用户名: 密码: 验证码:
烟碱对AD大鼠认知功能障碍的作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Alzheimer's病(AD)是神经系统变性疾病,表现为学习、记忆能力下降,智能减退,生活自理能力降低。由于社会老龄化,AD成为老年人继心脏病、肿瘤和卒中之后的第四位死亡原因。AD患者智能下降,生活自理能力逐渐丧失,在治疗和护理上耗费大量的精力和费用,给家庭和社会带来沉重的经济压力。
     AD的特征性病理改变是老年斑(SP)、神经原纤维缠结(NFT)、神经元颗粒空泡变性、脑血管淀粉样变性等。由于AD的确切病因和发病机制并不完全清楚,因而在临床缺乏对AD明确有效的治疗措施。近年来的研究表明,大脑局部过度的炎性反应引起大量的细胞因子释放,在AD的发生和发展中起重要作用。炎性反应同老年斑和神经原纤维缠结为AD的主要特征。针对AD的病理特点,我们认为阻断AD的炎性反应是一治疗靶点。
     β-淀粉样蛋白(Aβ)可激活小胶质细胞导致炎性细胞因子IL-1β、IL-6、TNF-α等的分泌增加,小胶质细胞分泌的IL-1β又刺激星形胶质细胞活化,活化的星形胶质细胞进一步分泌炎性细胞因子,加重Aβ的沉积,从而形成“恶性循环”,导致神经元和突触的不可逆损害,出现神经病理和临床改变。
     人们开始用非甾体抗炎药(NSAIDs)治疗AD。研究表明,长期应用NSAIDs可以降低AD发病的危险性并可缓解AD的症状。故抗炎治疗可以延缓AD的发生,缓解AD的临床症状。研究证实烟碱可抑制机体的炎性反应。给实验动物注射烟碱,炎性反应减轻。有学者经过流行病学研究,提出吸烟可降低AD发病的危险性。给AD患者使用烟碱透皮贴剂,认知功能得到改善。
     烟碱在中枢神经系统的受体是胶质细胞、神经元表面的α7nAChR,胶质细胞是中枢神经系统内分泌炎性介质的主要细胞。我们这项研究的目的是探讨在AD大鼠内,烟碱作用于胶质细胞表面的α7nAChR对抗Aβ引起的炎性反应,研究烟碱对AD大鼠认知功能改善的作用机制。
     我们给予AD模型大鼠口服烟碱,通过Morris水迷宫实验,并检测α7nAChR、IL-1β、IL-6等的变化,观察烟碱对AD大鼠认知功能的改善作用,探讨烟碱的作用机制。在海马神经组织细胞混合培养体系中加入烟碱和Aβ_(25-35),检测炎性细胞因子IL-1β、IL-6变化,探讨Aβ_(25-35)对神经元的损害作用,烟碱的抗炎效应和对神经细胞的保护作用。
     主要研究内容和结果:
     1.烟碱对AD大鼠海马炎性反应的作用
     动物实验分三组,烟碱AD组、AD对照组、正常对照组。给予S-D大鼠口服烟碱,然后在大鼠双侧海马区注射Aβ_(25-35),建立烟碱AD大鼠模型。给S-D大鼠双侧海马区注射Aβ_(25-35),建立AD大鼠模型。
     通过Morris水迷宫实验,检测烟碱AD组、AD组大鼠和正常对照组大鼠学习记忆能力的变化。烟碱AD组大鼠在平台定位航行实验中潜伏期较正常对照组有所延长,在平台象限的游泳时间百分比和游泳距离百分比较正常对照组降低,但高于AD对照组,差异明显。AD组大鼠平台定位航行实验潜伏期虽有下降趋势,但不稳定,在平台象限搜索次数较少,目的性不明确,与烟碱AD组、正常对照组相比差异明显。对三组动物进行方差分析,差异具有显著意义。
     对海马组织α7nAChR蛋白含量进行检测,AD组第1天、第7天、第15天α7nAChR蛋白明显下降,与正常对照组相比,差异显著。烟碱AD组第1天、第7天、第15天下降,但下降幅度不如AD组明显,与AD组相比,存在差异;与正常组相比,无差异。
     AD组海马组织IL-1β、IL-6在1-15天明显升高,第7天达峰值,第15天仍明显高于正常对照组。烟碱AD组IL-1β、IL-6升高,但与AD组相比,升高幅度不大,存在显著性差异;与正常对照组相比,存在差异。
     α7nAChR免疫染色阳性细胞:α7nAChR免疫染色阳性物质位于细胞膜和细胞突起。正常对照组α7nAChR免疫阳性物质染色深,阳性细胞排列规则、密集。烟碱AD组,α7nAChR免疫阳性物质染色较深,阳性细胞排列比较有规则,接近正常对照组。AD组α7nAChR免疫染色略浅,阳性细胞排列欠规则。
     IB4免疫染色阳性小胶质细胞:IB4免疫染色阳性物质位于整个细胞区域。正常对照组海马区IB4免疫染色阳性细胞数目少、染色浅,胞体扁长,分支细、短;烟碱AD组:海马区IB4阳性细胞数较正常组增多,染色浅,胞体形态与正常组类似;AD组:海马区IB4免疫染色阳性细胞数目明显增多,胞体增大,突起增长增粗,部分IB4阳性细胞呈灌木样或杆状。
     GFAP免疫染色阳性星形胶质细胞:GFAP免疫染色阳性物质位于整个细胞区域。正常对照组海马区GFAP免疫染色阳性细胞数目少,染色淡而均匀,胞体小,突起细短;烟碱AD组海马区GFAP免疫染色阳性细胞数目增多,染色加深,部分细胞胞体增大,突起增长;AD组海马区GFAP免疫染色阳性细胞明显增多,胞体增大,突起增长增粗。
     IL-1β免疫染色阳性细胞:IL-1β免疫染色阳性物质主要位于细胞体。正常对照组、烟碱AD组大鼠海马区IL-1β免疫染色阳性物质反应弱,染色浅。AD组海马区域IL-1β免疫染色阳性增强,阳性细胞增多。
     2、烟碱抗Aβ_(25-35)神经毒性作用研究
     用2d龄Sprague-Dawley大鼠海马神经组织细胞混合培养体系。实验分为:正常对照组、Aβ(2μM)组、烟碱(10μM)+Aβ(2μM)组、烟碱(20μM)+Aβ(2μM)组。
     无菌分离海马组织,培养海马神经组织细胞混合体系,到第5天,在相差显微镜下观察,培养细胞生长良好,细胞扁平,神经元四周出现明显光晕,胞体增大,突起长出并逐渐伸长,部分联成网络。分别按10μM、20μM浓度加入烟碱,孵育1h后加入Aβ(2μM),再孵育24小时。检测细胞培养上清液IL-1β、IL-6含量,测定神经元胞体直径和突起长度及细胞生存率。
     烟碱Aβ组细胞培养上清液中IL-1β、IL-6含量增高,烟碱浓度10uM时细胞培养上清液中IL-1β、IL-6含量与正常对照组相比差异明显,而烟碱浓度在20uM时细胞培养上清液中IL-1β、IL-6含量与正常对照组相比差异不明显。烟碱Aβ组两种浓度下,细胞培养上清液中IL-1β、IL-6含量与Aβ组相比,差异显著。
     神经元荧光染色,正常对照组神经元胞体饱满,细胞轮廓圆滑,神经突起形成网络联系;烟碱Aβ组,神经元细胞形态接近正常,神经元胞体直径和突起长度与正常组相差不明显;Aβ组,神经元数目减少,部分细胞脱离底壁而漂浮,损伤神经元逐渐退化、崩解,出现沉淀,神经突起断裂,神经元胞体直径增大,胞体肿胀,突起回缩。
     烟碱(10μM)+Aβ(2μM)组、烟碱(20μM)+Aβ(2μM)组细胞存活率分别为54.7%、62.27%。而Aβ组细胞存活率只有29.57%。烟碱具有抗Aβ神经毒性,提高细胞生存率,保护神经元的作用。
     结论
     大鼠口服烟碱后,在其双侧海马区注射Aβ_(25-35),成功建立了烟碱AD大鼠模型。
     在Morris水迷宫实验中,烟碱AD组大鼠平台定位航行实验的潜伏期比正常对照组有延长,但比AD大鼠明显缩短;在空间探索实验中,烟碱AD组大鼠平台象限游泳时间百分比、游泳距离百分比较AD组大鼠明显增高。证实烟碱可改善AD大鼠认知功能。
     烟碱AD组与AD组比较,海马小胶质细胞和星形胶质细胞的活性降低,IL-1β、IL-6分泌减少,α7nAChR下降不明显。在α7nAChR介导下,烟碱抑制了胶质细胞的炎性细胞因子IL-1β、IL-6分泌,烟碱有明显的抗炎效应,烟碱对神经元具有保护作用。
     在海马神经组织细胞混合培养体系中证实烟碱可对抗Aβ_(25-35)的细胞毒性作用。烟碱预处理后,抑制了Aβ_(25-35)诱导胶质细胞分泌IL-1β、IL-6的作用,Aβ_(25-35)对神经元的细胞毒性作用降低,细胞生存率提高。
Alzheimer's disease(AD) is a neurodegeneration disease of the nervous system.AD patients present with impairment in learning,memory and intelligence,and loss of the self-care ability at late stages.Due to aging of the population,AD has become the fourth cause of death of the elderly next to heart disease,tumor and stroke.The treatment and nursing of AD patients are costly,bringing heavy financial burdens to the family and the society as well.
     The hallmarks of AD pathology are senile plaques,neurofibrillary tangles, granulovacuolar degeneration of neurons and cerebrovascular amyloidosis.The precise etiology and pathogenesis of AD are unclear;therefore,an effective therapy of AD is not available yet.Recent studies have demonstrated that excessive,regional inflammatory reaction in the brain may cause the release of large amounts of free radicals and cytokines, resulting in the incidence and progression of AD.As with senile plaque(SP) and neurofibrillary tangles(NFTs),inflammatory reaction is also a pathologic hallmark of AD. In light of the pathologic hallmarks of AD,we consider blockage of inflammatory reaction as one of the therapeutic targets for AD.
     Aβand neurofibrils may activate microglial cells,leading to enhanced expression of cell surface MHC-Ⅱand increased secretion of inflammatory cytokines such as IL-1β,IL-6 and TNFα.IL-1β,in turn,activates astrocytes,and activated astrocytes secrete more inflammatory cytokines,resulting in Aβdeposition and neurofibrillary tangles;therefore,a vicious cycle forms,which causes irreversible damages to neurons and synapses as well as pathologic and clinical changes of the nervous system.
     Inflammatory cytokines resulting from brain inflammation are also trigger factors for brain neuroinflammation.Accordingly,non-steroid anti-inflammatory drugs(NSAIDs) are used to treat AD.It has been shown that the long-term use of NSAIDs may reduce the risk of AD and ameliorate the symptoms of AD patients.Therefor,anti-inflammation therapy can delay the onset of AD as well as improve cognitive function in the aymptoms of AD.
     Recent studies suggest that nicotine can inhibbite the inflammation.The rats are chronically administrated with nicotine.Results showed that nicotine can decrease the chemotaxis/chemokinesis of peripheral vlood mononuclear cells,impaire T-help cells antigen present,attenuate T-cell activation.Nicotine-treatment decrease T-cell proliferation, inhibite the migration of leukocytes,attenuates the plasma effusion induced inflammation.
     Smoking may also reduce the risk of AD.Treatment with nicotine transdermal patches may improve the intelligence of AD patients as revealed by the Coruner's continuous performance test(CPT).There is a cholinergic anti-inflammatory pathway in the body, through which acetylcholine or nicotine may reduce lipopolysaccharide-induced release of inflammatory cytokines such as TNF-α,IL-1βand IL-6 viaα7nAChR on macrophages and thus lessen lipopolysaccharide-induced inflammatory response.Since neurons,microglial cells and astrocytes expressα7nAChR in the central nervous system,is there a similar cholinergic anti-inflammatory pathway in the central nervous system?
     Acute treatment of ex vivo microglial cells with nicotine may reduce LPS-induced secretion of TNF-α.Nevertheless,the effect of nicotine on Aβactivated microglial cells, secretion of IL-1βand IL-6 has not been reported yet.
     In the study,we administered AD model rats with nicotine orally,and detected the changes in the contents ofα7nAChR,IL-1β,and IL-6,so as to observe the effect of nicotine on cognition and release of inflammatory cytokines.Nicotine and Aβwere added into the mixed nerve cell cultures,and the protective effect of nicotine on neurons was observed; meanwhile,the changes in IL-1 and IL-6 were detected,so as to further elucidate the anti-inflammatory effect of nicotine.
     Main contents and results:
     1.Effect of nicotine on Aβ-induced inflammatory reaction in the nervous system
     S-D rats were orally administered with nicotine to perform nicotine pretreatment.Then, Aβ25-35 was injected into bilateral hippocampus to establish the nicotinic AD rat model and the AD control rat model.The differences in learning and memory among the AD nicotine rats,AD rats and normal rats were observed by the Morris water maze test.
