW/cm~2at850°C. Stability test results show that the voltage canremain stable when the operating current is small and larger operating current resulted inshorter operation life. EDX analysis shows that the reddish fuel residue is mainly Fe2O3andindicates carbon fuel is depleted. The performance of the three-cell DC-SOFC stack forportable application is poor. For sealing is difficult for this portable device, further work isnecessary to solve the sealing problems of this portable device.
引文
[1]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社,2004
    [2]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2003
    [3] Joon K. Fuel cells-a21st century power system[J]. J. Power Sources,1998,71(1):12-18
    [4] Minh N.Q. Ceramic fuel cells[J]. J. Am. Ceram. Soc.,1993,76(3):563-588
    [5] Grove W.R. On voltaic series and the combination of gases by platinum[J]. LondonEdinburgh Philos. Mag. J. Sci.,1839,3(14):127-130
    [6] Mond L. and Langer C. A new form of gas battery[J]. The Royal Society,1889,296-304
    [7] Bacon F.T. Bipolar electrode for electric batteries[P]. U.S. Pat.:2,969,315,1961-1-24
    [8]李扬,魏敦崧,潘卫国.燃料电池发展现状与应用前景[J].能源技术,2001,22(4):158-161
    [9]衣宝廉.燃料电池现状与未来[J].电源技术,1998,22(5):216-221
    [10]贺华,赵景联.燃料电池的开发现状及其发展前景[J].石化技术与应用,2001,19(3):205-209
    [11] Hirschenhofer J.H., Stauffer D.B., Engleman R.R., et al. Fuel Cells (Vol.5)[M]. WestVirginia: Dept. of Energy,1995,1-26
    [12] Singhal S.C., Kendall and Kevin. High temperature solid oxide fuel cells: Fundementals,design and applications[M]. Oxford: Elsevier Ltd,2004
    [13] Minh N.Q. Science and technology of zirconia (V), In: Badwal S.P.S., Bannister M.J.,Hannink R.H.J. eds., USA: Technomic Publishing Company,1993:652
    [14] Yamamoto O., Tagawa H. and Singhal S.C. Solid Oxide Fuel Cells IV. TheElectrochemical Society, Pennington, NJ, PV95-1,1993:195-207
    [15] Singhal S.C. Science and technology of solid-oxide fuel cells[J]. MRS Bulletin,2000,25:16-21
    [16] Pal U.B. and Singhal S.C. Electrochemical vapor deposition of yttria-stabilized zirconiafilms[J]. J. Electrochem. Soc.,1990,137:2937-2941
    [17] Perednis D., Wilhelm O., Pratsinis S.E., et al. Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis[J]. Thin Solid Films,2005,474(1-2):84-95
    [18] Kendall K. and Sales G. Procedings of the2ndInternational Conference on ceramical inenergy applications, Institute of Energy, London,1994,55-63
    [19] Liu J. Cone-shaped tubular anode-supported solid oxide fuel single cells and stacks[P].Chin. Pat.: CN100347897,2006-07-19
    [20] Ding J., Liu J. A novel design and performance of cone-shaped tubular anode-supportedsegmented-in-series solid oxide fuel cell stack[J]. J. Power Sources,2009,193(2):769-773
    [21] Bai Y.H., Wang C.L., Ding j., et al. Direct operation of cone-shaped anode-supportedsegmented-in-series solid oxide fuel cell stack with methane[J]. J. Power Sources,2010,195(12):3882-3886
    [22]苏巴辛格尔.国际固体氧化物燃料电池堆及系统[J].中国工程科学,2013,15(2):7-14
    [23]夏正才,唐超群,潘小龙,等.固体氧化物燃料电池材料研究进展[J].功能材料,1997,28(5):455-459
    [24] Paratihar S.K., Basu R.N., Mazumder S., et al. In Proceedings of the Sixth InternatinalSymposium on Solid Oxide Fuel Cells(SOFC-VI)[C]. Hawaii,1999
    [25] Cracium R., Park S., Gorte R.J., et al. A novel method for preparing anode cermets forsolid oxide fuel cells[J]. J. Electro. Chem. Soc.,1999,146(11):4019-4022
    [26] Park S., Vohs J.M. and Gorte R.J. Direct oxidation of hydrocarbons in a solid-oxide fuelcell[J]. Nature,2000,404(6775):265-267
    [27] Gorte R.J., Kim H. and Vohs J.M. Novel SOFC anodes for the direct electrochemicaloxidation of hydrocarbon [J]. J. Power Sources,2002,106(1):10-15
    [28] Mori T., Yamamura H. and Saito S. Preparation of an alkali-element-doped CeO2-Sm2O3system and its operation properties as the electrolyte in planar solid oxide fuel cells[J]. J.Am. Ceram. Soc.,1996,79(12):3309-3312
    [29] Mogensen M., Lindegaard T., Hansen U.R., et al. Physical properties of mixed conductorsolid oxide fuel cell anodes of doped CeO2[J]. J. Electrochem. Soc.,1994,141(8):2122-2128