     During the place navigation test,the latency was longer in the nicotine AD group than in the normal control group,and the percentages of swimming time and swimming distance at each quadrant were lower in the nicotine AD group than in the normal control group,but were still significantly higher than in the AD control group.In the AD control group,the latency tended to decrease,but was not stable,and the frequency of search at each quadrant was low and the purposiveness was not clear,and there were significant differences in the regards between the nicotine AD group and the normal control group.Compared to the normal control group,rats of the nicotine AD group presented with certain impairment of intelligence,but the impairment was significantly milder than that in the AD group. Variance analysis revealed significant differences among the three groups of animals.
     Western blot analysis ofα7nAChR protein in hippocampal tissue revealed thatα7nAChR protein content was decreased slightly in the nicotine AD group at days 1,7 and 15 after injection of Aβ(P<0.05 at day 1),and there were no significant differences between the nicotine AD group and the normal control group.However,in the AD group,α7nAChR protein content was decreased at days 1,7 and 15 after injection of Aβand existed till day 15,and there were significant differences between the nicotine AD group and the normal control group.
     α7nA ChR immunoreactive cells:In the normal control group,cells were darkly stained and well-arranged in great density.In the nicotine AD group,cells were stained relatively darkly and arranged relatively well,just similar to cells of the normal control group.However,in the AD group,cells were faintly stained and arranged in mess.
     The levels of IL-1βand IL-6 in the hippocampal tissue:ELISA results indicated that IL-1βand IL-6 contents of hippocampal tissue were low in the normal control group and increased slightly in the nicotine AD group following injection of Aβ(the contents were the highest at day 1 and then decreased gradually),and there were no significant differences between the nicotine AD group and the normal control group.However,in the AD group, IL-1βand IL-6 contents increased drastically and reached a peak at day 7 and then decreased,but the contents were still significantly higher than those in the normal control group and the nicotine AD group at day 15.
     IL-1βimmunoreactive cells:In the hippocampus of rats of the normal control group and the nicotine AD group,IL-1βimmunoreactivity was weak and cells were faintly stained; however,in the AD group,IL-1βimmunoreactivity was strong and cells were darkly stained.
     IB4 immunoreactive microglial cells:In the normal control group:the number of IB4 immunoreactive hippocampal cells was small;cells were faintly stained,with flat and long body and short and thin processes.In the nicotine AD group:the number of IB4 immunoreactive hippocampal cells was increased compared to the normal group,and cells were faintly stained with similar morphology with cells of the normal group.In the AD group:The number of IB4 immunoreactive hippocampal cells was significantly increased, and cell body size was increased,with prolonged and thickened processes.Some of the IB4 immunoreactive cells were of shrub- or rod-shape.
     GFAP immunoreactive astrocytes:In the normal control group:the number of GFAP immunoreactive hippocampal cells was small,cells were faintly and evenly stained,cell body size was small,and nerve processes were thin and short.In the nicotine AD group:the number of GFAP immunoreactive hippocampal cells was increased,cells were darkly stained,the body size of some cells was increased,and nerve processes were prolonged.In the AD group:The number of GFAP immunoreactive hippocampal cells was significantly increased,the size of cell body was increased,and nerve processes were thickened.
     2.Counteraction of nicotine against Aβ_(25-35) neurotoxicity
     The mixed hippocampal cells of 2d-old Sprague-Dawley rats were cultured.There were four groups:the normal control group,Aβ(2μM) group,the nicotine(10μM) +Aβ(2μM) group and the nicotine(20μM)+Aβ(2μM) group.
     Hippocampal tissue was isolated under sterile condition,and mixed hippocampal nerve cells were cultured.At day 5 of culture,cells were observed under phase-contrast microscope.Cells grew well,cell body was flat,with marked halos around,body size was increased,and nerve processes were long and extended gradually,forming a network.The hippocampal cultures incubation with differentia concentration nicotine for 1h prior to treatment with Aβ_(25-3).After 24h incubation of cells with various concentrations of nicotine or nicotine +Aβ,IL-1βand IL-6 contents in culture supernatants were determined by ELISA and neurons were subjected to fluorescence staining,followed by determination of neuron body diameter and process length as well as cell viability assessment by the MTT assay.
     IL-1βand IL-6 contents in culture supernatants:In the nicotine Aβgroup,IL-1βand IL-6 contents were increased mildly after addition of Aβ;the differences in IL-1βand IL-6 contents were not significant between the nicotine Aβgroup and the normal control group, but were significant between the nicotine Aβgroup and the Aβgroup,suggesting that nicotine has inhibitory effect on Aβ-induced release of IL-1βand IL-6.Provided with a constant Aβconcentration,the inhibitory effect was related to the nicotine concentration.In the Aβgroup,IL-1βand IL-6 contents in culture supernatants were significantly higher than those in the nicotine Aβgroup and the normal control group,confirming that Aβmay promote nerve cells to secrete excessive IL-1βand IL-6.
     Effect of nicotine on hippocampal cultures counteracting Aβneurotoxicity:In the normal control group,fluorescence stains of the neuron were even,neuronal body was full, cell contour was smooth and round,and nerve processes formed a network.In the nicotine AD group,fluorescence stains of the neuron were similar to those of normal neurons, neuron body was full,cell contour was smooth and round,nerve processes grew like normal ones,neuron body diameter and process length were near to those of normal neurons.In the Aβgroup,the number of neurons was small,some cells detached from the bottom wall and floated in the medium,damaged neurons degenerated gradually,cell body was swollen,and there were sediments,ruptured nerve processes,and disintegrated neurons.Moreover, neuron body diameter was increased,while nerve processes shortened.
     MTT assay of cell proliferation and viability:Cell viability was 54.7%and 62.7%in the nicotine(10uM) +Aβgroup and the nicotine(20uM) +Aβgroup respectively,but only 29.57%in the Aβgroup,suggesting that nicotine may counteract the neurotoxicity of Aβ, increase cell viability,and protect neurons.
     Conclusions
     Oral administration of nicotine dissolved in drinking water simulated spontaneous smoking well in terms of nicotine absorption and drug action.The nicotine AD rat models were established by injecting Aβ_(25-35) in bilateral hippocampus after certain periods of oral administration of nicotine.
     During the Morris water maze test,the latency in the place navigation test was prolonged in the nicotine AD group as compared to the normal control group,but was significantly shortened compared to the AD group.In the spatial exploration test,the percentages of swimming time and distance at each quadrant were significantly increased in the nicotine AD group than in the AD group.These findings suggest that nicotine may prevent and treat cognitive disorder of AD rats.
     It was found that oral nicotine may increase expression ofα7nAChR,attenuate Aβ-reduced reduction ofα7nAChR and suppress Aβ_(25-35)-induced activation of microglial cells and astrocytes,thus reducing secretion of IL-1βand IL-6 by glial cells.Nicotine, mediated by microglial cellα7nAChR,suppresses secretion of IL-1βand IL-6,and thus exerts its anti-inflammatory effect.
     As revealed in the mixed hippocampal cultures,nicotine may counteract Aβ_(25-35) cytotoxicity.Following nicotine pretreatment,the secretion of IL-1βand IL-6 by glial cells was suppressed,the neurotoxicity of Aβ_(25-35) to neurons was decreased,resulting higher cell viability;moreover.
引文
1. Abhiash K. Desai, MD; George T. Grossberg, MD. Diagnosis and treatment of Alzheimer's disease. Neurology. 2005:64:S34-S39
    2. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. Inflammation and Alzheimer's disease. Neurobiology of Aging. 2000; 21: 383-421].
    3. Rogers, J., Lue,L.F. Microglial chemotaxis, activation, and phagocytosis of amyloid peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001;39:333-340
    4. Johnstone, M, Gearing, A. J. H., & Miller, K. M. (1999). A central role for astrocytes in the inflammatory response to _-amyloid; chemokines, cytokines and reactive oxygen species are produced. Journal of Neuroimmunology, 93, 182-193
    5. Smits, H. A., Rijsmus, A., Van Loon, J. H., et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. Journal of Neuroimmunology. 2002; 127: 160-168
    6. Jin G. Sheng, Susan H. Bora, G. Xu, et al. Lipopolysacchatide induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiology of Disease. 2003; 14: 133-145
    7. Sasaki, A., Yamaguchi, H., Ogawa, A., Sugihara, S., Nakazato, Y., 1997. Microglial activation in early stages of amyloid beta protein deposition. Acta Neuropathol. (Berl.) 94,316-322
    8. Sheng, J.G., Mrak, R.E., Griffin, W.S.T., 1997. Glial-neuronal interactions in Alzheimer's disease: progressive association of IL-1(3+ microglia and S100P+ astrocytes with neurofibrillary tangle stage. J. Neuropathol. Exp. Neurol. 57, 714-717]
    9. Griffin, W.S.T., Sheng, J.G., Roberts, G.W., Mrak, R.E., 1996. Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276-281
    10. Mrak, R. E., & Griffin, W. S. T. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease. Neurobiology of Aging, .2001:22,915-922
    11. Davide Seripa, Maria G Matera, Gloria Dal Forno, et al. Genotypes and haplotypes in the IL-1 gene cluster: analysis of two genetically and diagnostically distinct groups of Alzheimer patients. Neurobiology of Aging. 2005;26: 455-464
    12. Federico Licastro, Fabrizio Veglia, Martina Chiappelli, et al. A polymorphism of the interleukin-1 beta gene at position +3953 influences progression and neuro-pathological hallmarks of Alzheimer's disease. Neurobiology of Aging. 2004; 25: 1017-1022
    13. Yong Zhang, Angela Hayes, Antonia Pritchar, et al. Interleukin-6 promoter polymorphism: risk and pathology of Alzheimer's disease. Neuroscience Letters. 2004;362: 99-102
    14. Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: Systematic review and meta-analysis of observational studies. BMJ.2003;327(7407):128
    15. Perry E, Martin-Ruiz C, Lee M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000.393: 215-222
    16. Ott,MD; K. Andersen, MD; M.E. Dewey, PhD; et al. Effect of smoking on global cognitive function in nondemented elderly. Neurology. 2004; 62: 920-924
    17. Heidi K. White . Edward D. Levin. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer's disease Psychopharmacology. 1999; 143: 158-165
    18. Snaedal J, Johannesson T, Jonsson JE, Gylfadottir G (1996) The eeffects of nicotine in dermal plaster on cognitive functions in patients with Alzheimer's disease. Dementia 7:47-52
    19. Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, McFalls E, Kovera C, McCarten JR (1995) Nicotine patches in Alzheimer's disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:509-514
    20. Agneta Nordberg, Ewa Hellstrom-Lindahl, Mandy Lee, er al. Chronic nicotine treatment reduces b-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw) Journal of Neurochemistry, 2002, 81, 655-658
    21. C.M.Mills, S.A. Hill, R.Mark. Transdermal nicotine suppresses cutaneous inflammation. Arch, Dematol. 1997;133:823-825
    22. Sopori M. Effects of cigarette smoke on the immune system. Nature Rev Immunol 2002; 2: 372-77
    23. Seddigheh Razane-Boroujerdi, Shashi P. Singh. Cindy Knall, et al. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology. 2004; 230:1-9
    24. F. J.P. MIAO, P. G. GREEN, N. BENOWITZ, et al. Central terminals of nociceptors are targets for nicotine suppression of inflammation Neuroscience 123 (2004) 777-784
    25. R. Douglas Shytle, Takashi Mori, Kirk Toemshend, et al. Cholinergic modulation of microglial activation by α 7 nicotinic receptors. J. Neurochem, 2004;89:337-343
    26. R. Douglas Shytle, Takashi Mori, Kirk Toemshend, et al. Cholinergic modulation of microglial activation by α 7 nicotinic receptors. J. Neurochem, 2004;89:337-343
    27. Swatton JE,SellersLA, Faull RL, etal. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci. 2004; 19(10):2711-2719