    [30] Ram rez-Cabrera E., Atkinson A. and Chadwick D. The influence of point defects on theresistance of ceria to carbon deposition in hydrocarbon catalysis[J]. Solid State Ionics,2000,136-137:825-831
    [31] Uchida H., Yoshida M. and Watanabe M. Effects of ionic conductivities of zirconiaelectrolytes on polarization properties of platinum anodes in solid oxide fuel cells[J]. J.Phys. Chem.,1995,99(10):3282-3287
    [32] Marina O. A., Bagger C., Primdahl S., et al. A solid oxide fuel cell with a gadol inia-doped ceria anode: preparation and performance[J]. Solid State Ionics,1999,123(1-4):199-208
    [33]郑尧,周嵬,冉然,等.钙钛矿型固体氧化物燃料电池阳极材料[J].化学进展,2008,20(2-3):414-416
    [34]孔令采,刘邦武,顾有松,等.固体氧化物燃料电池Sr2MgMoO3-δ阳极材料制备及导电性能[J].硅酸盐学报,2009,37(3):378-382
    [35] Kharton V.V., Marques F.M.B. and Atkinson A. Transport properties of solid oxideelectrolyte ceramics: a brief review[J]. Solid State Ionics,2004,174(1-4):135-149
    [36]林维明,马紫峰.燃料电池系统[M].北京:化学工业出版社,1996
    [37]李勇,邵刚勤,段兴龙.固体氧化物燃料电池电解质材料的研究进展[J].硅酸盐通报,2006,25(1):42-45
    [38] Yoshimura M. Phase stability of zirconia[J]. Am. Ceram. Soc. bull.,1988,67(12):1950-1955
    [39] Scott H.G. Phase relationships in the zirconia-yttria system[J]. J. Mater. Sci.,1975,10(9):1527-1535
    [40] Souza S.D., Visco S.J. and De Jonghe L.C. Reduced-temperature solid oxide fuel cellbased on YSZ thin-film electrolyte[J]. J. Electrochem. Soc.,1997,144(3):35-37
    [41]吕振刚,郭瑞松,姚琲,等.复合掺杂对YSZ电解质材料烧结性与电性能的影响[J].稀有金属材料与工程,2005,34(12):1961-1964
    [42] Mori M., Abe T., Itoh H., et al. Cubic-stabilized zirconia and alumina composites aselectrolytes in planar type solid oxide fuel cells[J]. Solid State Ionics,1994,74(3-4):157-164
    [43]Yamamoto O., Takeda Y., Kanno R., et al. Electrical conductivity of polycrystallinetetragonal zirconia ZrO2-M2O3(M=Sc, Y, Yb)[J]. J. Mater. Sci. Lett.,1989,8(2):198-200
    [44] Yamamoto O., Arati Y., Takeda Y., et al. Electrical conductivity of stabilized zirconiawith ytterbia and scandia[J]. Solid State Ionics,1995,79:137-142
    [45] Yamamoto O., Takeda Y., Kanno R., et al. Electrical conductivity of tetragonal stabilizedZirconia[J]. J. Mater. Sci.,1990,25(6):2805-280855
    [46] Badwall S.P.S. Zirconia-based solid electrolytes: microstructure, stability and ionicconductivity[J]. Solid State Ionics,1992,52(1-2):23-32
    [47] Spiridonov F.M., Popova L.N., Popilskii Y.R., et al. On the phase relations and theelectrical conductivity in system ZrO2-Sc2O3[J]. J. Solid State Chem.,1970,2:430-438
    [48] Badwal S.P.S. Stability of solid oxide fuel cell components[J]. Solid States Ionics,2001,143(1):39-46
    [49] Chiba R., Yoshimura F., Yamaki J., et al. Ionic conductivity and morphology in Sc2O3and Al2O3doped ZrO2films prepared by the sol-gel method[J]. Solid State Ionics,1997,104(3-4):259-266
    [50] Panhans M.A., Bluemental R.N. A thermodynamic and electrical conductivity study ofnonstoichiometric cerium dioxide[J]. Solid State Ionics,1993,60:279298
    [51] Mori T., Yamamura H. Preparation of an alkalielement doped CeO2-Sm2O3system andits operation properties as the electrlyte in pla-nar solid oxide fuel cell[J]. J. Am. Ceram.Soc.,1996,79(12):3309-3312
    [52] Arai H., Kunisaki T., Shimizu Y., et al. Electrical properties of calcia-doped ceria withoxygen ion conduction[J]. Solid State Ionic,1986,20(4):241-248
    [53] Yahiro H., Ohuchi T., Eguchi K., et al. Electrical properties and microstructure in thesystem ceria-alkaline earth oxide[J]. J. Mater. Sci.,1988,23(3):1036-1041
    [54] Hidenori Y., Koichi E., Hiromichi A. Electrical properties and reducibilities of ceria-rareearth oxide systems and their application to solid oxide fuel cell[J]. Solid State Ionics,1989,36:71-75
    [55] Yahiro H., Baba Y., Eguchi K., et al. High temperature fuel cell with ceria-yttria solidelectrolyte[J]. J. Electrochem. Soc.,1988,135:2077-2080
    [56] Xia C.R. and Liu M.L. Low temperature SOFCs based on Gd0.1Ce0.9O1.95fabricated bydry pressing[J]. Solid State Ionics,2001,144(3-4):249-255