    28. Borovikova, L. V., Ivanova, S., Zhang, M., et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405: 458-462
    29. Hong Wang, Man Yu, Mahendar Ochani, et al. Nicotinic acetylcholine receptor a7 subunit is an essential regulator of inflammation. Nature. 2003. 421: 384-38
    30. Burns DM. Epidemiology of smoking-induced cardiovascular disease. Prog Cardiovasc Dis. 2003 Jul-Aug;46(1): 11-29
    31. Salvatore Oddo, Antonella Caccamo, Kim N. Green, et al. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease. Neuroscience. 2005;102: 3046-3051
    32. R. Douglas Shytle, Takashi Mori, Kirk Townsend, et al. Cholinergic modulation of microglial activation by α 7 nicotinic reeptors. J Neurochem. 2004; 89: 337-343
    33. Lyudmila V. Borovikova, Svetlana Ivanova, Minghuang Zhang, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458-461
    34. Hong Wang, Man Yu, Mahendar Ochani, et al.Nicotinic acetylcholine receptor α 7 subunit is an essential regulator of inflammation. Nature. 2003; 421:384-387
    35. Glosh A, Greenberg ME .Calcium signaling in neurons molecular mechanism and cellular consequence . Science, 1995,268(5208):239-247
    36. Le Nove're, N., Changeux, J.P., et al. Molecular evolution of the nlcotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 1995; 40:155-172
    37. Paterson D, Nordberg A: Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000; 61:75-111
    38. Karlin A, Akabas MH. Towards a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neurons. 1995; 15:1231-1244
    39. Paterson D, Nordberg A: Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000; 61:75-111
    40. Britta Hahn, Christopher G. V. Sharpies, Susan Wonnacott, et al. Attentional effects of nicotinic agonists in rats · Neuropharmacology. 2003 ;44(8): 1054-1067
    41. Ling Chen, Kiyofumi Yamada, Toshitaka Nabeshima et al. α 7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in b-amyloid infused rats. Neuropharmacology. 2006;50: 254-268
    42. Griffin, W. S., Sheng, J. G, Rosyston, M. C, et al. Glial-neuronal interations in Alzheimer's disease: the potentiao role of a 'cytokine cycle' in disease protression . Brain Pathol. 1998; 8: 65-72
    43. Hu, J., Akama, K. T., Krafft, G. A., et al. Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Research. 1998; 785: 195-206
    44. Chao, C. C, Hu, S., Sheng,W. S., Bu, D., Bukrinsky, M. I., & Peterson, P. K. (1996). Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 16,276-284
    45. Rogers, J., Lue,L.F. Microglial chemotaxis, activation, and phagocytosis of amyloid peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001;39:333-340
    46. Rogers, J., Lue,L.F. Microglial chemotaxis, activation, and phagocytosis of amyloid peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001;39:333-340
    47. Daniel S. Auld, Tom J. Kornecook , Stephane Bastianetto et al. Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies.Progress in Neurobiology 68(2002) 209-245
    48.Francisca Perez-Severiano,Raquel Salvatierra-Sanchez,Mayra Rodriguez-Perez et al.S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits.Euro J Pharmaco.2004;489:197-202
    49.G Paxinos主编.《大鼠脑立体定位图谱》.人民卫生出版社.2005年
    50.Kirsi Pekonen,Catarina Karlsson,Into Laakso,et al.Plasma nico tine and cotinine concentrations in mice after chronic oral nicotine administration and challenge doses.Euro J Pharmac Sci.1993;1(1):13-18
    51.C.M.Hernande,A.V.Terry.Repeated nicotine exposure in rats:effects on memory function,cholinergic markers and nerve growth factor.Neuroscience.2005;130:997-1021
    52.Pekonen,K.,Karlsson,C.,Laakso,I.,Ahtee,L.,1993.Plasma nicotine and cotinine concentrations in mice after chronic oral nicotine administration and challenge doses.Eur.J.Pharm.Sci.1,13-18
    53.Min SK,Moon IW,Ko RW,et al.Effects of transdermal nicotine on attention and memory in healthy elderly non-somkers,Psychopharmacology,2001;159:83-88
    54.C.M.Heranndz and A.V,Terry.Repeated nicotine exposure in rats:effects on memory function,cholinergic markers and nerve growth factor.Neuroscience.2005;130:997-1012
    55.Agneta Nordberg,Ewa Hellstrom-Lindahl,Mandy Lee,et al.Chromic nicotine treatment reduces β-amyloidsis in the brain of a mouse model of Alzheimer's disease(APPsw).J Neurochemi.2002;81:655-658
    56.C.J.Pike,D.Brudick,A.J.Walencevicz,C.G.Glabe,C.W.Cotman,Neurodegeneration induced by _-amyloid peptides in vitro:the role of peptide assembly state,J.Neurosci.13(1993) 1676-1687
    57.T.Maurice,T.P.Su,A.Privat,et al.σ-1 receptor agonists and neurosteroids attenuate β25-35-amyloid peptide-induced amnesia in mice through a common mechanism,Neuroscience 83(1998) 413-428
    58.毕建忠,王萍,许顺良等.注射Aβ_(25-35)后大鼠海马超微结构及caspase-3表达的改变.山东大学学报(医学版).2005;43(11):1000-1022
    59.Abraham,C.R.Reactive astrocytes and α1-antichymotrypsin in Alzheimer's disease. Neurobiology of Aging. 2001; 22: 931-936
    60. Akiyama, H., Barger, S., Bamum, S., Bradt, B., Bauer, J., Cole, G. M., et al. Inflammation and Alzheimer's disease. Neurobiology of Aging. 2000; 21: 383-421
    61. Frautschy, S.A., Yang, F., Irrizarry, M., Hyman, B., Saido, T.C., Hsiao, K., and Cole, G.M. (1998). Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152,307-317
    62. Kim, S.U., and de Vellis, J. (2005). Microglia in health and disease. J. Neurosci. Res. 81,302-313
    63. Kreutzberg, G.W., 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-318
    64. Khoury, J., Hickman, S.E., Thomas, C.A., et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature,1996;382:716-719
    65. Streit, W.J., Walter, S.A., Pennell, N.A., 1999. Reactive microgliosis. Prog.Neurobiol. 57,563-58
    66. Rogers, J., Lue,L.F. Microglial chemotaxis, activation, and phagocytosis of amyloid peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001;39:333-340
    67. Paresce, D.M., Chung, H., Maxfield, F.R., 1997. Slow degradation of aggregates of the Alzheimer's disease amyloid beta-protein by microglial cells. J. Biol. Chem. 272, 29390-29397
    68. Combs, C.K., Johnson, D.E., Karlo, J.C., Cannady, S.B., Landreth, G.E., 2000. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20, 558-567
    69. Chung H, Brazil MI, Maxfield. Uptake, degeradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells. J Biol Chem, 1999;274:32301-32308
    70. Yuichi Tamura, Kenji Hamajima, Kiyohiko Matsui, et al. The F(ab')2 fragment of an A|3-specific monoclonal antibody reduces Aβ deposits in the brain. Neurobiology of Disease. 2005; 20:541-549
    71. Webster SD, Galban MD. Ferran E. et al. Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q. J Immunol, 2001 ;166:7496-74503
    72. Ehab E. Tuppo, Hugo R.Arias. The role of inflammation in Alzheimer's disease. IJBCB. 2005; 37:289-305
    73. Magdalena Sastre, Thomas Klockgether, Michael T. Henek, et al. Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int. J. Devl Neuroscience. 2006; 24: 167-176
    74. Alain R. Simard,l Denis Soulet,l Genevieve Gowing , et al. Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer's Disease. Neuron. 2006; 49: 489-502
    75. Nagele, R. G., D'Andrea, M. R., Lee, H.,et al. Astrocytes accumulate β42 and give rise to astrocytic amyloid plaques in Alzheimer's disease brains. Brain Research. 2003; 971: 197-209
    76. Wyss-Coray, T., Loike, J. D., Brionne, T. C, Lu, E., Anankov, R., Yan, F., et al. (2003). Adult mouse astrocytes degrade amyloid-βin vitro and in situ. Nature Medicine, 9, 453-457
    77. Isaac G. Onyango, Jeremy B. Turtle and James P. Bennett, Jr. Altered intracellular signaling and reduced viability of Alzheimer's disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol Cell Neurosci. 2005; 29( 2):333-343
    78. Lue, L.F., Walker, D.G., Brachova,L., et al. Involvement of microglia receptor for advanced glycation end products(RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Experimental Neurology, 2001 ;171:29-45
    79. Antonia Pritchard, Judith Harris, Colin W. Pritchard, et al. Association study and meta-analysis of low-density lipoprotein receptor related protein in Alzheimer's disease. Neuroscience Letters. 2005; 382(3): 221-226
    80. Nancy J. Rothwell and Giamal N. Luheshi. Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences, 2000; 23: 618-625
    81. F. L. Sciacca, C. Ferri, F. Licastro, et al. Interleukin-1B polymorphism is associated with age at onset of Alzheimer's disease. Neurobiology of Aging, 2003; 24: 927-931
    82. Robert E. Mrak and W. Sue T. Griffin. Interleukin-1, neuroinflammation, and
    Alzheimer's disease. Neurobiology of Aging. 2001; 22: 903-908
    83. G. Sheng, Richard A. Jones, Xue Q. Zhou, et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochemistry International. 2001; 39:341-348
    84. Travis Dunckley, Thomas G. Beach, Keri E. Ramsey, et al. Gene expression correlates of neurofibrillary tangles in Alzheimer's disease..Neurobiology of Aging. 2005; 19: 25-30
    85. C. E. Teunissen, D. Lutjohann, K. von Bergmann, F. Verhey, et al. Combination of serum markers related to several mechanisms in Alzheimer's disease. Neurobiology of Aging2003; 24; 893-902
    86. Luigi Bergamaschini, Cesare Donarini, Giulia Gobbo, et al. Activation of complement and contact system in Alzheimer's disease. Mechanisms of Ageing and Development. 2001; 122: 1971-1983
    87. De Luigi, S. Pizzimenti, P. Quadri, U. Lucca, M. Tettamanti, et al. Peripheral Inflammatory Response in Alzheimer's Disease and Multiinfarct Dementia. Neurobiology of Disease. 2002; 11(2): 308-314
    88. D. M. Kovacs. a2-Macroglobulin in late-onset Alzheimer's disease. Experimental Gerontology. 2000; 35: 473-479
    89. Jin G. Sheng, Richard A. Jones, Xue Q. Zhou, et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation Neurochemistry International 39 (2001)341-348
    90. Griffin, W.S.T., Sheng, J.G., Roberts, G.W., Mrak, R.E., 1996. Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276-281
    91. Sheng, J.G., Zhu, S.G., Griffin, W.S.T., Mrak, R.E., 2000. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp. Neurol. 163,388-391
    92. James A.R. Nicoll and Roy O. Weller. A new role for astrocytes: b-amyloid homeostasis and degradation. TRENDS in Molecular Medicine. 2003;9(7):281-282
    93. Wyss-Coray, T., Loike, J.D.. Brionne, T.C., et al.. Adult mouse astrocytes degrade β-amyloid in vitro and in situ. Nat. Med. 2003; 9: 453-457
    94. Rossner, S., Lange-Dohna, C, Zeitschel, U.,et al. Alzheimer's disease b-secretase BACEl is not a neuron-specific enzyme. J. Neurochem. 2005; 92: 226-324
    95. Nagele, R.G., D'Andrea, M.R., Lee, H., et al. Astrocytes accumulate Ab42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 2003; 971: 197-20
    96. Nilsson, L. N. G., Das, S., & Potter, H. et al. Effect of cytokines, dexamethazone and the A/T-signal peptide polymorphism on the expression of alpha 1-antichymotrypsin in astrocytes: significance for Alzheimer's disease. Neurochemistry International., 2001;39: 361-370
    97. Hu, J., Akama, K. T., Krafft, G. A., et al.. Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Research., 1998; 785: 195-206
    98. Simic, G., Lucassen, P. J., Krsnik, Z., et al.. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer's disease. Experimental Neurology. 2000; 165: 12-2
    99. Rossner, S., Lange-Dohna, C, Zeitschel, U., et al. Alzheimer's disease b-secretase BACEl is not a neuron-specific enzyme. J. Neurochem. 2005; 92: 226-324
    100. Heneka, M.T., Sastre, M., Dumitrescu-Ozimek, L., et al. Focal glial activation coincides with increased BACEl activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflamm. 2005; 2: 22-33]
    101. Garth E. Ringheim, Ann Marie Szczepanik, Wayne Petko, et al. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex Molecular Brain Research. 1998;55(1): 35-44
    102. Bruno Permanne, Ce'Line Adessi, Gabriela P. Saborio, et al. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a β-sheet breaker peptidel FASEB J. 2002,16: 860-862
    103. David Brooks, P. Edison, H. Archer, et al. The relationship between amyloid load, microglial activation, and cognition in Alzheimer's disease: PET findings. Alzheimer's and Dementia. 2005; 1:6
    104. Michelle L. Block and Jau-Shyong Hong. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology. 2005; 76: 77-98
    105. Hong Wang, Man Yu, Mahendar Ochani, et al. Nicotinic acetylcholine receptor a7 subunit is an essential regulator of inflammation. Nature. 2003. 421: 384-387
    106. R. Douglas Shytle, Takashi Mori, Kirk Townsend, et al. Cholinergic modulation of microglial activation by α 7 nicotinic receptor. J Neurochemi. 2004; 89: 337-343
    107. Anthony C. Santucci and Vahram Haroutunian. p-Chloroamphetamine blocks physostigmine-induced memory enhancement in rats with unilateral nucleus basalis lesions. Pharmacology Biochemistry and Behavior. 2004; 77: 59-67