    [57] Wang F.Y., Chen S., Wang Q., et al. Study on Gd and Mg co-doped ceria electrolyte forintermediate temperature solid oxide fuel cells[J]. Catal. Today,2004,97(2-3):189-194
    [58] Tsai T., Perry E. and Barnett S. Low-temperature solid-oxide fuel cells utilizing thinbilayer electrolytes[J]. J. Electrochem. Soc.,1997,144(5): L130-L132
    [59]杜春生,吕晓娟等1第十一届全国高技术陶瓷学术年会论文集.杭州:2000.151
    [60]赵兵,陆立柱.中低温固体氧化物燃料电池(SOFC)电解质材料[J].稀土,1998,19(4):55-61
    [61]梁广川,刘文西,陈玉如,等. Bi2O3基固体电解质材料研究进展[J].兵器材料科学与工程,2000,23(1):67-72
    [62] Takahashi T., Esaka T. and Iwahara H. Electrical conduction in the sintered oxides of thesystem Bi2O3-BaO[J]. J. Solid State Chem.,1976,16(3-4):317-328
    [63] Takahashi T., Iwahara H. and Esaka T. High oxide ion conduction in sintered oxide ofthe system Bi2O3-M2O5[J]. J. Electrochem. Soc.,1977,124(10):1563-1569
    [64] Takahashi T. and Iwahara. H. Mat. Res. Bull.,1977,7:299
    [65] Takahashi T., Iwahara H. and Arao T. High oxide ion conduction in sintered oxides ofthe system Bi203-Y203[J]. J. Appl. Electrochem.,1975,5(3):187-195
    [66]何岚鹰,陈广玉,刘江,等.用于燃料电池的Bi2O3基稀土固体电解质的研制[J].中国稀土学报,1995,13(4):371-373
    [67] Ishihara T., Marsuda H. and Takita Y. Doped LaGaO3perovskite type oxide as a newoxide ionic conductor[J]. J. Am. Chem. Soc.,1994,116(9):3801-3803
    [68] Yamaji K. and Herita T. Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85as the electrolyte forSOFCs[J]. Solid State Ioncs,1998,108:415-421
    [69] Huang K., Feng M., Goodenough J.B., et al. Characterization of Sr-doped LaMnO3andLaCoO3as cathode materials for a doped LaGaO3ceramic fuel cell[J]. J. Electrochem.Soc.,1996,143(11):3630-3636
    [70] Huang K., Feng, M., Goodenough J.B., et al. Electrode performance test on singleceramic fuel cells using as electrolyte Sr and Mg-doped LaGaO3[J]. J. Electrochem.Soc.,1997,144(10):3620-3624
    [71]Yamaji K., Horita T., Ishikawa M., et al. Compatibility of La0.9Sr0.lGa0.8Mg0.2O2.85as theelectrolyte for SOFCs[J]. Solid State Ionics,1998,108(1-4):415-421
    [72]Yan J.W., Lu Z.G., Jiang Y., et al. Fabrication and testing of a doped lanthanum gallateelectrolyte thin-film solid oxide fuel cell[J]. J. Electrochem. Soc.,2002,149(9): A1132-A1135
    [73] Liang F.L., Chen J., Jiang S.P., et al. High performance solid oxide fuel cells withelectrocatalytically enhanced (La, Sr)MnO3cathodes[J]. Electrochem. Commun.,2009,11(5):1048-1051
    [74] Wang W. and Jiang S.P. A mechanistic study on the activation process of (La, Sr) MnO3electrodes of solid oxide fuel cells[J]. Solid State Ionics,2006,177(15-16):1361-13691
    [75]Carter S., Selcuk A., Chater R.J., et al. Oxygen-transport in selected nonstoichiometricperovskite-structure oxides[J]. Solid State Ionics,1992,(53-6):597-605
    [76]Wang S., Lu X. and Liu M. Electrocatalytic properties of La0.9Sr0.1MnO3-based electrodesfor oxygen reduction[J]. J. Solid State Electrochem.,2002,6(6):384-390
    [77]Heuveln F.H.V. and Bouwmeester H.J.M. Electrode properties of Sr-doped LaMnO3onyttria-stablized zirconia[J]. J. Electrochem.Soc.,1997,144(1):134-140
    [78]Kuo J.H., Anderson H.U. and Sparlin D.M. Oxidation-reduction behavior of undoped andSr-doped LaMnO3nonstoichiometry and defect structure[J]. J. Solid State Chem.,1989,83(1):52-60
    [79]Yasuda I. and Hishinuma M. Electrical conductivity and chemical diffusion coefficient ofstrontium-doped lanthanum manganites[J]. J. Solid State Chem.,1996,123(2):382-390
    [80] Stephen J.S. Recent advances in peroskite-type materials for solid oxide fuel cellcathodes[J]. Int. J. Inorg. Mater.,2001,3(2):113-121
    [81] Hart N.T., Brandon N.P., Day M.J., et al. Functionally graded composite cathodes forsolid oxide fuel cells[J]. J. Power Sources,2002,106(1-2):42-50
    [82] Teroka Y., Zhong H.M., Obamoto K., et al. Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δperovskitetype oxides[J]. Mater. Res. Bull1.,1998,23(1):51-62
    [83] Kostogloudis G.C. and Ftikos C. Properties of A-site deficient La0.6Sr0.4Co0.2Fe0.8O3-δbased perovskite oxides[J]. Solid State Ionics,1999,126(1-2):143-151