    108. Daniel S. Auld, Tom J. Kornecook, Stephane Bastianetto, et al. Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology. 2002; 68:209-245
    109. M. Mousavi, E. Hellstrom-Lindahl, Z. -Z. Guan, et al. Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience. 2003; 122: 515-520
    110. Akaike, H. Katsuki, T. Kume Reactive oxygen species in NMDA s receptor-mediated glutamate neurotoxicity. Parkinsonism Related Disorder. 1999; 5:203-207
    111. Lihiri DK, Utsuki T, Chen D, et al. Nicotine reduces the secretion of Alzheimer's beta-amyloid precursor protein containing beta-amyloid peptide in the rat without altering synaptic proteins. Ann N Y Acad Sci. 2002; 965:364-372
    112. Kenjiro Ono, Kazuhiro Hasegawa, Masahito Yamada. et al. Nicotine breaks down preformed Alzheimer's β-amyloid fibrils in vitro. Biological Psychiatry. 2002;52: 880-886
    113. Mikhail Yu. Stepanichev , Irina M. Zdobnova,et al. Amyloid-β(25-35)-induced memory impairments correlate with cell loss in rat hippocampus.Physiology & Behavior. 2004; 80: 647-655
    114. Richard Gray, Arun S. Rajan, Kristofer A. Radcliffe, et al. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996; 383: 713-716
    115. Richard Gray, Arun S. Rajan, Kristofer A. Radcliffe, et al.Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383:713-716
    116. Poth K, Nutter TJ, Cuevas J, et al. Heterogeneity of nicotinic acetylcholine receptors class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci. 1997;17(2):586-596
    117. Sihver W, Gillberg PG. Nordberg A: Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined 3H-(-)nicotine, 3H-cytisine and 3H-epibatidine in vitro autoradiography. Neuroscience. 1998; 85:1121-1133]
    118. Volodia D. Gueorguiev, Christopher M. Frenz, Kimberly M. Ronald, et al. Nicotine and epibatidine triggered prolonged rise in calcium and TH gene transcription in PC12 cells. European Journal of Pharmacology. 2004; 506:37-46
    119. Shun Shimohama and Takeshi Kihara. Nicotinic Receptor-Mediated Protection against β-amyloid Neurotoxicity. Biol Psychiatry. 2001;49:233-239
    120. Hisakazu Mihara and Yuta Takahashi. Engineering peptides and proteins that undergo α-to-β transitions. Current Opinion in Structural Biology. 1997;7: 501-508
    121. Manelli, A.M., Stine, W.B., Van Eldik, L.J., LaDu, M.J., 2004. ApoE and Abeta1-42 Interactions: effects of isoform and conformation on structure and function. J. Mol. Neurosci. 23, 235
    122. Chromy, B.A., Nowak, R.J., Lambert, M.P., et al. 2003. Self-assembly of Abeta (1-2) into globular neurotoxins. Biochemistry 42, 12749-12760
    123. Jill A. White, Arlene M. Manelli, Kristina H. Holmberg, et al. Differential effects of oligomeric and fibrillar amyloid-B1-42 on astrocyte-mediated inflammation. Neurobio Dis. 2005; 18: 459-465
    124. Akiyama, H., Barger, S., Barnum, S.,et al. 2000. Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383
    125. Dickson, D.W., Lee, S.C., Mattiace, L.A., Yen, S.H., Brosnan, C, 1993. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7, 75
    126. Wegiel, J., Wang, K.C., Tarnawski, M., Lach, B., 2000. Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol. (Berl.) 100, 356
    127. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R., Paul, S.M., 2004. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10, 719
    128. Griffin, W.S., Sheng, J.G., Roberts, G.W., Mrak, R.E., 1995. Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276
    129. Giovannini MG, Scali C, Prosperi C, et al. β-amyloid inducedin flammation and cholinergic hypofunction in the rat brain in vivo:involvement of thep38MAPK pathway. Neurobiol Dis. 2002;11(2):257-262
    130. Sheng JG, Mrak RE, Griffin GW, et al. Neuritic plaque evolution in Alzheimer's disease is accompanied by transition of activated microglia from primed to enlarged to phagocyticforms. Acta Neuropathol. 1997;94 : 1-8
    131. Kahn MA, E.J., Speight, G.J., de Vellis, J., 1995. CNTF regulation of astrogliosis and the activation of microglia in the developing rat central nervous system. Brain Res. 685, 55-67
    132. Rezaie, P., Trillo-Pazos, G., Greenwood, J., Everall, I.P., Male, D.K., 2002. Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis. Exp. Cell Res. 274, 68-82
    133. Jin G. Shen, Susan H, Bora, G, Xu, et al. Lipoplysaccharide- induced- nuuroinflammaion increases intracellular acculation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mic. Neurobiology of Disease. 2003;14: 133-145
    134. Hauss-Wegrzynial, B., Dobrzanski, P., Stoehr, K.D.,et al. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res. 198; 780:294-303
    135. Jin Xiu, Agneta Nordberg, Jun-Tian Zhang, et al. Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the α 7, α 4 and β2 subunits in response to nanomolar concengtration of the β-amyloid poptide1-42. Neurochemi Inter. 2005;47:281-290
    136. M. Reza zamani, Yvonne S. Allen, Gill P. Owen, et al. Nicotine modulates the neurotoxic effect of β-amyloid protein25-35 in hippocampal cultures. Neuroreport. 1997; 8:513-517
    137. Ho, G.J., Drego, R., Hakimian, E., Masliah, E., Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr. Drug Targets Inflamm. 2005. 4: 247-256
    138. Kishimoto T, Akira S, Taga T. Interleukin-6 and ist receptor: a paradigm for cytokines. Science 1992;258:593-7
    139. Rosario Garrido, Kelley King-Pospisil, Kwang Won Son, et al. Nicotine upregulates nerve growth factor expression and prevents apoptosis of cultured spinal cord neurons. Neuroscience Research. 2003; 47(3):349-355.
    140. Salvatore Oddo, Frank M. LaFerla. The International Journal of the role of nicotinic acetylcholine receptors in Alzheimer' s disease. Biochemistry & Cell Biology. 2005; 37: 289-305
    141. Ho, G.J., Drego, R., Hakimian, E., Masliah, E.. Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr. Drug Targets. Inflamm. 2005. 4: 247-256
    142. Gadient RA, Otten U. Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6-R) mRNAs in rat brain during postnatal development. Brain Res 1987; 15:313-4
    143. Hull M, Strauss S, Berger M, Volk B, Bauer J. The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer's disease. Behav Brain Res 1996;78:37-41
    144. Tha KK, Okuma Y, Miyazaki H, Murayama T, Uehara T, Hatakeyama R. Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM)P8. Brain Res 2000;885:25-31
    145. Heyser CJ, Masliah E, Samimi A, et al. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 1997;94:1500-5
    146. Daniela Braida , Paola Sacerdote, Alberto E. Panerai, et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behavioural Brain Research. 2004; 153: 423-429
    147. Ehab E. Tuppo, Hugo R. Arias. The role of inflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology. 2005; 37: 289-305
    148. Hafiz FB, Brown DR: A model for the mechanism of astrogliosis inprion disease. Mol Cell Neurosci 2000, 16:221-232
    149. Molina HolgadoF,PinteauxE,MooreJD,etal.Endogenous interleukin-1 receptor antagonist mediatesanti inflammatory and neuroprotective actions of cannabinoids in neurons and glia.JNeurosci,2003,23:6470-6474
    150. Christine E. Loscher, Kingston H. G. Mills and Marina A. Lynch. Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor J Neuroimmuno. 2003; 137: 117-124
    151. P. Navarra and P. Preziosi. Carbon monoxide and nitric oxide control interleukin-1 production and release in rat brain. Toxicology Letters. 1998; 95:14
    152. Amy G.M. Lam, Tanuja Koppal, Keith T. Akama, et al. Mechanism of glial activation by S100B: involvement of the transcription factor NFκB. Neurobiology of Aging. 2001; 22: 765-772
    153. Alistair Ritchie, Kevin Morgan and Noor Kalsheker. Allele-specific overexpression in astrocytes of an Alzheimer's disease associated alpha-1-antichymotrypsin promoter polymorphism. Molecular Brain Research. 2004; 131: 88-92
    154. Michelle L. Block and Jau-Shyong Hong. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology. 2005; 76: 77-98
    155. Nilsson, L. N. G., Das, S., Potter, H. Effect of cytokines, dexamethazone and the A/T-signal peptide polymorphism on the expression of alpha 1-antichymotrypsin in astrocytes: significance for Alzheimer's disease. Neurochemistry International. 2001; 39: 361-370
    156. Jin G. Sheng, Richard A. Jones, Xue Q. Zhou, et al. Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochemi Inter. 2001; 39: 341-348
    157. Ruth M. Barrientos, Emily A. Higgins, David B. Sprunger, et al. Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus Behavioural Brain Research. 2002; 134: 291-298
    158. Marina A. Lynch. Interleukin-1β exerts a myriad of effects in the brain and in particular in the hippocampus: Analysis of some of these actions. Vitamins & Hormones. 2002; 64: 185-219
    159. B. Viviani, S. Bartesaghi, F. Gardoni, et al. Interleukin-1 P Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases J. Neurosci., 2003; 23: 8692
    160. Steven F. Maier. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain, Behavior, and Immunity. 2003; 17: 69-85
    161. Michelle L. Block and Jau-Shyong Hong, et al. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology. 2005; 76: 77-98
    162. Robert E. Mrak and W. Sue T. Griffin, et al. Glia and their cytokines in progression of neurodegeneration.Neurobiology of Aging. 2005; 26: 349-354
    163. Peyrin JM, Lasmezas CI, Haik S, et al: Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport. 1999; 10:723-729
    164. Meda L, Baron P, Prat E, et al. Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with beta-amyloid[25-35].J Neuroimmunol 1999; 93: 45-5
    165. Alafuzoff, I., Overmyer, M.,Helisalmi, S.,et al. Lower counts of astroglia and activated microglia in patients with Alzheimer's disease with regular use of non-steroidal anti-inflammatory drugs. L. Alzheimers Dis. 2000;2:37-46
    166. Yan, Q., Zhang, L., Liu, H., er al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J, Neurosci. 2003; 23: 7504-7509
    167. Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1998; 18:176-9
    168. Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: Systematic review and meta-analysis of observational studies. BMJ.2003;327(7407):128
    169. Jeffrey M. Craft, D. Martin Watterson et al. Human amyloid β-induced neuroinflammation is an rarly rvent in neurodegeneration. Glia.2006; 53:484-490
    170. Masashi Katsura, Yutaka Mohri, Keijiro Shuto, et al. Up-regulation of L-type Voltage-dependent Calcium Channels after Long Term Exposure to Nicotine in Cerebral Cortical Neurons. J Biol Chem. 2002; 277:7979-7988
    171. Jill A. White, Arlene M. Manelli, Kristina H. Holmgerg, et al.Differential effects of oligomeric and fibrillar amyloid-β1-42 on astrocyte-mediated inflammation. Neurobiol Dis. 2005; 18: 459-465
    172. Quik, M., Kulak, J. M. Nicotine and Nicotinic Receptors; Relevance to Parkinson's Disease. Neurotoxicology. 2002; 23: 581-594
    173. Seddigheh Razani-Boroujerdi, Shashi P. Singh, Cindy Knall, et al. Chronic nicotine inhibits inflammation and promotes influenza infection. Cellular Immunology. 2004; 230: 1-9]
    174. Karine Parain, Celine Hapdey, Estelle Rousselet, et al. Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine Parkinsonian toxin. Brain Research. 2003; 984: 224-232
    175. Ozlen Konu, Justin K. Kane, Tanya Barrett, et al. Vawter Region-specific transcriptional response to chronic nicotine in rat brain Brain Research. 2001; 909: 194-203
    176. B. Giunta, J. Ehrhart, K. Townsend, et al. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Research Bulletin. 2004; 64: 165-170
    177. Roger Anwyl. Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Progress in Neurobiology. 2006; 78:17-37
    178. R. Douglas Shytle, Takashi Mori, Kirk Townsend, et al. Cholinergic modulation of microglial activation by α7 nicotinic receptor. J Neurochemi. 2004; 89: 337-343
    179. wata, N. et al. (2002) Region-specific reduction of Ab-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging.J. Neurosci. Res. 70, 493-500
    180. Evin, G. and Weidemann, A. (2002) Biogenesis and metabolism of Alzheimer's disease Ab amyloid peptides. Peptides 23, 1285-1297
    181. Shibata, M. et al. (2000) Clearance of Alzheimer's amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the bloodbrain barrier. J. Clin. Invest. 106, 1489-1499
    182. Weller, R.O. et al. (2002) Cerebrovacular disease is a major factor in the failure of elimination of Ab from the human brain: implications for therapy of Alzheimer's disease. Ann. N. Y. Acad. Sci. 977, 162-168
    183. Lemere CA, Maron R, Spooner E, Grenfell TJ, Mori C, Weiner HL, et al. Mucosal administration of Aβ peptide decreases cerebral amyloid burden in PD-APP transgenic mice. Soc Neurosci Abst 1999;25:1291
    1. Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Ann Rev Neurosci. 1993; 16:403-443.
    2. Karlin A, Akabas MH. Towards a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neurons. 1995; 15:1231-1244
    3. Paterson D, Nordberg A: Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000; 61:75-111
    4. Le Nove're, N., Changeux, J.P., et al. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 1995; 40:155-172
    5. Changeux, J.P., Bertrand, D., Corringer, P.J., et al. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res. Rev. 1998; 26:196-214
    6. Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997;56:321-39
    7. Scheff SW, Price DA. Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. J Neuropathol Exp Neurol 1998;57:1146-53
    8. Selkoe D. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81:741-66
    9. Wegiel J, Wisniewski HM, Dziewiatkowski J, et al. The origin of amyloid in cerebral vessels of aged dogs. Brain Res 1995;705:225-34
    10. Wisniewski KE, Wisniewski HM, Wen GY. Occurrance of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann Neurol 1985;17:278-82
    11. Burghaus L, Schutz U, Krempel U, et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res, 2000, 76:385 388
    12. Guan ZZ, Zhang X, Ravid R, et al. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J Neurochem, 2000, 74:237 -243
    13. Lee DH, Dandrea MR, Plata Salaman CR, etal. Decreased α7 nicotinic acetylcholine receptor protein levels in sporadic Alzheimer's disease hippocampus. Alzheimer Rep, 2000,3:217 220
    14. Le Novere N, Changeux JP. Molecular evolution of the nicotinic acetylcholine receptor: an example of multi gene family in excitable cells. J Mol Evol, 1995, 40(2):155-172
    15. John A. Dani. Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiat. 2001;49(3): 166-174
    16. Matter JM, Ballivet M. Gene structures and transcriptional regulation of the neuronal nicotinic acetylcholine receptors. In: Clementi F, Fornasari D, Gotti C, editors. Neuronal Nicotinic Receptors. Experimental Pharmacology, Berlin: 2000; 14: 33-55
    17. Willoughby JJ, Ninkina NN, Beech MM, et al. Molecular cloning of a human neuronal nicotinic acetylcholine receptor b3-like subunit. Neurosci Lett. 1993; 155: 136-139
    18. Anand R, Lindstrom J. Nucleotide sequence of the human nicotinic acetylcholine receptor p2-subunit gene. Nucl Acid Res. 1990; 18:4272
    19. Bruno Moulard, Fabienne Picard, Stephanie le Hellard, et al. Ion channel variation causes epilepsies. 2001;36(2-3): 275-284
    20. Nai, Q., McIntosh, J.M., Margiotta, J.F., et al. Relating neuronal nicotinic acetylcholine receptor subtypes defined by subunit composition and channel function. Mol. Pharmacol. 2003; 63:311-324
    21. Gault J, Robinson M, Berger R, et al. Genomic organization and partial an duplication of the human alpha 7 neuronal nicotinic acetylcholine receptor gene. Genomics, 1998, 52:173-185
    22. Breand D, Changeux JP. Nicotinic receptor: an allosteric protein specialized for intracellular communication. Sem Neurosci. 1995;7(1):75-90
    23. Ningshan Wang, Avi Orr-Urtreger, Amos D. Korczyn. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia: lessons from knockout mice. 2002; 68(5): 341-360
    24. Lips, K. S., Pfeil, U., Kummer, W. Coexpression of α9 and α10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience. Neuroscience. 2002; 115: 1-5
    25. Barbara J. Morley, Dwayne D. Simmons. Developmental mRNA expression of the α10 nicotinic acetylcholine receptor subunit in the rat cochlea. Developmental Brain Research. 2002; 139(1);87-96
    26. Poth K, Nutter TJ, Cuevas J, et al. Heterogeneity of nicotinic acetylcholine receptors class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci, 1997; 17(2):586-596
    27. Galzi JL, Revah F, Bessis A, et al. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Annu Rev Phammacol, 1991, 31:37-72
    28. Kink, R., de Kerkhove d'Exaerde, A., Zoli, M., et al. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J. Neurosci. 2001; 21: 1452-1463
    29. Jean-Luc Galzi, Daniel Bertrand, Anne Devillers-Thiery, et al. Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site-directed mutagenesis FEBS Letters. 1991;294(3): 198-202
    30. Adem A, Nordberg A, Singh-Jossan S, et al. Quantitative autoradiography of nicotinic receptors in large cryosections of human brain hemispheres. Neurosci Lett. 1989;101:247-252
    31. Adem A, Singh-Jossan S, dA' rgy R, et al. Distribution of nicotinic receptors in human thalamus as visualized by ~3H-nicotine and ~3H-acetylcholine receptor autoradiography. J Neural Transm. 1988; 73: 77-83
    32. Hellstro¨m-Lindahl E, Mousavi M, Zhang X, et al. Regional distribution of nicotinic receptor subunit mRNA in human brain: Comparison between Alzheimer and normal brain. Mol Brain Res. 1999; 66:94-103
    33. Rubboli F, Court J, Morris C, et al. Distribution of nicotinic receptors in human hippocampus and thalamus. Eur J Neurosci. 1994; 6:1596 -1604
    34. Newhouse P. A., Potter A., and Levin E. D. Nicotinic system involvement in Alzheimer's and Parkinson's diseases. Implications for therapeutics. Drugs Aging. 1997; 11: 206-228
    35. Marutle A, Warpman U, Bogdanovic N, et al. Regional distribution of subtypes of nicotinic receptors in human brain and effect of aging studied by α ~3H-epibatidine. Brain Res. 1998; 801:143-149
    36. Nordberg A, Adem A, Nilsson L, et al. Heterogenous cholinergic nicotinic receptors in the CNS. In: Clementi F, Gotti C, Sher E, editors. Nicotinic Acetylcholine Receptors in the Nervous System, NATO ASI Series H: Cell Biology. 1988;Vol H25. New York: Springer: 331-350
    37. Sihver W, Gillberg PG, Nordberg A: Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined H-(-)nicotine, H-cytisine and ~3H-epibatidine in vitro autoradiography. Neuroscience. 1998; 85:1121-1133
    38. Marutle A, Warpman U, Bogdanovic N, et al. Regional distribution of subtypes of nicotinic receptors in human brain and effect of aging studied by 6 [~3H]epibatidine. Brain Res. 1998; 801:143-149
    39. Sihver W, Gillberg PG, Nordberg A. Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined [~3H](2)nicotine, [~3H]cytisine and [~3H]epibatidine in vitro autoradiography. Neuroscience. 1998b;:85:1121-1133
    40. Hellstrom-Lindahl E, Mousavi M, Zhang X, et al. Regional distribution of nicotinic receptor subunit mRNAsn human brain: comparison between Alzheimer and normal brain . Mol Brain Res, 1999;66(1-2):94-103
    41. Wever A, Jeske A, Lobron C, et al: Cellular distribution of nicotinic acetylcholine receptor subunits mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization. Mol Brain Res 1994; 25:122-128
    42. Schroder H, Van de Vos RA, Jansen EN, et al: Gene expression of the nicotinic acetylcholine receptor a4 subunit in the frontal cortex of Parkinson's disease patients. Neurosci Lett. 1995; 187:173-176
    43. George Kemp and Barbara J. Morley Ganglionic nAChRs and high-affinity nicotinic binding sites are not equivalent. FEBS Letters. 1986; 205(2): 265-268
    44. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Progress in Neurology. 2000; 61:75-111
    45. Poth K, Nutter TJ, Cuevas J, et al. Heterogeneity of nicotinic acetylcholine receptors class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci. 1997; 17(2):586-596
    46. Glosh A, Greenberg ME .Calcium signaling in neurons molecular mechanism and cellular consequence . Science, 1995,268(5208):239-247
    47. Battagili M, Gotti C, Terzano S, et al. Expression and transcriptional regulation of the human α3 neuronal nicotinic receptor subunit in T lymphocyte cell lines. J Neurochem, 1998; 71(3): 1261-1270
    48. Chini B, Clementi F, Hukovic N, et al. Neuronal type α -bungarotoxin receptors and the α5-nicotinic receptor subunit gene are expressed in neuronal and non-neuronal human cell lines. Proc Natl Acad Sci USA. 1992;89: 1572-1576
    49. Rubboli F, Court JA, Sala C, et al .Distribution of nicotinic receptor in human hippocampus and thalamus. Eur J Neurosci.1994;6(10): 1596-1604
    50. Hai Wang and Xiulan Sun. Desensitized nicotinic receptors in brain. Bra Res Rev. 2005; 48(3): 420-437
    51. Patrick O. J. Covernton and Robin A. J. Lester. Prolonged stimulation of presynaptic nicotinic acetylcholine receptors in the rat interpeduncular nucleus has differential effects on transmitter release. Inter J Dev Neurosci. 2002; 20(3-5):247-258
    52. Holladay, M.W., Dart, M.J., Lynch, J.K.. Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J. Med. Chem. 1997; 40: 4169- 4194
    53. Judith Gault, Misi Robinson, Ralph Berger, et al. Genomic Organization and Partial Duplication of the Human al Neuronal Nicotinic Acetylcholine Receptor Gene (CHRNA7) Genomics. 1998; 52(2): 173-185
    54. Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca~(2+) dependent mechanism. Neuropharmacology. 2000;39:2799-2807
    55. Shimohama S, Greenwald DL, Shafron DH, et al. Nicotinic alpha 7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res. 1998; 779:359-363
    56. O'Neill AB, Morgan SJ, Brioni JD. Histological and behavioral protection by (-)-nicotine against quinolinic acid-induced neurodegeneration in the hippocampus. Neurobiol Learn Mem. 1998;69:46-64
    57. Zoli M, Picciotto MR, Ferrari R, et al. Increased neurodegeneration during aging in mice lacking high-affinity nicotine receptors. EMBO J. 1999; 18:1235-1244
    58. Citron M, Oltersdorf T, Haass C, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases betaprotein production. Nature. 1992; 360:672-674
    59. K.E. Stevens, R. Freedman, A.C. Colins, et al. Genetic correlation of inhibitory gating of hippocampal auditory response and β-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strain. Neuropsychopharmacology. 1996; 15: 152-162
    60. Caldarone BJ, Duman CH, Picciotto MR. Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology. 2000; 39:2779-2784
    61. Xu-Feng Zhang, David G. McKenna and Clark A. Epibatidine, a nicotinic acetylcholine receptor agonist, inhibits the capsaicin response in dorsal root ganglion neurons. Brain Research. 2001; 919(1): 166-168
    62. Ram Sack, Alona Gochberg-Sarver, Uri Rozovsky, et al. Lower core body temperature and attenuated nicotine-induced hypothermic response in mice lacking the β4 neuronal nicotinic acetylcholine receptor subunit. Brain Research Bulletin. 2005; 66(1): 30-36
    63. Ryan RE, Ross SA, Drago J, et al. Dose related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br J Pharmacol. 2001; 132:1650-1656
    64. Laudenbach V, Medja F, Zoli M, et al. Selective activation of central subtypes of the nicotinic acetylcholine receptor has opposite effects on neonatal excitotoxic brain injuries. FASEB J, 2002; January 14:fj.01-0532fje
    65. Messi ML, Renganathan M, Grigorenko E, et al. Activation of alpha7 nicotinic acetylcholine receptor promotes survival of spinal cord motoneurons. FEBS Lett 1997; 411:32-38
    66. Zoli M, Picciotto MR, Ferrari R, et al. Increased neurodegeneration during aging in mice lacking high-affinity nicotine receptors. EMBO J.1999. 18:1235-1244
    67. Piccitto MR, Zoli M, Lena C, et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature; 1995, 374(6518):65-67
    68. Walsh, D.M., Tseng, B.P., Rydel, R.E., et al. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry. 2000;39:10831-10839
    69. BA Yankner, LK Duffy and DA Kirschner: Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science. 1990; 250:279 -282
    70. Giannakopoulos P, Hof PR, Kovari E, et al. Distinct patterns of neuronal loss and Alzheimer's disease lesion distribution in elderly individuals older than 90 years. J Neuropathol ExpNeurol. 1996; 55:1210-1220
    71. Haass, C, Schlossmacher, M.G., Hung, A.Y., et al. Amyloid -peptide is produced by cultured cells during normal metabolism. Nature. 1992; 359, 322-327
    72. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science. 1990; 250:279 -282
    73. Citron M, Oltersdorf T, Haass C, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases betaprotein production. Nature. 1992; 360:672- 674
    74. Tomita T, Maruyama K, Saido TC, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci U S A. 1997; 94:2025-2030
    75. Hunter BE, de Fiebre CM, Papke RL, et al. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett. 1994; 168:130-134
    76. Kihara T, Shimohama S, Sawada H, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol. 1997; 42:159 -163
    77. Kihara T, Shimohama S, Urushitani M, et al. Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res. 1998; 792:331-334
    78. Kim SH, Kim YK, Jeong SJ, et al. Enhanced release of secreted form of Alzheimer's amyloid precursor protein from PC12 cells by nicotine. Mol Pharmacol. 1997; 52:430-436
    79. Wang, H.Y., Lee, D.H., D'Andrea, M.R., et al.β-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem. 2000; 275: 5626-5632
    80. Liu, Q., Kawai, H., Berg, D.K., et al. β-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc. Natl. Acad. Sci. USA. 2001; 98:4734-4739
    81. Pettit, D.L., Shao, Z., Yakel, J.L., et al. β-Amyloid 1-42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 2001; 21: RC120