    [84] Shao Z.P. and Haile S.M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431:170-173
    [85] Baumann F.S., Fleig J., Habermeier H.U., et al. Ba0.5Sr0.5Co0.8Fe0.2O3δthin filmmicroelectrodes investigated by impedance spectroscopy[J]. Solid State Ionics,2006,177(35-36):3187-3191
    [86] Bucher E., Egger A., Ried P., et al. Oxygen nonstoichiometry and exchange kinetics ofBa0.5Sr0.5Co0.8Fe0.2O3-δ[J]. Solid State Ionics,2008,179(21-26):1032-1035
    [87] Lai W. and Haile S.M. Electrochemical impedance spectroscopy of mixed conductorsunder a chemical potential gradient: a case study of Pt|SDC|BSCF[J]. Phys. Chem.Chem. Phys.,2008,10:865-883
    [88] Lee S., Lim Y., Lee E.A., et al. Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La0.6Ba0.4Co0.2Fe0.8O3-δ(LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs[J]. J.Power Sources,2006,157(2):848-854
    [89] McIntosh S., Vente J.F., Haije W.G., et al. Oxygen stoichiometry and chemicalexpansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δmeasured by in situ neutron diffraction[J]. Chem.Mater.,2006,18(8):2187-2193
    [90] Duan Z.S., Yang M., Yan A., et al. Ba0.5Sr0.5Co0.8Fe0.2O3δas a cathode for IT-SOFCswith a GDC interlayer[J]. J. Power Sources,2006,160(1):57-64
    [91] Lim Y.H., Lee J., Yoon J.S., et al. Electrochemical performance of Ba0.5Sr0.5CoxFe1xO3δ(x=0.2-0.8) cathode on a ScSZ electrolyte for intermediate temperature Sofas[J]. J.Power Sources,2007,171(1):79-85
    [92] Lin Y., Ran R., Zheng Y., et al. Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δas a potentialcathode for an anode-supported proton-conducting solid-oxide fuel cell[J]. J. PowerSources,2008,180(1):15-22
    [93]毛宗强,黄建兵,王诚,等.低温固体氧化物燃料电池研究进展[J].电源技术,2008,32(2):75-79
    [94] Tietz F., Buchkremer H.P. and Stover D. Components manufacturing for solid oxide fuelcells[J]. Solid State Ionics,2002,152/153:373-381
    [95] Zhu B. Advanced intermediate temperature solid oxide fuel cells for electricalvehicles[C]. Proceedings of the13th World Hydrogen Energy Conference, Beijing,China,2000:750-755
    [96] Will J., Mitterdorfer A., Kleinlogel C., et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells[J]. Solid State Ionics,2000,131:79-96
    [97] Beckel D., Hütter A.B., Harvey A., et al. Thin films for micro solid oxide fuel cells[J]. J.Power Sources,2007,173(1):325-345
    [98] Ding J., Liu J., Yuan W.S., et al. Slip casting combined with colloidal spray coating infabrication of tubular anode-supported solid oxide fuel cells[J]. J. Eur. Ceram. Soc.,2008,28:3113-3117
    [99] Bai Y.H., Liu J., Gao H.B., et al. Dip coating technique in fabrication of cone-shapedanode-supported solid oxide fuel cells[J]. J. Alloy Compd.,2009,480:554-557
    [100] Ding C.S., Lin H.F. and Sato K. A simple, rapid spray method for preparing anode-supported solid oxide fuel cells with GDC electrolyte thin films[J]. J. Memb. Sci.,2010,350(1-2):1-4
    [101]Ai N., Lu Z., Chen K.F., et al. Preparation of Sm0.2Ce0.8O1.9membranes on poroussubstrates by a slurry spin coating method and its application in IT-SOFC[J]. J. Memb.Sci.,2006,286:255-259
    [102] Eguchi K., Setoguchi T., Inoue T., et al. Electrical properties of ceria-based oxides andtheir application to solid oxide fuel cells[J]. Solid State Ionics,1992,52(1-3):165-172
    [103] Zhang L., Xia C., Zhao F., et al. Thin film ceria-bismuth bilayer electrolytes forintermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3-δ–Y0.25Bi0.75O1.5cathodes[J]. Mater. Res. Bull.,2010,45(5):603-608
    [104] Zha S. W., Xia C.R. and Meng G.Y. Effect of Gd (Sm) doping on properties of ceriaelectrolyte for solid oxide fuel cells[J]. J. Power Sources,2003,115(1):44-48
    [105] Peng R.R., Xia C.R., Fu Q.X., et al. Sintering and electrical properties of(CeO2)0.8(Sm2O3)0.1powders prepared by glycine-nitrate process[J]. Mater. Lett.,2002,56(6):1043-1047
    [106] Ding D., Liu B.B., Zhu Z.N., et al. High reactive Ce0.8Sm0.2O1.9powders via a carbonateco-precipitation method as electrolytes for low-temperature solid oxide fuel cells[J].Solid State Ionics,2008,179(21-26):896-899