    82. Dineley, K.T., Westerman, M., Bui, D., et al. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 2001; 21: 4125-4133
    83. Pettit, D.L., Shao, Z., Yakel, J.L., et al. β-Amyloid 1-42 peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 2001; 21: RC120
    84. Li MD, Kane JK, Matta SG, et al. Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci. 2000; 20:1318-1323
    85. Nordberg A, Hellstrom-Lindahl E, Lee M, et al. Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw). J Neurochem. 2002; .81:655-658
    86. Wang HY, Lee DH, D'Andrea MR, et al. β-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000;275:5626-5632
    87. Guan ZZ, Zhang X, Ravid R, et al. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J Neurochem. 2000; 74:237-243
    88. Dineley, K.T., Westerman, M., Bui, D., et al. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci. 2001; 21:4125-4133
    89. Nagele RG, D'Andrea MR, Anderson WJ, et al. Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience 2002; 110:199-211
    90. Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of Abeta1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000; 20:4050-4058
    91. Pettit, D.L., Shao, Z., Yakel, J.L., et al. β-Amyloid _(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J. Neurosci. 2001; 21: RC120
    92. Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA. 2000;283:1571—1577
    93. Kasa, P., Rakonczay, Z., Gulya, K., et al. The cholinergic system in Alzheimer's disease. Prog. Neurobiol. 1997; 52:511-535
    94. Perry, E.K., Martin-Ruiz, C, Lee, M., et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol. 2000;393:215-222
    95. Nordberg, A., Lundqvist, H., Hartvig, P., et al. Kinetic analysis of regional (S)(-) ~(11)C-nicotine binding in normal and Alzheimer brains in vivo assessment using positron emission tomography. Alzheimer Dis. Assoc. Disord. 1995; 9: 21-27
    96. Rusted, J.M., Newhouse, P.A., Levin, E.D.. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease. Behav. Brain Res. 2000; 113: 121-129
    97. Perry, E.K., Martin-Ruiz, C, Lee, M., et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol. 2000; 393: 215-222
    98. Whitehouse PJ, Price DL, Clark AW, et al. Alzheimer's disease: Evidence for a selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 1981;10:122-126
    99. Rosser MN, Svendsen C, Hunt SP, et al. The substantia innominata in Alzheimer's disease: A histochemical and biochemical study of cholinergic marker enzymes. Neurosci Lett. 1982; 28:217-222
    100. Ewa Hellstom-Lindahl, Malahat Mousavi, Xiao Zhang,et al. Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Mol Brain Res. 1999; (66): 94-103
    101. Wang, H.Y., Lee, D.H., Davis, C.B., et al. Amyloid peptide Aβ(1-42) binds selectively and with picomolar affinity to alpha 7 nicotinic acetylcholine receptors. J Neurochem. 2000; 75:1155-1161
    102. Gotti, C, Carbonnelle, E., Moretti, M., et al. Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav. Brain Res. 2000; 113:183-192
    103. Kasa, P., Rakonczay, Z., Gulya, K.,et al. The cholinergic system in Alzheimer's disease. Prog. Neurobiol. 1997; 52: 511-535
    104. Zoli, M., Le'na, C, Picciotto, M.R., et al. Identification of four classes of brain nicotinic receptors using _2-mutant mice. J. Neurosci. 1998;18: 4461-4472
    105. Perry, E.K., Martin-Ruiz, C., Lee, M., et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol. 2000; 393: 215-222
    106. Quik, M, Jeyarasasingam, G, Nicotinic receptors and Parkinson's disease. Eur. J. Pharmacol. 2000;393: 223-230
    107. Changeux, J.P., Bertrand, D., Corringer, P.J., et al. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res. Rev. 1998;26: 196-214
    108. Perry, E.K., Morris, C.M., Court, J.A., et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology. Neuroscience. 1995; 64: 385-395
    109. Lothar Burghausa, Ulrich Schutza, Udo Krempela, et al. Loss of nicotinic acetylcholine receptor subunits α4 and α7 in the cerebral cortex of Parkinson patients. Parkinsonism Related Disorders. 2003;9(5):243-246
    110. Perry, E.K., Morris, C.M., Court, J.A., Cheng, A., et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology. Neuroscience. 1995;64: 385-395
    111. Jesper F. Bastlund, David Berry and William P. Watson. Pharmacological and histological characterisation of nicotine-kindled seizures in mice. Neurophannacology. 2005; 48(7):975-983
    112. Ramiro Salas, Kimberly D. Cook, Laura Bassetto et al. The α3 and β4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology. 2004; 47(3):401-407
    113. Kuryatov A, Gerzanich V, Nelson M, et al. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca~(2+) permeability, conductance, and gating of human α2β4nicotinic acetylcholine receptors. J Neurosci, 1997;17(23):9035-9047
    114. Hirose S, Iwata H, Akiyoshi H, et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 1999;53:1749 - 1753
    115. Steinlein OK, Magnusson A, Stoodt J, er al.. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet. 1997; 6: 943-947
    116. Phillips HA, Favre I, Kirkpatrick M, er al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet. 2001; 68: 225 - 231
    117. Nivalda Rodrigues-Pinguet, Li Jia, Maureen Li, et al. Five ADNFLE mutations reduce the Ca2+ dependence of the mammalian α4β2 acetylcholine response. J Physiol. 2003; 550(1): 11-26
    118. Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995 ;3 8:22 - 33
    119. Griffith J, Hoffer LD, Adler LE, et al. Effects of sound intensity on a mid-latency evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Psychophysiology. 1995; 32:460 - 466
    120. Griffith JM, O' Neill J, Petty F, et al. Nicotinic receptor desensitization and sensory gating deficits in schizophrenia. Biol Psychiatry. 1998; 44(2):98 - 106
    121. Chini B, Raimond E, Elgoyhen AB, et al. Molecular cloning and chromosomal localization of the human alpha7-nicotinic receptor subunit gene (CHRNA7). Genomics. 1994; 19:379 - 381
    122. Freedman R, Leonard S, Olincy A, et al. Evidence for the multigenic inheritance of schizophrenia. Am J Med Genet. 2001; 105:794 - 800
    123. Riley BP, Makoff A, Mogudi-Carter M, et al. Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet. 2000; 96:196 - 201
    124. Leonard S, Gault J, Hopkins J, et al. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry. 2002; 59: 1085 - 1096
    125. Nomikos GG, Schilstrom B, Hildebrand BE, et al. Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav Brain Res. 2000;1113:97-103
    126. Olincy A, Johnson LL, Ross RG. Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiatry Res. 2003; 117:223 - 236
    127. Lasser K, Boyd JW, Woolhandler S, et al. Smoking and mental illness: a populationbased prevalence study. JAMA. 2000;284:2606 - 2610
    128. C. M. Martin-Ruiz, M. Piggott, C. Gotti, et al. Alpha and beta nicotinic acetylcholine receptors subunits and synaptophysin in putamen from Parkinson's disease. Neuropharmacology. 2000; 39(13):2830-2839
    129. N.P. Visanji, S.N. Mitchell, M.J. O'Neill et al. Chronic pre-treatment with nicotine enhances nicotine-evoked striatal dopamine release and α_6 and β_3 nicotinic acetylcholine receptor subunit mRNA in the substantia nigra pars compacta of the rat. Neuropharmacology. 2006; 50(1):36-46
    130. Hiroaki Matsubayashi, Taku Amano, Takahiro Seki, et al. Postsynaptic α4β2 and α7 type nicotinic acetylcholine receptors contribute to the local and endogenous acetylcholine-mediated synaptic transmissions in nigral dopaminergic neurons. Brain Research. 2004;1005(1-2):1-8
    131. Morens, D.M. MD; Grandinetti, A. PhD; Reed, D. MD PhD; et al. Cigarette smoking and protection from Parkinson's disease: False association or etiologic clue? Neurology. 1995; 45: 1041-1051
    132. Tanner, C. M. MD, PhD; Goldman, S. M. MD, MPH; Aston, D. A. VMD, MPH; et al. Smoking and Parkinson's disease in twins. Neurology. 2002; 58(4): 581-588
    133. Martin-Ruiz, C. M., Piggott, M., Gotti, C, et al. Alpha and beta nicotinic acetylcholine receptors subunits and synaptophysin in putamen from Parkinson's disease. Neuropharmacology. 2000; 39: 2830-2839
    134. Quik, M., Kulak, J. M. Nicotine and Nicotinic Receptors; Relevance to Parkinson's Disease. Neurotoxicology. 2002; 23: 581-594
    135. Genzen JR, Van Cleve W, McGenhee DS. Dorsal root ganglion neurons express multiple nicotinec acetylcholine receptor subtypes. J Neurophsiol. 2001; 86:1773-182
    136. Dolezal V, Kasparova J. β-amyloid and cholinergic neuron. Neurochem Res, 2003; 28: 499-506
    137. Lyness SA, Zarow C, Chui HC. Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging. 2003; 24:1-23
    138. Kimes AS, Horti AG, London ED, et al. 2-[~(18)F]F-A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J 2003;17: 1331-1343
    139. Bottlaender M, Valette H, Roumenov D, et al. Biodistribution and radiation dosimetry of 18F-fluoro-A-85380 in healthy volunteers. J Nucl Med 2003;44:596- 601
    140. Xu R, Bai DL. Chemistry and pharmacology of new potent analgesic epibatidine .Prog Chem, 1999, 11(3):313-326
    141. F. Ivy Carroll. Epibatidine structure-activity relationships. Bio Med Chem Lett. 2004; 14(8): 1889-1896
    142. S. Boyce, J. K. Webb, S. L. Shepheard, et al. Analgesic and toxic effects of ABT-594 resemble epibatidine and nicotine in rats. Pain. 2000;85(3): 443-450
    143. R. Benjamin Free, Darrell L. Bryant, Susan B. McKay, et al. ~3H]Epibatidine binding to bovine adrenal medulla: evidence for α3β4* nicotinic receptors. Neurosci Lett. 2002;318(2): 98-102
    144. Turek JW, Kang CH, Campbell JE, et al. A sensitive technique for the detection of the α7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. J Neurosci Methods, 1995; 61(1/2)113-118
    145. Singh S, Avor KS, Pouw B, et al. Design and synthesis of isoxazole containing bioisosteres of epibatidine as potent nicotini cacetylcholine receptor agonists. Chem Pharm Bull. 1999; 47(10):1501-1505
    146. Seerden JPG, Tulp MTM, Scheeren HW, et al. Synthesis and structure activity data of some new epibatidine analogues .Bioorg Med Chem, 1998, 6(3):2103-2110
    147. Barlocco D, Cignarella G, Tondi D,et al. Mono and disubstituted 3,8 diazabicyclo[3.2.1] octane derivatives as analgesics structurally related to epibatidine: synthesis, activity, and modelling. J Med Chem, 1998, 41(1):674-681
    148. Bencherif M, Schmitt JD, Bhatti BS, et al. The heterocyclic substituted pyridine derivative(±)-2-(-3-pyridinyl)-1- azabicyclo[2.2.2]octane(RJR-2429): as elective ligand at nicotinic acetylcholine receptors. J Pharmacol Exp Ther, 1998, 284(3):886-894
    149. Choi KI, Cha JH, Cho YS, et al. Binding affinities of 3-(3-phenylisoxazol-5-yl) methylidenel azabicycles to acetylcholine receptors. Bioorg Med Chem Lett. 1999; 9(4): 2795-2800
    150. Spang JE, Patt JT, Bertrand S, et al. Synthesis and electrophysiololgical studies of a novel epibatidine analogue. J Recept Signal Trans Res. 1999; 19(1-4); 521-531
    151. Olesen PH, Tnder JE, Hansen JB, et al. Bioisosteric replacenent. Strategy for the synthesis of 1-azacyclic compounds with high affinity for the central nicotinic cholinergic receptors. Bioorg Med Chem. 2000; 8(5): 1441-1450
    152. Krow GR, Cheung OH, Hu Z, et al. Nitrogen bridge homoepibatidines. Syn-6-and syn-5-(6- chloro-3-pyridyl) isoquinaclidines. Tetrahedron. 1999; 55(20): 7747-7756
    153. Che D, Wegge T, Stubbs MT, et al. Exo-2-(pyridazin-4-yl)-7- azabicyclo [2.2.1] heptanes: syntheses and nicotinic acetylcholine receptor agonist activity of potent pyridazine analogues of (±)-epibatidine. J Med Chem. 2001 ;44 (1) :47-57
    154. Linjing Mu, Konstantin Drandarov, Willian H, et al. Synthesis and binding studies of epibatidinge analogues as ligands for the nicotinic acetylcholine receptor. Eur J Med Chem. 2006;1:1-11
    155. Holladay MW, Wasicak JT, Lin NH, et al. Identification and initial structure activity relationships of (R)-5-(2-azatidinylmethoxy)-2-chloropyridine (ABT-594), apotent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. J Med Chem. 1998;41(4): 407-412
    156. Bannon AW, Decke rMW, Holladay MW, et al. Broad spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science. 1998; 279(2): 77-81
    157. James J. Lynch III, Carrie L. Wade, Joseph P. Mikusa, et al. ABT-594 (a nicotinic acetylcholine agonist): anti-allodynia in a rat chemotherapy-induced pain model. Eur J Pharm. 2005: 509(1):43-48
    158. Cheng YX, Dukat M, Dowd M, et al. Synthesis and binding of 6,7,8,9-tetrahydro-5H-pyrido[3,4 d]azepine and related ring-opened analogs at central nicotinic receptors. Eur J Med Chem. 1999; 34(1): 177-190
    159. Dukat M, Dowd M, Damaj MI, et al. Synthesis, receptor binding and QSAR studies on 6-substituted nicotine derivatives as cholinergic ligands. Eur J Med Chem. 1999; 34(1):1-40
    160. Elliott RL, Ryther KB, Holladay MW, et al. Furopyridine, thienopyridine, pyrrolopyridine and related pyrimidine, pridazine and thiazine compounds useful in control chemical synaptic transmission. World Pat: 466009A1,USA. 1998:10-22.
    161. Lee J, Davis CB, Rivero RA, et al. Synthesis and structure activity relationship of novel pyridylethers for the nicotinic acetylcholine receptor. Bioorg Med Chem Lett. 2000;10(10):1063-1066
    162. Mukhin AG, Gundisch D, Horti AG, et al. 5-Iodo-A-85380, an α4β2subtype selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol. 2000; 57(4):642-649
    163. Schneider JS, Tinker JP, Velson MV, et al. Nicotini acetylcholine receptor agonist SIB-1508Y improves cognitiv functioning in chronic low dose MPTP treated monkeys. J Pharm Exp Ther. 1999;290(2):731-739
    164. Ferguson SM, Brodkin JD, LloydGK, et al. Antidepressant like effects of the subtype selective nicotinic acetylcholine receptor agonist SIB 1508Y, in the learned helplessness rat model of depression. Psychopharmacology. 2000:152(1):295-303.
    165. Jotham W. Coe, Paige R. Brooks, Michael C. Wirtz, et al. 3,5-Bicyclic aryl piperidines: A novel class of α4β2 neuronal nicotinic receptor partial agonists for smoking cessation. Bio Med Chem Lett. 2005; 15:4889-4897
    166. Jotham W. Coe, Paige R. Brooks, Michael C. Wirtz, et al. 3,5-Bicyclic aryl piperidines: A novel class of α4β2 neuronal nicotinic receptor partial agonists for smoking cessation. Bio Med Chem Lett. 2005; 15: 4889-4897
    167. Clarke PB, Reuben M. Release of [H]-nora-drenaline from ra thippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol, 1996;117(4):594-60
    168. De-Fiebre CM, Meyer EM, Henry JC, et al. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic α7/~(125)I-α bungarotoxin receptor subtypes. Mol Pharmacol. 1995; 47(1):164-171
    169. Olesen PH, Swedberg MDB, Rimvau K. 3-(5-Alkylamino-4-isoxazo (yl) -1,2,5,6-tetrahydro- pyridines: a nove lclass of central nicotinic receptor ligands. Bioorg Med Chem. 1998; 6(5):1623-1629
    170. Vernier JM, El-Abdellaoui H, Holsenback H, et al. 4-((2-(1-Methyl-2-pyrrolidinyl) -ethyl)-thio) -phenol hydrochloride (SIB 1553A): a novel cognitive enhancer with selectivity for neurona lnicotinic acetylcholine receptors. J Med Chem. 1999; 42(10): 1684-1686
    171. Mullen G, Napier J, Balestra M, et al. (-)-Spiro[1-azabicyclo[2.2.2]octane 3,5' -oxazolidin-2' -one], a Conformationally Restricted Analogue of Acetylcholine, Is a Highly Selective Full Agonist at the α7 Nicotinic Acetylcholine Receptor. J Med Chem. 2000; 43:(22):4045-4050
    172. Manetti D, Bartolini A, Borea PA, et al. Hybridized and isosteric analogues of N~1-acetyl-N~4-dimethyl-piperazinium iodide (ADMP) and N~1-phenyl-N~4- dimethyl-piperazinium iodide (DMPP) with central nicotinic action. Bioorg Med Chem. 1999; 7(2): 457-465
    173. Nielsen SF, Nielsen EQ, Olsen GM, et al. Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3D-QSAR analysis. J Med Chem; 2000: 43(11):2217-2226
    174. Gotti C, Balestra B, Moretti M, et al. 4-Oxystilbene compounds are selective ligands for neuronal nicotinic α-bungarotoxin receptors. Br J Pharmacol. 1998; 124(6): 11971-1206
    175. Sultana, C. Hosokawa, K. Nishimura, et al. Benzylidene anabaseines act as high-affinity agonists for insect nicotinic acetylcholine receptors Insect Biochem Molec. 2002; 32(6): 637-643
    176. Clark A. Briggs, David J. Anderson, Jorge D. Brioni, et al. Functional Characterization of the Novel Neuronal Nicotinic Acetylcholine Receptor Ligand GTS-21 In Vitro and In Vivo. Pharmacol Biochem Be. 1997; 57(1-2):231-241
    177. Dong-Qing Wei, Suzane Sirois, Qi-Shi Du, et al. Theoretical studies of Alzheimer's disease drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine (GTS-21) and its derivatives. Biochem. Bioph Res Co. 2005. 338(2): 1059-1064
    1. Abhiash K. Desai, MD; George T. Grossberg, MD. Diagnosis and treatment of Alzheimer's disease. Neurology. 2005:64:S34-S39
    2. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. Inflammation and Alzheimer's disease. Neurobiology of Aging. 2000; 21: 383-421
    3. Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone-marrow-derived and present antigen in vivo. Science, 1988;239:290-292
    4. Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience, 1992;48:405-415
    5. Ahmad I, Das AV, James J, et al. Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol, 2004; 15: :53-62.
    6. Dyer MA, Livesey FJ, Oliver G, et al. Proxl function controls progenitor cell proliferation and horizontal cell genes is in the mammalian retina. Nat Genet, 2003, 34:53-58
    7. Ford AL, Goodsall AL, Hickey WF, et al. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: phenotypic differences defined and directed vivo antigen presentation to myelin basic protein reactive CD4+T cells compared. J Immunol, 1995,154:4309 4316
    8. Gehrmann J., Matsumoto Y. , Kreutzberg G. W., et al. Microglia: intrinsicimmuno effector cell of the brain. Brain Res Rev, 1995;20:269-287
    9. Chung H, Brazil MI, Maxfield. Uptake, degeradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells. J Biol Chem, 1999;274:32301-32308
    10. Webster SD, Galvan MD, Ferran E, et al. Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q. J Immunol, 2001;166:7496-7503
    11. Rogers, J. Lue, L.F. Microglial chemotaxis, activation, and phagocygosis of amyloid β-peptide as linked phenomena in Alzheimer's disease. Neuorchemistry International, 2001;39:330-340
    12. Khoury, J., Hickman, S. E., Thomas, C.A., et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature,1996;382:716-719
    13. Rogers, J., Lue,L.F. Microglial chemotaxis, activation, and phagocytosis of amyloid peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, 2001;39:333-340
    14. Lue, L.F., Walker, D.G., Brachova,L., et al. Involvement of microglia receptor for advanced glycation end products(RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Experimental Neurology, 2001;171:29-45
    15. Kopek,K.K. Carroll,R.T. Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. Journal of Neurochemistry, 1998;71:2123-2131
    16. Mitrasinovic,O.M.,Murphy, G.M.. Microglial overexpression of the M-CSF receptor augments phagocytosis of opsonized Aβ. Neurobiology of Aging, 2003;24:807-815
    17. Frackowiak J, Wisniewski HM, Wegiel J, et al. Ultrastructure of the microglia that phatocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuroathologica, 1992;84:225-233
    18. Bard,F.,Cannon,C.,Barbour,R.,Bruke,R.,et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine.2000;6:916-919
    19. Sherwin,B.B. Estrogen and cognitive functioning in women. Endocrine Reviews, 2003;24:133-151
    20. Frackowiak J, Wisniewski HM, Wegiel J, et al. Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce β-amyloid fibrils. Acta Neuropathol, 1992;84:225-253
    21. Webster SD, Galban MD. Ferran E. et al. Antibody-mediated phagocytosis of the amyloid β-peptide in microglia is differentially modulated by C1q. J Immunol, 2001; 166:7496-74503
    22. Stalder M, Phinney A, Probst A. et al. Association of microglia with amyloid plaques in brains of APP23 transgenic. Am J Pathol, 1999; 154:1673-1684
    23. Wegiel J, Wang K-C, Tarnawski M, et al. Microglial cells are the driving force in fibrillar plaque formation whereas astrocytes are a leading factor in plaque degradation. Acta Neuroparhol, 2000;100:356-364
    24. Chung H, Bracil MI, Soe TT, et al. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells. J Biol Chem, 1999; 274:32301-32308
    25. Webster SD, Galvan MD, Ferran F, et al. Antibody-mediated phagocytosis of the amyloidβ-peptide in microglia is differentially modulated by C1q. J Immunol, 2001;166:7496-7503
    26. Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone-marrow-derived and present antigen in vivo. Science, 1988;239:290-292
    27. Banati RB, Hoppe D, Gottman K, et al. A subpopulation of bone marrow-derived macrophage-like cells shares a unique ion channel pattern with microglia. J Neurosci Res, 1991;30:593-600
    28. Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience, 1991;48:405-415
    29. Wegie J, Imaki H, Wang K-C,Wegiel J, et al. Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol, 2003;105:393-402
    30. Hansson E, Ronnback L. Glial neuronal signaling in the central nervous system. FASEBJ,2003;17:341-348
    31. Wegiel J, Kuchna I, Wisniewski T, et al. Vascular fibrosis and calcification in the hippocampus in aging, Alzheimer disease , and Dowm synduome. Acta Neuropathol, 2002;103:333-343
    32. Wisniewski HM, Wegiel J. Migration of perivascular cells into the neuropil and their involvement in amyloid plaque formation. Acta Neuropathol, 1993;85:586-95
    33. Kawai M, Kalaria RN, Harik SI, et al. The relationship of amyloid plaques to cerebral capillaries in Alzheimer disease. Am J Pathol, 1990;137:1435-1446
    34. Yazawa H, Yu Z-X, Takeda K, et al. βAmyloid peptide(Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J, 2001 ;15:2454-2462
    35. Loitto V-M, Rasmusson B, Spooner E, et al. Assessment of neutrophil N-formyl peptide receptor by using antibodies and fluorescent peptides. J Leuk Biol, 2001;69:762-8-771
    36. Le Y, Gong W, Tiffany HL, et al. Amyloid β42 activates a G-protein-coupled chemoattractant receptor FPR-like-1. J Neurosci, 2001;21:l-5
    37.Tracey KJ.The inflammatory reflex.Nature,2002;420:853-859
    38.Wang H,Yu M,Ochani M,et al.Nicotinic acetylcholine receptor alpha 7 subunit is an essential regulator of niflammation.Nature,2003;421:384-388
    39.Burghaus L,Schutz U,Krempel U,et al.Quantitative assessment of nicotinic acetylcholine recrtpor proteins in the cerebral cortex of Alzheimer patiernts.Brain Res Mol Brain Res,2000;76:385-388
    40.Guan ZZ,Zhang X,Ravid R,et al.Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease.J Neurochem,2000;74:237-243
    41.Jones GM,Sahakian BJ,Levy R,et al.Effects of acute subcutaneous nicotine on attention information processing and short-term memory in Alzheimer's disease.Psychopharmacology(Berl),1992;108:485-494
    42.Brenner D.E.,Kujull W.A.,Van Belle G.,et al.Relationship between cigarette smoking and Alzheimer's disease in a populagiong-based case-control study.Neurology,1993;43:293-300
    43.Mc Gehee DS,Role LW.Physiological diversity of nictonic acetylcholine receptors expressed by vertebrate neurons.Annu Rev Physiol,1995;57:521-546
    44.Dajas-Bailador F.A.,Mogg A.J.,Wormacott S.Intracellular Ca~(2+) signals evoked by stimulation of nicotinic acetylcholine receptor subunits expression in brain of patients with Dowm syndrome and Alzheimer's disease.J Neural Transm,2002;Suppl:211-222
    45.R.Douglas Shytle,Takashi Mori,Kirk Toemshend,et al.Cholinergic modulation of microglial activation by α7 nicotinic receptors.J.Neurochem,2004;89:337-343
    46.朱长庚主编.神经解剖学.人民卫生出版社.2002年出版.P400
    47.Ridet JL,Malhotra SK,Privat A,et al.Reactive astrocytes:cellular and molecular cues to biological function.TINS.1997;20:570-577
    48.L.F.Eng,R.S.Ghirnikar,GFAP and astrogliosis,Brain Pathol.4(1994) 229-237
    49.J.I.Nagy,D.Patel,P.A.Y.Ochalski,et al.Connexin30 in rodent,cat and human brain:selective expression in gray matter astrocytes,co-localization with connexin43at gap junctions and late developmental appearance.Neuroscience.1999;88(2):447-468
    50. J. L. Perez Velazquez, M. Frantseva, C. C. G. Naus, et al. Development of astrocytes and neurons in cultured brain slices from mice lacking connexin43. Developmental Brain Research, 1996. 97(2):293-296
    51. Tsacopoulos M. Metabolic coupling between glia and neurons. J Neurosci. 1996; 16:877-885
    52. Blomqvist A. Broman J. Light and electron microscopic immuno-histochemical demonstration of GABA-immunoreactive astrocyes in the brain stem of the rat. L Neurocytol. 1988, 17:629-637
    53. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, et al. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242:1444-1446