    [107] Riess I., Van der Put P.J. and Schoonman J. Solid oxide fuel cells operating on uniformmixtures of fuel and air[J]. Solid State Ionics,1995,82(1-2):1-4
    [108] Hibino T., Ushiki K. and Kuwahara Y. New concept for simplifying SOFC system[J].Solid State Ionics,1996,91(1-2):69-74
    [109]王康,邵宗平.单室固体氧化物燃料电池[J].化学进展,2007,19(2-3):267-275
    [110] Hao Y., Shao Z.P., Mederos J., et al. Recent advances in single-chamber fuel-cells:Experiment and modeling[J]. Solid State Ionics,2006,177(19-25):2013-2021
    [111] Yano M., Tomita A., Sano M., et al. Recent advances in single-chamber solid oxide fuelcells: A review[J]. Solid State Ionics,2007,177(39-40):3351-3359
    [112] Hibino T., Hashimoto A., Inoue T., et al. A Low-operating-temperature solid oxide fuelcell in hydrocarbon-air mixtures[J]. Science,2000,288(16):2031-2033
    [113] Shao Z.P. and Haile S.M. A high performance cathode for the next generation solid-oxide fuel cells[J]. Nature,2004,431(9):170-173
    [114] Shao Z.P., Haile S.M., Ahn J, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature,2005,435:795-798
    [115] Muecke U.P., Beckel D., Bernard A., et al. Micro solid oxide fuel cells on glass ceramicsubstrates[J]. Adv. Funct. Mater.,2008,18(20):3158-3168
    [116] Joo J.H. and Choi G.M. Simple fabrication of micro-solid oxide fuel cell supported onmetal substrate[J]. J. Power Sources,2008,182(1):589-593
    [117] Su P.C., Chao C.C., Shim J.H., et al. Solid oxide fuel cell with corrugated thin filmelectrolyte[J]. Nano Lett.,2008,8(8):2289-2292
    [118] Huang H., Nakamura M., Su P.C., et al. High-performance ultrathin solid oxide fuelcells for low-temperature operation[J]. J. Electrochem. Soc.,2007,154(1): B20-B24
    [119] Mueller-Langer F., Tzimas E., Kaltschmitt M., et al., Techno-economic assessment ofhydrogen production processes for the hydrogen economy for the short and mediumterm[J]. Int. J. Hydrogen Energy,2007,32:3797-3810
    [120] McIntosh S. and Gorte R.J. Direct hydrocarbon solid oxide fuel cells[J]. Chem. Rev.,2004,104:4845-4865
    [121] Liu J. and Barnett S.A. Operation of anode-supported solid oxide fuel cells on methaneand natural gas[J]. Solid State Ionics,2003,158(1-2):11-16
    [122] Ding J., Liu J., Feng Y.B., et al. Direct operation of cone-shaped LT-SOFCs withmethane fuel for portable application[J]. Int. J. Hydrogen Energy,2011,36:7649-7655
    [123] Weber A., Sauer B., Herbstritt D., et al. Oxidation of H2,CO and methane in SOFCswith Ni/YSZ cermet anodes[J]. Solid State Ionics,2002,152-153:543-550
    [124] Massimiliano L.F., Daniela L.R., Isabella N., et al. Electrochemical investigation of apropane-fed solid oxide fuel cell based on a composite Ni–perovskite anode catalyst[J].Appl. Catal. B: Environ.,2009,89:49-57
    [115] Sammes N.M., Boersma R.J. and Tompsett G.A. Micro-SOFC system using butanefuel[J]. Solid State Ionics,2000,135:487-491
    [126] Wang S.Z., Ishihara T. and Takita Y., Dimethyl ether fueled intermediate temperatureSOFC using LaGaO3-based perovskite electrolytes[J]. Electrochem. Solid-State Lett.,2002,5(8): A177-A180
    [127] Liu Y., Guo Y.M., Wang W., et al. Study on proton-conducting solid oxide fuel cellswith a conventional nickel cermet anode operating on dimethyl ether[J]. J. PowerSources,2011,196:9246-9253
    [128] Jiang Y. and Virkar A.V. A high performance, anode-supported solid oxide fuel celloperating on direct alcohol[J]. J. Electrochem. Soc.,2001,148: A706-A709
    [129] Liu M.F., Peng R.R., Dong D.H., et al. Direct liquid methanol-fueled solid oxide fuelcell[J]. J. Power Sources,2008,185(1):188-192
    [130] Murray E.P., Harris S.J., Liu J., et al. Direct solid oxide fuel cell operation usingisooctane[J]. Electrochem. Solid-State Lett.,2006,9(6): A292-A294
    [131] Cao D.X., Sun Y. and Wang G.L. Direct carbon fuel cell: Fundamentals and recentdevelopments[J]. J. Power Sources,2007,167(2):250-257.
    [132] Cooper J.F. Direct conversion of coal and coal-derived carbon in fuel cells[Z].Rochester, NY, United States:2004,375-385.
    [133] Young G.J. and Linden H.R. Fuel cell systems[M]. Washington, D.C.: AmericanChemical Society,1965:343-356
    [134] Nakagawa N. and Ishida M. Performance of an internal direct-oxidation carbon fuel-celland its evaluation by graphic exergy analysis[J]. Industrial&Engineering ChemistryResearch,1988,27(7):1181-1185
    [135] Gür T.M. and Huggins R.A. Direct electrochemical conversion of carbon to electricalenergy in a high temperature fuel cell[J]. J. Electrochem. Soc.,1992,139(10): L95-L97
    [136] Ihara M., Matsuda K., Sato H., et al. Solid state fuel storage and utilization throughreversible carbon deposition on an SOFC anode[J]. Solid State Ionics,2004,175(1-4):51-54
    [137] Li S., Lee A.C., Mitchell R.E., et al. Direct carbon conversion in a helium fluidized bedfuel cell[J]. Solid State Ionics,2008,179(27-32):1549-1552
    [138] Gür T.M., Homel M. and Virkar A.V. High performance solid oxide fuel cell operatingon dry gasified coal[J]. J. Power Sources,2010,195(4):1085-1090
    [139] Wu Y.Z., Su C., Zhang C.M., et al. A new carbon fuel cell with high power output byintegrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem.Commun.,2009,11(6):1265-2568
    [140]唐玉宝,刘江.以活性炭为燃料的固体氧化物燃料电池[J]. Acta Phys.-Chim. Sin.,2010,26(5):1191-1194
    [141] Tang Y.B. and Liu J. Effect of anode and Boudouard reaction catalysts on theperformance of direct carbon solid oxide fuel cells[J]. Int. J. Hydrogen Energy,2000,35:11188-11193
    [142] Bai Y.H., Liu Y., Tang Y.B., et al. Direct carbon solid oxide Fuel Cell-a potential highperformance battery[J]. Int. J. Hydrogen Energy,2011,36:9189-9194
    [143] Kingston R. A detector calls[J]. Chem. Br.,1999,35:44-46
    [144]Ma G., Shimura T. and Iwahara H. Ionic conduction and nonstoichiometry inBaxCe0.90Y0.10O3-alpha[J]. Solid State Ionics,1998:110-103
    [145] Bessette N.F. and George R.A. Electrical performence of westinghouse′s air electrodesupported solid oxide fuel cell[A]. Proc of2nd Internal Fuel Cell Conference[C]. Kobe,Japan,1996:267-270
    [146]王玲.日本燃料电池研发的现状与进展[J].科技经济透视,2006,7:59-60
    [147] Achenbach E., Bleise C. and Divisek J. Modelling of planar SOFC[A]. Proceedings ofthe4thInternational Symposium on SOFC[C]. Pennington, New Jersey,1995:20-23
    [148] Dobbs H. SECA Workshop Proceedings,2000
    [149] Hopkins J. SECA Meeting Proceedings,2003
    [150] Nickens A. SECA Meeting Proceedings,2003
    [151]匡佳雯,史翊翔,蔡宁生,等.固体氧化物电解池H2O-CO2共电解制取烃类燃料反应特性研究[J].中国电机工程学报,2012,32(17):3-35
    [152] Herring J., O’Brien J., Stoots C., et al. Progress in high-temperature electrolysis forhydrogen production using planar SOFC technology[J]. Int. J. Hydrogen Energy,2007,32(4):440-450
    [153] Hatae T., Kakuda N., Taniyama T., et al. Low temperature preparation and performanceof Ni/YSZ anode with a multi-layered structure for SOFC[J]. J. Power Sources,2004,135(1-2):25-28
    [154] Kim S.D. and Hyun S.H. Fabrication techniques of anode-supported YSZ thinelectrolytes for intermediate temperature solid oxide fuel cells[J]. Adv. Fuel Cells,2005,307(13):199-211
    [155] Park J.K., Yang S.Y., Lee T., et al. Microstructure and electrical properties of singlecells based on a Ni-YSZ cermet anode for IT-SOFCs[J]. J. Korean Ceram. Soc.,2006,43(12):823-828
    [156] Kim S.D., Moon H., Hyun S.H., et al. Ni-YSZ cermet anode fabricated from NiO-YSZcomposite powder for high-performance and durability of solid oxide fuel cells[J]. SolidState Ionics,2007,178(21-22):1304-1309
    [157] Leng Y.J., Chan S.H., Khor K.A., et al. Performance evaluation of anode-supportedsolid oxide fuel cells with thin film YSZ electrolyte[J]. Int. J. Hydrogen Energy,2004,29:1025-1033
    [158] Moon H., Kim S.D., Hyun S.H., et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing[J]. Int. J. Hydrogen Energy,2008,33:1758-1768
    [159] Lee D.S., Kim W.S., Choi S.H., et al. Characterization of ZrO2co-doped with Sc2O3and CeO2electrolyte for the application of intermediate temperature SOFCs[J]. SolidState Ionics,2005,176:33-39
    [160] Onoda Jr.G.Y., Hench L.L.(eds.), Ceramic Processing Before firing[M]. Wiley-Interscience, New York, USA,1978