    54. H. Funato, M. Yoshimura, T. Yamazaki, T.C. Saido, Y. Ito, J. Yokofujita, R. Okeda, Y. Ihara, Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Ab40-positive diffuse plaques in the aged human brain, Am. J. Pathol. 152(1998): 983-992
    55. M.T. Fitch, J. Silver, Glial cell extracellular matrix: boundaries for axon growth in development and regeneration, Cell Tissue Res. 290 (1997) 379-384
    56. H. Yamaguchi, S. Sugihara, A. Ogawa, T.C. Saido, Y. Ihara, Diffuse plaques associated with astroglial amyloid beta protein, possibly showing a disappearing stage of senile plaques, Acta Neuropathol. 95 (1998) 217-222
    57. Robert G. Nagele, Michael R. D'Andrea, H. Lee, et al. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Research. 2003; 971:197-209
    58. Perea, G, & Araque, A. Communication between astrocytes and neurons: a complex language. Journal of Physiology-Paris.2002; 96:199-207
    59. Akiyama H, Mori H, Saido T, et al. Occurrence of the diffuse amyloid beta-protein (Abeta) deposits with numerous Abeta-containing glial cells in the cerebral cortex of patients with Alzheimer's disease. Glia 1999;25:324—31
    60. Gouras GK, Tsaiu J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal A_42 accumulation in human brain. Am J Pathol. 2000; 156:15-20
    61. Thal DR, Schultz C, Dehghani F, et al. Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 2000; 100:608-617
    62. Dickson, D. W. (1997). The pathogenesis of senile plaques. Journal of Neuropathology and Experimental Neurology, 56, 321-339
    63. Kurt, M. A., Davies, D. C, & Kidd, M. B-amyloid immunoreactivity in astrocytes in Alzheimer's disease brain biopsies: an electron microscope study. Experimental Neurology, 1999.158, 221-228
    64. Yamaguchi, H., Sugihara, S., Ogawa, A., Saido, T. C, & Ihara, Y. (1998). Diffuse plaques associated with astroglial amyloid _ protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathologica, 95, 217-222
    65. Wyss-Coray, T., Loike, J. D., Brionne, T. C, Lu, E., Anankov, R., Yan, F., et al. Adult mouse astrocytes degrade beta-amyloid in vitro and in situ. Nature Medicine, 2003; 9: 453-457
    66. Nagele, R. G, D'Andrea, M. R., Lee, H.,Venkataraman,V.,&Wang, H. Y. (2003). Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer's disease brains. Brain Research, 971, 197-209
    67. Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. JNeurosci; 1999; 19: 6897-6990
    68. De Witt DA, Perry G, Cohen M, et al. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer' s disease. Exp Neurol, 1998;149:329-340
    69. C. M. Dacies, D.M. Mann, P.Q. Sumpter, et al. A quantitative morphometric analysis of the meuronal and synaptic content of the frontaland temporal cortex in patients with Alzheimer's disease. J, Neurol. Sci. 1987;78:451-164
    70. K.L. Davis, R.C. Mohs, D. Marin, D.P. Purohit, D.P. Perl, M. Lamtz, G. Austin, V. Haroutunian, Cholinergic markers in elderly patients with early signs of Alzheimer disease, J. Am. Med. Assoc. 281(1999) 1401-1406
    71. S.T. DeKosky, S.W. Scheff, Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity, Ann. Neurol. 27 (1990) 457-464
    72. R.D. Terry, E. Masliah, D.P. Salmon, N. Butters, R. DeTeresa, R. Hill, L.A. Hansen, R. Katzman, Physical basis of cognitive altera tions in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol. 30 (1991) 572-580
    73. C. Banerjee, J.R. Nyengaard, A. Wevers, et al. Cellular expression of alpha7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer's and Parkinson's disease—a stereological approach, Neurobiol. Dis. 2000; 7:666-672
    74. L. Burghaus, U. Schutz, U. Krempel, R.A. de Vos, E.N. Jansen Steur, A.Wevers, J. Lindstrom, Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients, Brain Res. Mol. Brain Res. 2000; 76: 385-388.
    75. D.R. Thal, W. Hartig, R. Schober, et al. Diffuse plaques in the molecular layer show intracellular AB8-17-immunoreactive deposits in subpial astrocytes, Clin. Neuropathol. 1999; 18: 226-231
    76. Nagele RG, D'Andrea MR, Lee H, Venkataraman V, Wang H-Y. give rise to astrocytic amyloid plaques in Alzheimer's disease brains. Brain Res 2003 ;971:197—209
    77. D'Andrea MR, Nagele RG, Wang H-Y, Lee DHS. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001 ;38:120-34
    78. Gouras GK, Tsaiu J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal Aβ42 accumulation in human brain. Am J Pathol 2000; 156:15-20
    79. Gyure KA, Durham R, Stewart WF, et al. Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 2001;125:489-92.],
    80. Nagele RG, D'Andrea MR, Anderson WJ, Wang H-Y. Intracellular accumulation of B-amyloid in neurons is facilitated by the a7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience. 2002; 110:199-211
    81. Nagele RG, D'Andrea MR, Anderson WJ, et al. Intracellular accumulation of B-amyloid in neurons is facilitated by the a7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience 2002; 110:199-211
    82. Wegiel J, Wang K-C, Tarnawski M, Lach B. Microglial cells are the driving force in fibrillar plaque formation whereas astrocytes are a leading factor in plaque degradation. Acta Neuropathol 2000; 100:356-64
    83. Wegiel J, Wang K-C, Imaki H, Rubenstein R, Wronska A, Osuchowski M, et al. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APPsw mice. Neurobiol Aging. 2001; 22:49-61
    84. Wegiel J, Imaki H, Wang K-C, Wegiel Jr J, Wronska A, Osuchowski M, et al. Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 2003; 105:393-402
    85. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med 2003;9:453—457
    86. Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 1998;273:32730-8
    87. Kurochkin IV, Goto S. Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzymes. FEBS Lett. 1994;345:33-67
    88. Apelt J, Ach K, Schliebs R. Aging-related down-regulation of neprilysin, a putative β-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of β-amyloid plaques. Neurosci Lett. 2003; 339:183-6.
    89. M.R. D'Andrea, R.G. Nagele, H.-Y. Wang, D.H.S. Lee, Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease, Histopathology 38 (2001): 120+134
    90. Selkoe D. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001;81:741-66
    91. Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997; 56:321-39
    92. Scheff SW, Price DA. Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer disease. J Neuropathol Exp Neurol 1998;57: 1146-53
    93. Robert G. Nagele, Michael R. D'Andrea, H. Lee, et al. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Research. 2003; 971:197-209
    94. L. Burghaus, U. Schutz, U. Krempel, R.A. de Vos, E.N. Jansen Steur, et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients, Brain Res. Mol. Brain Res. 76 (2000) 385-388
    95. K.L. Davis, R.C. Mohs, D. Marin, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease, J. Am. Med. Assoc. 1999; 281: 1401-1406
    96. M.R. D'Andrea, R.G. Nagele, H.-Y. Wang, D.H.S. Lee, Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease, Histopathology 38 (2001): 120-134
    97. G.K. Gouras, J. Tsaiu, J. Naslund, B. Vincent, M. Edgar, F. Checler, J.P. Greenfield,V. Haroutunian, J.D. Buxbaum, H. Xu, P. Greengard, N.R. Relkin, Intraneuronal Ab42 accumulation in human brain, Am. J. Pathol. 156 (2000) 15-20
    98. H. Y. Wang, M.R. D'Andrea, R.G. Nagele, Cerebellar diffuse amyloid plaques are derived from dendritic Ab42 accumulations in Purkinje cells, Neurobiol. Aging 23 (2002)213-223
    99. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003; 39: 409-421
    100. Alzono NC, Hyman BT, Greenberg SM. Progression of cerebral amyloid angiopathy. Accumulation of A β40 in already affected vessels. J Neuropathol Exp Neurol. 1998,57(4):353-359
    101. Fryer JD, Taylor JW, Demattos SM, et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci. 2003;23(21):7889-7896
    102. Cho HS, Hyman BT, Greenberg SM, et al. Quantitative of apoE domains in Alzheimer's disease brain suggests a role for apoE in Aβaggregation. J Neuropathol Exp Neurol. 2001;60(4):342-349
    103. Faith M. Harris. Ina Tesseur, Walter J. Brech, et al. Astroglial Regulation of Apoplipoprotein E Expression in Neuronal Cells. J Biol Chemri
    104. Eeinstra E, Wilzak N, et al. Astroctyes in chronic active multiple sclerosis plaques express MHC classs Ⅱ molecules. Neureport; 2000; 11: 89 91
    105. Cornet A, Bettelli E, Oukka M, et al. Role of astrocytesin antigen presentation and naive T cell activation. J Neuroimmunol, 2000; 106:69-77
    106. Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001,36 180-190
    107. Eeinstra E, Wilzak N. Astroctyes in chronic active multiple sclerosis plaques express MHC classs Ⅱ molecules. Neureport, 2000; 11: 89 91
    108. Jacques De Keyser MD, Esther Zeinstra MD. Are Astroctyes Central Players in the Pathophysiology of Multiple Sclerosis.Arch Neurol, JAN, 2003; 60: 132-136
    109. Aloisi F, RiaF, AdoriniL. Regulation of T cell responses by CNS antigen presenting cells: different roles for microglia and astrocytes. Immunol Today; 2000:21 141-147
    110. 111Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000a). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21, 383-421
    111. Johnstone, M., Gearing, A. J. H., & Miller, K. M. (1999). A central role for astrocytes in the inflammatory response to -amyloid; chemokines, cytokines and reactive oxygen species are produced. Journal of Neuroimmunology, 93, 182-193
    112. Smits, H. A., Rijsmus, A., Van Loon, J. H., et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. Journal of Neuroimmunology. 2002; 127:160-168
    113. Sheng JG, Mrak RE, Griffin WST. S100- protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 1994;39:398-404
    114. Mrak, R. E., & Griffin,W. S. T. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease. Neurobiology of Aging, .2001: 22,915-922
    115. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun, 1965; 19(6): 739 744
    116. Ali MS, Harmer M, Vaughan R. Serum S-100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth. 2000;85(2):287 298
    117. Nilsson, L. N. G, Das, S., & Potter, H. (2001). Effect of cytokines, dexamethazone and the A/T-signal peptide polymorphism on the expression of alpha1-antichymotrypsin in astrocytes: significance for Alzheimer's disease. Neurochemistry International, 39, 361-370
    118. Pasternack, J. M., Abraham, C. R., Van Dyke, B. J., Potter, H., & Younkin, S. G (1989). Astrocytes in Alzheimer's disease gray matter express alphal-antichymotrypsinmRNA. American Journal of Pathology, 125, 827-834
    119. Abraham, C. R. (2001). Reactive astrocytes and _1-antichymotrypsin in Alzheimer's disease. Neurobiology of Aging, 22, 931-936
    120. Hu, J., Akama, K. T., Krafft, G. A., et al. Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Research. 1998; 785: 195-206
    121. [Chao, C. C., Hu, S., Sheng, W. S., Bu, D., Bukrinsky, M. I., & Peterson, P. K. (1996). Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 16,276-284
    122. Christian F. Deschepper. Peptide Receptors on Astrocytes. Frontiers in Neuroendocrinology. 1998; 19: 20-46
    123. Porter T, McCarthy KD. Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol. 1997; 51: 439-455
    124. Isaac G. Onyango, Jeremy B. Tuttle and James P. Bennett, Jr. Altered intracellular signaling and reduced viability of Alzheimer's disease neuronal cybrids is reproduced by β-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol Cell Neurosci. 2005; 29( 2):333-343
    125. Perea G, Araque A. Communication between astrocytes and neurons: acomplex language. J Physiol Paris. 2002; 96: 199-207
    126. Araque, A., Mart'in, E. D., Perea, G, et al. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci. 2002;22: 2443-2450
    127. Peter P, Rowell, Maureen Li. Dose response relationship for nicotine induced up-regulation of rat brain nicotinic receptors. Journal of Neurochemistry. 1997; 68: 1982-1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700