    [161] Reed J.S. Introduction to the Principles of Ceramic Processing[M]. John Wiley andSons: New York,1988,134
    [162] Ding J. and Liu J. An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film[J]. Solid State Ionics,2008,179:1246-249
    [163] Howatt G.N., Breckenridge R.G. and Brownlow J.W., Fabrication of thin ceramicsheets for capacitors[J]. J. Am. Ceram. Soc.,1947,30(1):237-242
    [164]王零森.特种陶瓷[M].湖南:中南工业大学出版社,2003:90-91
    [165]西北轻工业学院.陶瓷工艺学[M].北京:轻工业出版社,1985:386-390
    [166]贺天民,吕喆,斐力,等. YSZ-Al2O3电解质膜管制备及其应用[J].电源技术,2001,25(2):101-104
    [167]贺天民,裴力,吕喆,等.管状YSZ电解质的制备及其在固体氧化物燃料电池中的应用[J].功能材料,2001,32(1):55-61
    [168]李连和,金超,刘江.相转化法制备锥管状阳极支撑SOFC[J].电源技术,2010,34(3):265-267
    [169] Jin C., Liu J., Li L.H., et al. Electrochemical properties analysis of tubular NiO-YSZanode-supported Sofas fabricated by the phase-inversion method[J], J. Memb. Sci.,2009,341:233-237
    [170] Chen C.C., Liu M.F., Yang L., et al. Anode-supported micro-tubular SOFCs fabricatedby a phase-inversion and dip-coating process[J]. Int. J. Hydrogen Energy,2011,36:5604-5610
    [171] Xiao J., Liu J. and Ding J. Injection moulding technique low-pressure supported solidoxide fuel cells fabricated by electrochemical performance of cone-shaped tubularanode[J]. ECS Trans.,2011,35(1):609-614
    [172] Ometete O.O., Janney M.A, and Strelow R.A. Gelcasting-A New Ceramic FormingProcess[J]. Am. Ceram. Soc. Bull.,1991,70(10):1641-1647
    [173] Janney M.A., and Omatete O.O. Method for molding power using a water-based ge-lcasting[P]. US: Patent434624,1989
    [174]刘卫华,贾成厂,郭猛志.凝胶注模成形技术理论研究[J].材料导报,2006,20(1):19-22
    [175] Zhang L., Zhang Y., Zhen Y.D., et al. Lanthanum strontium manganite powderssynthesized by gel-casting for solid oxide fuel cell cathode materials[J]. J. Am. Ceram.Soc.,2007,90(5):1406-1411
    [176] Jiang S.P., Zhang L. and Zhang Y.J. Lanthanum strontium manganese chromite cathodeand anode synthesized by gel-casting for solid oxide fuel cells[J]. Mater. Chem.,2007,17:2627-2635
    [177] Zhang L., Jiang S.P., Cheng C.S., et al. Synthesis and performance of (La0.75Sr0.25)1-x(Cr0.5Mn0.5)O3cathode powders of solid oxide fuel cells by gel-casting technique[J]. J.Electrochem. Soc.,2007,154(6): B577-B582
    [178]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997,78
    [179]晏伯武.凝胶注模成型工艺的研究[J].中国陶瓷,2006,42(2):8-11
    [180] Ha J.S. Effeet of atmospher type on gel-casting behavior of A12O3and evaluation ofgreen strength [J]. Ceramic Int.,2000,26:251-254
    [181] Goodenough J.B. and Huang Y.H., Alternative anode materials for solid oxide fuelcells[J]. J. Power Sources,2007,173(1):1-10
    [182] Jiao Z.J., Takagi N., Shikazono N., et al. J. Power Sources193(3)(2011)1019–1029.
    [183] RinguedéA., Bronine D. and Frade J.R. Ni1xCox/YSZ cermet anodes for solid oxidefuel cells[J]. Electrochim. Acta,2002,48(4):437-442
    [184] Armor J.N. The multiple roles for catalysis in the production of H2[J]. Appl. Catal. A:Gen.,1999,176(2):159-176
    [185] Gorte R.J., Park S., Vohs J.M., et al. Anodes for direct oxidation of dry hydrocarbons ina solid-oxide fuel cell[J]. Adv. Mater.,2000,19(12):1465-1469
    [186] Tao S., Irvine J.T.S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat.Mater.,2003,2(5):320-323
    [187] Huang Y.H., Dass R.I., Xing Z.L., et al. Double Perovskites as Anode Materials forSolid-Oxide Fuel Cells[J]. Science,2006,312(5771):254-257
    [188] Ding J., Liu J. and Guo W.M. Fabrication and study on Ni1xFexO-YSZ anodes forintermediate temperature anode-supported solid oxide fuel cells[J]. J. Alloy Compd.,2009,480(2):286-290
    [189] Ishihara T., Yan J.W., Shinagawa M., et al. Ni–Fe bimetallic anode as an active anodefor intermediate temperature SOFC using LaGaO3based electrolyte film[J]. Electrochim.Acta,2006,52(4):1645-1650
    [190] Lu X.C., Zhu J.H. and Bi Z.H. Fe alloying effect on the performance of the Ni anode inhydrogen fuel[J]. Solid State Ionics,2009,180(2-3):265-270
    [191] Lu X.C. and Zhu J.H. Ni-Fe+SDC composite as anode material for intermediatetemperature solid oxide fuel cell[J]. J. Power Sources,2007,165(2):678-684
    [192] Finnerty C.M., Coe N.J., Cunningham R.H., et al. Carbon formation on anddeactivation of nickel-based/zirconia anodes in solid oxide fuel cells running onmethane[J]. Catal. Today,1998,46(2-3):137-145
    [193] Lin Y.B., Zhan Z.L., Liu J., et al. Direct operation of solid oxide fuel cells with methanefuel[J]. Solid State Ionics,2005,176(23-24):1827-1835
    [194] Nikooyeh K., Clemmer R., Alzate-Restrepo V., et al. Effect of hydrogen on carbonformation on Ni/YSZ composites exposed to methane[J]. Appl. Catal. A: Gen.,2008,347(1):106-111
    [195] Mermelstein J., Millan M. and Brandon N.P. The interaction of biomass gasificationsyngas components with tar in a solid oxide fuel cell and operational conditions tomitigate carbon deposition on nickel-gadolinium doped ceria anodes[J]. J. PowerSources,2011,196(11):5027-5034
    [196] Chick L.A., Pederson L.R., Maupin G.D., et al. Glycine-nitrate combustion synthesis ofoxide ceramic powders[J]. Mater. Lett.,1990,10(1-2):6-12
    [197] Ji Y., Liu J., Lu Z., et al. Study on the properties of Al2O3-doped (ZrO2)0.92(Y2O3)0.08electrolyte[J]. Solid State Ionics,1999,126(3-4):277-283
    [198] Yang R.T. and Chen J.P. Mechanism of carbon filament growth on metal catalysts[J]. J.Catal.,1989,115(1):52-64
    [199] Tikekar N.M., Armstrong T.J. and Virkar A.V. Reduction and reoxidation kinetics ofnickel-based SOFC anodes[J]. J. Electrochem. Soc.,2006,153(4): A654-A663
    [200] Chinarro E., Figueiredo F.M., Mather G.C.,et al. Combustion synthesis andcharacterisation of Ni-MO-YSZ (M=Mg, Ca, Al2/3) cermet anodes for SOFCs[J]. J. Eur.Ceram. Soc.,2007,27(13-15):4233-4236
    [201] De Jong K.P. and Geus J.W. Carbon nanofibers: catalytic synthesis and applications[J].Catal. Rev.,2000,42(4):481-510
    [202] Nolan P.E. and Lynch D.C. Catalytic disproportionation of CO in the absence ofhydrogen: Encapsulating shell carbon formation[J]. Carbon,1994,32(3):477-483
    [203] Jiang Y. and Virkar A.V., Fuel composition and diluent effect on gas transport andperformance of anode-supported SOFCs[J]. J. Electrochem. Soc.,2003,150(7): A942-A951
    [204] Matsuzaki Y. and Yasuda I., Electrochemical oxidation of H2and CO in a H2-H2O-CO-CO2system at the interface of a Ni‐YSZ cermet electrode and YSZElectrolyte[J]. J. Electrochem. Soc.,2000,147(5):1630-1635
    [205] Offer G.J. and Brandon N.P. The effect of current density and temperature on thedegradation of nickel cermet electrodes by carbon monoxide in solid oxide fuel cells[J].Chem. Eng. Sci.,2009,64(10):2291-2300
    [206] Su C., Wu Y.Z., Wang W., et al. Assessment of nickel cermets andLa0.8Sr0.2Sc0.2Mn0.8O3as solid-oxide fuel cell anodes operating on carbon monoxidefuel[J]. J. Power Sources,2010,195(5):1333-1343
    [207] Sumi H., Lee Y.H., Muroyama H., et al. Effect of carbon deposition by carbonmonoxide disproportionation on electrochemical characteristics at low temperatureoperation for solid oxide fuel cells[J]. J. Power Sources,2011,196(10):4451-4457
    [208] Mogensen M., Primdahl S., J rgensen M.J., et al. Composite electrodes in solid oxidefuel cells and similar solid state devices[J]. J. Electroceram.,2000,5(2):141-152
    [209] Pomfret M.B., Owrutsky J.C. and Walker R.A. In situ studies of fuel oxidation in solidoxide fuel cells[J]. J. Anal. Chem.,2007,79(6):2367-2372
    [210] Basu S. Recent trends in fuel cell science and technology[M]. Anamaya: New Delhi,2007:248-266
    [211]李晨.固体氧化物直接碳燃料电池机制及反应特性研究[D].北京:清华大学,2010
    [212] Chuang S.S.C. Carbon-based fuel cell[R]. Akron,Ohio: The University of Akron,2006
    [213] Liu R., Zhao C., Li J., et al. A novel direct carbon fuel cell by approach of tubular solidoxide fuel cells[J]. J. Power Sources,2010,195(2):480-482
    [214] Tanaka S., U-emura T., Ishizaki K., et al. CO2Gasification of iron-loaded carbons-activation of the iron catalyst with CO[J]. Energy&Fuels,1995,9(1):45-52
    [215] Furimsky E., Sears P. and Suzuki T. Iron-catalyzed gasification of char in CO2[J].Energy&Fuels,1988,2(5):634-639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700